
Second Order Difference Aided CRC Check Stopping
Criterion for Turbo Decoding

Xuying Zhao1(✉), Xiaoqin Wang2, and Donglin Wang2

1 University of Chinese Academy of Sciences, Beijing, China
zhaoxuying2012@ia.ac.cn

2 Institute of Automation, Chinese Academy of Sciences, Beijing, China

Abstract. This paper presents an enhanced CRC (Cyclic Redundancy Check)
check stopping criterion to improve the throughput of turbo decoders. Turbo
decoder is applied to the 3G and LTE systems. CRC check stopping criterion is
normally used by the turbo decoder, and it reduces the iteration times dramatically
when transmission blocks are received correctly. However, when the quality of
the received signals is very low, the receiving data cannot be decoded correctly
even though the turbo decoder keeps working all the time. In these scenarios, the
CRC check stopping criterion has no effects any more. To reduce the number of
iterations when the quality of the received signals is low, the second order differ‐
ence aided CRC check stopping criterion is proposed. Based on the second order
difference of soft-bit information and/or hard-bit information, some bad situations
are identified before CRC check stopping condition is satisfied. Through simu‐
lations, it is proved that this method greatly reduces the decoding iteration times
in bad transmission environments. On the other hand, the whole throughput of
the turbo decoder is improved.

Keywords: CRC check · Second order difference · Turbo decoding

1 Introduction

Turbo codes, introduced by Claude Berrou in 1993 [1] have been widely researched and
used because of good decoding performance. Typically, turbo decoding algorithms set
a maximum iteration number in case of endless computing. These methods are called
“Fixed-Iteration-Number” (FIN) stopping criterion. FIN has poor flexibility especially
when transmission quality is good. In this situation, the decoder can correct all the errors
by iterating one or two times. Combined with the FIN, many other algorithms are
proposed to improve the decoding performance after some sufficient iterations.

In 1996 Joachim Hagenauer proposed the Cross-Entropy (CE) method to stop iter‐
ation before it reached the maximum iteration number [2]. CE algorithm can signifi‐
cantly reduce the iteration numbers with very little performance loss, but the computa‐
tional complexity is relatively large. Based on CE method, some other stopping crite‐
rions were created to reduce the complexity such as SCR (Sign-Change-Ratio) algorithm
and HDA (Hard-Decision-Aided) algorithm [3]. Sign-Difference-Ratio algorithm was
relative to the SCR and it resolved the problem of big data storage [4]. Improved HDA

© Springer International Publishing AG 2018
F. Qiao et al. (eds.), Recent Developments in Mechatronics and Intelligent Robotics,
Advances in Intelligent Systems and Computing 691, DOI 10.1007/978-3-319-70990-1_5



algorithm (IHDA) reduced the storage memory without degrading the performance
compared to the HDA [5]. Later on, based upon the CE method, a kind of method called
Yu criterion was proposed and its decoding performance was almost near the optimal
[6]. Several other early termination methods were proposed afterwards. For example,
Jia Hou presented the adaptive SNR (Signal Noise Ratio) algorithm [7], Fan-Min Li
proposed the MOR (Measurement of Reliability) method in 2005 [8] and Wei Jiang
proposed the algorithm about the mutual information between the logarithm likelihood
ratio and the data bits [9]. In recent years, some other new algorithms for early termi‐
nation have also been raised [10, 11].

In contrast with the above methods, the error correcting performance of CRC check
stopping criterion is good and corresponds to the Genie method. Nevertheless, CRC
check algorithm has one obvious drawback. When SNR is low or some outburst errors
happen to the decoder, CRC check cannot pass and the decoder will iterate up to the
maximum number. From simulations we can see that under this case the output of the
decoder is almost the same as that with fewer iteration times, and the time consumption
caused by excess iterations is invalid. A new method is proposed to solve this problem
in this paper. At each iteration, we compute the correlation values of the two sub-
decoders and the correlation values are called the first order difference. Then we compute
the difference between two consecutive iterations and the difference is called the second
order difference. The decoder stops iteration based on that the second order difference
is positive or not. This method can reduce the number of iterations with almost no
damage to the BLER (Block Error Rate) performance, especially in low SNR.

The remainder of the paper is organized as follows. In Sect. 2, the second order
difference aided CRC check stopping criterion is presented. Simulation results and
system complexity are analyzed in Sect. 3. Finally, Sect. 4 concludes the paper.

2 Second Order Difference Aided CRC Check Stopping Criterion

CRC check stopping criterion is rather reliable and early stopping hardly degrades the
performance. On the basis of considerable performance, we can further decrease the
average iteration times. Figure 2 shows that when SNR is low, the CRC check iteration
times are high, whereas the BLER performance is still “bad”. Next we will focus on this
problem.

In discrete function, the difference between two continuous adjacent values is called
the first order difference. If we define x(k), then y(k) = x(k + 1) − x(k) is the first order
difference, and this value indicates the monotonicity of the discrete function. The second
order difference is defined as z(k) = y(k + 1) − y(k), and this indicates the speed of the
change rate.

For turbo codes, we have analyzed the regularity of the internal data stream variation
in the decoder. By tracking amount of intermediate process results, we discover that the
difference between two sub-decoders is getting lower and lower as the iteration goes on.
One case is shown in Table 1, where we compute the correlation values of the LLRs and
hard bits from the two sub-decoders.

Second Order Difference Aided CRC Check Stopping Criterion 31



Table 1. The regularity of the data stream changes as the iteration goes on

Iteration number First order difference Second order difference
0 −0.47484
1 −0.791836 0.316997
2 −0.981215 0.189379
3 −1.200226 0.219011
4 −1.375428 0.175202
5 −1.681867 0.306439
6 −1.958921 0.277054
7 −2.659726 0.700806

The above table shows that the expected hard bits of the two sub-decoders are
approaching to each other as the number of iterations increases. The values of second
order difference are all positive, which indicates the “approaching” tendency. Normally,
when the iteration times get bigger, the first order difference will be smaller and the
decreasing rate is growing. That is, the second order difference keeps positive. Once the
decoder works abnormally, the first order difference becomes larger and the second order
difference turns to be negative. As is shown in Table 2, at the last iteration 4, the first
order difference becomes larger than −1.674556 at iteration 3, indicating that the decoder
meets some errors. Correspondingly, the second order difference changes into a negative
value −0.062031.

Table 2. Abnormal work of the decoder, the decoded bits of the decoder are not the same with
the original information bits

Iteration number First order difference Second order difference
0 −0.564011
1 −0.9835 0.419489
2 −1.244495 0.260995
3 −1.674656 0.430161
4 −1.612625 −0.062031

Based on the above analysis, we propose the second order difference aided CRC
check stopping criterion. When some accidental errors happen to the decoder, the errors
will pass over iteration by iteration, and the extra iterations work uselessly or even worse.
The second order difference aided CRC check algorithm is as follows,

(1) Set i = 0.
(2) At iteration i, compute the correlation values of the two sub-decoders and save

them, where the correlation values are corresponding to the first order difference.
At the same time, CRC check is processing. If CRC check is passed, stop the iter‐
ation; otherwise, go to step (3).

(3) At iteration i + 1, compute the correlation of the two sub-decoders, then calculate
the second order difference along with the previous difference values. If the second
order difference is positive, go on CRC checking and save the first order difference

32 X. Zhao et al.



values; otherwise, stop the iteration. If the CRC check is passed, stop the iteration;
else set i = i + 1 and go to step (4).

(4) If i is less than the preset maximum iteration number, go to step (3); else stop the
iteration.

3 Simulation Results and System Complexity Analysis

There are several schemes to compute the first order difference. The output LLRs of
each sub-decoder can be used to calculate these values. To some extent, the performance
of soft information is better than the hard bits. While the arithmetic units for floating
points are complex and time-consuming, especially the multiplication arithmetic. On
the other hand, as the CRC check is based on the hard bits, we can take this advantage
and adopt the hard bits to compute the first order difference. However, completely hard
decision will damage a part of performance. Considering the system complexity and
decoding performance, we can have a trade-off. A multiplier for floating point and hard
bit is corresponding to a multiplexer, which is less complex than the floating-point
multiplier. For simplicity, we call the soft information and hard bits assisted CRC check
“CRC-SHA”, and the hard bits assisted CRC check “CRC-HARD”. The CRC-SHA
architecture is depicted in Fig. 1.

DEC1 Interleaver

DEC2

Interleaver

DeInterleaver
La1

Par1_llr

Par2_llr

Sys1_llr

Le1 La2

sys2_llr

DeInterleaver

Hard-Decision

LLR2

LLR1-Memory

LLR1

MUX

Add

0

WR_EN CRC CHECK

STOP 
ITERATION

subtracter

Previous dif

Fig. 1. CRC-SHA architecture

In this architecture, we need an extra memory to store the LLRs of the first sub-
decoder. After the second sub-decoder outputs the LLRs and makes a hard decision, the
computing of the first order difference begins. The process is like that the soft informa‐
tion is to be multiplexed and goes into an accumulator. After finishing the whole code
block, the first order difference will be stored and do subtraction with the previous saved
ones. Then we can get the second order difference, and this value will control the CRC
check module and decide whether to stop the iteration.

There is a situation that the decoder works abnormally on occasion, but it can still
repair itself to obtain the correct results. If we stopped the iteration early, the BLER
performance might be a little “bad”. This paper proposes a solution to reduce the decod‐
er’s accidental errors. Here a parameter “ErrFlag” is set to indicate the error detected
numbers. We simulate the cases “ErrFlag = 1” and “ErrFlag = 2”. The BLER perform‐
ance and the average iteration times are described in Fig. 2.

Second Order Difference Aided CRC Check Stopping Criterion 33



Fig. 2. The BLER and average iteration numbers of CRC-SHA and CRC-HARD

The above figures show that CRC check stopping criterion has the lowest BLER,
while the average iteration times are highest. In the case ErrFlag = 2, the BLER
performance of CRC-SHA is nearly to the CRC check, and the average iteration times
are also decreased. Figure 2 shows that when SNR is in −4.9 to −4.4 dB, the average
number of iterations falls in approximate two times. In the case ErrFlag = 1, the BLER
performance of CRC-SHA has a loss of 0.1 dB, while the CRC-HARD loses nearly
0.2 dB. Both CRC-SHA and CRC-HARD can dramatically reduce the average iteration
times. Whereas at a poor transmission environment, the CRC-HARD may degrade the
decoding performance due to its weaker decoding ability. So considering the system
complexity and error correcting performance, we take the CRC-SHA algorithm as the
alternative solution.

4 Conclusion

This paper discusses a new method to overcome the CRC check drawbacks, primarily
the number of iterations, which efficiently enhances the throughput of the turbo decoder.
Almost all the current papers about the stopping criterion are based on the first order
difference and a threshold value. We have put forward a new idea based on the second
order difference. From the simulation results, we can conclude that this method can
dramatically improve the decoding speed, reducing the unnecessary iterations. Actually,
as the second order difference method includes the first order process, it can be used to
stop the iteration alone. We can calculate a threshold about the second order difference.
If the first order difference is in a certain interval and the second order difference is
beyond the threshold, we can stop the iteration. Compared with the CRC-SHA, this
method will reduce the power consumption and further research can be followed.

34 X. Zhao et al.



References

1. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and
decoding: turbo codes. In: Proceedings IEEE International Conference on Communications,
pp. 1064–1070 (1993)

2. Hagenauer, J., Offer, E., Papke, L.: Iterative decoding of binary block and convolutional
codes. IEEE Trans. Inform. Theory 42, 429–445 (1996)

3. Shao, R.Y., Lin, S., Fossorier, M.P.C.: Two simple stopping criterion for turbo decoding.
IEEE Trans. Commun. 47(8), 1117–1120 (1999)

4. Wu, Y., Woerner, B.D., Ebel, W.J.: A simple stopping criterion for turbo decoding. IEEE
Commun. Lett. 4(8), 258–260 (2000)

5. Ngatched, T.M.N., Takawira, F.: Simple stopping criterion for turbo decoding. Electron. Lett.
37(22), 1350–1351 (2001)

6. Yu, N.Y., Kim, M.G., Chung, S.U.: Efficient stopping criterion for iterative decoding of turbo
codes. Electron. Lett. 39(1), 73–74 (2003)

7. Hou, J., Lee M.H., Park, J.Y.: Adaptive SNR turbo decoding algorithm and stop criterion. In
Proceedings IEEE International Conference on PDCAT, pp. 893–895 (2003)

8. Li, F.-M., Wu, A.-Y.: A new stopping criterion for efficient early termination in turbo decoder
designs. In Proceedings IEEE International Symposium on ISPACS, pp. 585–588 (2005)

9. Jiang, W., Li, D.: Two efficient stopping criteria for iterative decoding. In: First International
Conference on Communications and Networking in China, 2006 , pp. 1–4 (2006)

10. Zhanji, W., Mugen, P., Wenbo, W.: A new parity-check stopping criterion for turbo decoding.
IEEE Commun. Lett. 12(4), 304–306 (2008)

11. Gazi, O.: New early termination method for turbo decoders. In: Signal Processing and
Communications Applications Conference (SIU), pp. 1215–1218 (2014)

Second Order Difference Aided CRC Check Stopping Criterion 35


	Second Order Difference Aided CRC Check Stopping Criterion for Turbo Decoding
	Abstract
	1 Introduction
	2 Second Order Difference Aided CRC Check Stopping Criterion
	3 Simulation Results and System Complexity Analysis
	4 Conclusion
	References


