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Abstract. In this paper, the optimal control problem of nonzero-sum
(NZS) games with partially unknown dynamics is investigated. The off-
policy reinforcement learning (RL) method is proposed to approximate
the solution of the coupled Hamilton-Jacobi (HJ) equations. A single
critic network structure for each player is constructed using neural net-
work (NN) technique. To improve the applicability of the off-policy RL
method, the tuning laws of critic weights are designed based on the of-
fline learning and online learning methods, respectively. The simulation
study demonstrates the effectiveness of the proposed algorithms.
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1 Introduction

The game theory for continuous-time systems, which is called as differential
game[1], have received spreading attention in the optimal control field[2]. In
general, differential games can be divided into three categories: zero-sum (ZS)
games[3], nonzero-sum (NZS) games[4] and fully cooperative (FC) games[5]. The
players in the NZS game can be either cooperative or competitive to maximize
their own interest. In order to obtain the optimal controllers, it is desired to ob-
tain the Nash equilibrium[6] by solving the HJ equations. However, it is difficult
to obtain the analytic solution of the HJ equations for nonlinear systems.

To approach the Nash equilibrium of the differential game, many model-
based or model-free reinforcement learning (RL) and adaptive dynamic pro-
gramming (ADP) algorithms have been presented[7, 8]. For the model-based RL
which requires full knowledge of system dynamics, an online synchronous policy
iteration algorithm with actor-critic NN structure was proposed in [9]. For the
model-based RL using partially knowledge of system dynamics, the internal RL
(IRL)[10] is the main technique to relax the knowledge of the internal dynamics.

⋆ This research is supported by National Natural Science Foundation of China (NSFC)
under Grants No. 61573353, No. 61533017, by the National Key Research and De-
velopment Plan under Grants 2016YFB0101000. (E-mail: dongbin.zhao@ia.ac.cn.)
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For the partially unknown nonlinear NZS games, a concurrent learning-based
actor-critic-identifier (ACI) structure was presented in [11], where the unknown
internal dynamics was identified using NN. Song et al.[12] investigated the off-
policy IRL algorithm with actor-critic structure for completely unknown NZS
games, where the convergence analysis of the proposed algorithm was proved.

To the best of our knowledge, there are still no IRL algorithms for general
NZS games with partially unknown dynamics. Motivated by [12] and [13], a novel
off-policy IRL algorithm with single-critic structure is presented to solve the
coupled HJ equations in this paper. Then, the NN-based offline iterative learning
and online iterative learning algorithms are employed for the off-policy IRL,
respectively. Simulation results show the effectiveness of the proposed scheme.

2 Problem Statement

Consider the N -player nonzero-sum differential games given by

ẋ = f (x(t)) +

N∑
j=1

gj (x(t))uj(t), (1)

where x ∈ Rn is the state, uj ∈ Rmj is the control input, f(·) ∈ Rn, gj(·) ∈
Rn×mj are smooth nonlinear dynamics. f(·) is Lipschitz continuous on a compact
set Ω ⊆ Rn with f(0) = 0. In this paper, the internal system dynamics f(x) is
assumed to be unknown. Define the set of players as N = {1, ..., N}, and the
supplementary set of player i as u−i = {uj | j ∈ {1, ..., i− 1, i+ 1, ..., N}}.

For the admissible policy ui defined in [9], the system (1) is stabilized on
the compact set Ω, denoted by ui ∈ Φ(Ω). Define the value functions for any
N -tuple of admissible strategies ui(x), i ∈ N as

Vi (x, ui, u−i) =

∫ ∞

t

(Qi (x(τ)) +
N∑
j=1

uT
j (τ)Rijuj(τ))dτ

=

∫ ∞

t

ri (x(τ), ui(τ), u−i(τ))dτ, i ∈ N,

(2)

where Qi(x) = xTQix, Qi ≥ 0 and Rii ≥ 0 are positive symmetric matrices, and
Rij > 0 are positive semidefinite symmetric. For the nonzero-sum differential
games, it aims to find an Nash equilibrium defined as follows.

Definition 1 (Nash Equilibrium: An N -tuple of admissible policies {u∗
i , u

∗
−i}

is said to constitute a Nash equilibrium solution for an N -player nonzero-sum
game, if J∗

i (u
∗
1, ..., u

∗
i , ..., u

∗
N ) ≤ Ji(u

∗
1, ..., ui, ..., u

∗
N ), i ∈ N.

To obtain the Nash equilibrium of the nonzero-sum games, we should solve
the so-called HJ equations, which is described as follows.

Qi (x) + (∇V ∗
i )

T f(x)− 1
2 (∇V ∗

i )
T

N∑
j=1

gj(x)R
−1
jj g

T
j (x)

×(∇V ∗
j ) +

1
4

N∑
j=1

(∇V ∗
j )

T gj(x)R
−1
jj RijR

−1
jj g

T
j (x)∇V ∗

j = 0

(3)
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where V ∗
i (x) is the optimal value function with V ∗

i (x) ≥ 0, Vi(0) = 0, and

∇Vi = ∂Vi(x)
∂x . The optimal state feedback control policy for each player i is

u∗
i (x) = − 1

2R
−1
ii gTi (x)∇V ∗

i , i ∈ N.

3 Off-Policy IRL for Partially Unknown NZS Games

3.1 Off-Policy IRL Method

With an arbitrary admissible control policy uj ∈ Φ(Ω), j ∈ N, the system (1)
can be rewritten as

ẋ = f(x) +
N∑
j=1

gj(x)(uj − uk
j ) +

N∑
j=1

gj(x)u
k
j , (4)

with uk+1
i (x) = −1

2R
−1
ii gTi (x)∇V k+1

i (x). The derivative of V k+1
i (x) with respect

to time along the system trajectory (4) equals to

dV k+1
i (x)

dt
=(∇V k+1

i )T (f +

N∑
j=1

gj(x)u
k
j ) + (∇V k+1

i )T
N∑
j=1

gj(x)(uj − uk
j )

=− ri(x, u
k
i , u

k
−i) + (∇V k+1

i )T
N∑
j=1

gj(x)(uj − uk
j ).

(5)

Based on the IRL, we have the integral form of equation (5) along the time
interval [t, t+∆t]

V k+1
i (x(t))− V k+1

i (x(t+∆t))

+

∫ t+∆t

t

(
∇V k+1

i (x(τ))

)T N∑
j=1

gj(x(τ))
(
uj(τ)− uk

j (τ)
)
dτ.

(6)

3.2 NN-Based Off-Policy IRL Algorithm

In this subsection, the NN approximation is introduced to solve (6) for V k+1
i (x)

based on a single-critic network structure. The value function is described as

Vi
k(x) = wT

i,kϕi(x) + εi,k, i ∈ N, (7)

where ϕi : Rn → RKi,k is the activation functions, wi,k ∈ RKi,k is the un-
known coefficient vector with Ki,k the numbers of hidden neurons, εi,k is the
reconstruction error with appropriate dimensions.

Based on (7), the iteration equation (6) can be rewritten as

ζi,k+1(x(t)) =(ϕi(x+∆t)− ϕi(x))
Twi,k+1 −

∫ t+∆t

t

N∑
j=1

(
gj(x)(uj(τ)− uk

j (τ))

)T

×∇ϕT
i (x)wi,k+1dτ +

∫ t+∆t

t

Qi(x) +
N∑
j=1

(
(uk

j (τ))
TRiju

k
j (τ)

)
dτ

(8)
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Let ŵi,k be the estimations of the unknown coefficients wi,k. The actual output

of the NN approximation can be presented as V̂i
k
(x) = ŵT

i,kϕi(x). Then, we

can obtain the approximated control policies ûk
i (x) = − 1

2R
−1
ii gTi (x)∇ϕT

i (x)ŵi,k.

Using V̂i
k+1

(x) instead of V k+1
i (x) in equation (6), the residual error is given by

ek+1
i (x(τ), ui(τ), u−i(τ))

∆
= ek+1

i (t)

=
(
ϕi

(
x(t)

)
− ϕi

(
x(t+∆t)

))T
ŵi,k+1 +

∫ t+∆t

t

N∑
j=1

(
gj(x)(uj(τ)− uk

j (τ))

)T

∇ϕT
i (x)ŵi,k+1dτ −

∫ t+∆t

t

Qi(x)dτ −
∫ t+∆t

t

N∑
j=1

(
(uk

j (τ))
TRiju

k
j (τ)

)
dτ.

(9)

Let

ρi
(
x(t), ui(t), u−i(t)

)
∆
=
(
ϕi

(
x(t)

)
− ϕi

(
x(t+∆t)

))T
+

∫ t+∆t

t

N∑
j=1

(
gj(x)(uj(τ)− uk

j (τ))

)T

∇ϕT
i (x)dτ,

πi(x(t))
∆
=

∫ t+∆t

t

Qi(x)dτ +
N∑
j=1

(
(uk

j (τ))
TRiju

k
j (τ)

)
dτ.

(10)

For notation simplicity, define

Di,j(x)
∆
= ∇ϕj(x)gj(x)R

−1
jj g

T
j (x)∇ϕT

i (x),

Ei,j(x)
∆
= ∇ϕj(x)gj(x)R

−1
jj RijR

−1
jj g

T
j (x)∇ϕT

j (x),

η1(x(t))
∆
=

(
ϕi

(
x(t)

)
− ϕi

(
x(t+∆t)

))T
,

η2(x(t), ui, u−i)
∆
=

∫ t+∆t

t

( N∑
j=1

uT
j (τ)g

T
j (x)

)
∇ϕT

i (x)dτ,

η3(x(t))
∆
=


∫ t+∆t

t
Di1(x)dτ
...∫ t+∆t

t
DiN (x)dτ

 , η4(x(t))
∆
=


∫ t+∆t

t
Ei,1(x)dτ 0 0

0
. . .

...

0 · · ·
∫ t+∆t

t
Ei,N (x)dτ

 ,

η5(x(t))
∆
=

∫ t+∆t

t

Qi(x)dτ.

Next, we have

ρi
(
x(t), ui(t), u−i(t)

)
=η1(x(t)) + η2(x(t), ui, u−i) +

1

2
ŴT

k η3(x(t)),

πi(x(t)) =
1

4
ŴT

k η4(x(t))Ŵk + η5(x(t)),
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where Ŵk = [ŵT
1,k, ..., ŵ

T
N,k]

T .
Then, (9) can be rewritten as

ek+1
i (t) = ρi

(
x(t), ui(t), u−i(t)

)
ŵi,k+1 − πi(x(t)). (11)

Note that the equation (11) is the key for the off-policy IRL algorithm for
NZS games with partially unknown dynamics.

4 Offline Iterative Learning Algorithm

For the designed offline iterative learning algorithm, critic weights are updated
based on least-square (LS) scheme. Define a strictly increasing time sequence
{tm}qm=0 for a large time interval with the number of collected samples q > 0.
Let the sample set Mi = {(xm, ui,m, u−i,m)}qm=0. In fact, each time interval
[tm, tm+1] is equivalent to the one [t, t+∆t] in (9).

Define ρi,m = ρi(xm, ui,m, u−i,m) and πi,m = πi(xm). To guarantee the con-
vergence of ŵi,k+1, the persistency of excitation (PE) assumption which is usu-
ally needed in adaptive control algorithms is given.

Assumption 1: Let the signal ρi,m be persistently existed, that is there exist

q0 > 0 and δ > 0 such that for all q ≤ q0, we have 1
q

∑q−1
k=0 ρi,mρTi,m ≥ δIi,m,

where Ii,m is the identity matrix of appropriate dimensions.
According to the LS principle, it is desired to determine the estimated weight-

ing function vector ŵi,k+1 by minimizing min
ŵi,k+1

1
2 (e

k+1
i,m )T ek+1

i,m . According to the

Monte Carlo integration method in [13], the solution to this LS problem yields

ŵi,k+1 = [PT
i Pi]

−1PT
i Πi, (12)

where Pi = [ρi,0, ..., ρi,q−1]
T , Πi = [πi,0, ..., πi,q−1]

T .
Based on the update rule (12), the NN-based offline iterative learning al-

gorithm for the off-policy IRL is presented in Algorithm 1. Note that it can
be divided into two phases, i.e. the measurement phase of step 1 to collect the
system data and the offline learning phase of step 2-4 to approximate the ideal
critic weights.

Algorithm 1 (Offline iterative learning for NZS games)

1: Select the initial admissible control policies {ui, u−i}. Collect re-
al system data (xm, ui, u−i) for sample set M , then compute
η1(xm), η2(xm, ui, u−i), η3(xm), η4(xm) and η5(xm);

2: Select the initial critic NN weight vector ŵi,0 for each player. Let k = 0;
3: Compute Pi and Πi, and update ŵi,k+1 for each player using (12);
4: Let k = k + 1, if ∥ŵi,k+1 − ŵi,k∥ ≤ ϵ (ϵ is a small positive number to stop the

process with a finite number of iterations), else go back to Step 3 and continue.
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5 Online Iterative Learning Algorithm

For the online iterative learning algorithm, the gradient descent method is util-
isable to update the weights of critic NNs. According to the ER technique, the
past system data is also improvable to approach the critic NNs’ weights. As the
critic weights are updated continuously in the online learning algorithm, we use
wi, ei,Ki to replace wi,k+1, e

k+1
i ,Ki,k+1, respectively.

Based on (11), define the residual errors at the past internal [td, td+1] as
ei(td) = ρi

(
td
)
ŵi + πi(td). It is desired to minimize the following square error

Ei =
1
2 (ei(t))

T ei(t) +
1
2

l∑
d=1

(ei(td))
T ei(td).

Condition 1: Let Di = [ρi(td), ρi(td+1), ..., ρi(td+l)] be the recorded data
corresponding to each critic NN’s weights. Then Di contains as many linearly
independent elements as the number of corresponding critic NNs hidden neurons,
i.e., rank(Di) = Ki.

The adaptation law for the critic weights based on gradient descent method
and ER is given by

˙̂wi =− αi

[
ρTi (t)(

1 + ρTi (t)ρi(t)
)2 (ρiŵi + πi(t)) +

l∑
d=1

ρTi (td)(
1 + ρTi (td)ρi(td)

)2 (ρi(td)ŵi + πi(td))

]
(13)

6 Simulation Study

Consider the following two-player affine nonlinear nonzero-sum game system [9]:

ẋ = f(x) + g(x)u+ k(x)w (14)

where

f (x) =

 x2

−x2 − 0.5x1 + 0.25x2(cos (2x1) + 2)
2

+0.25x2(sin (2x1) + 2)
2


g (x) =

[
0

cos (2x1) + 2

]
, k (x) =

[
0

sin
(
4x2

1

)
+ 2

] .

x = [x1, x2]
T ∈ R2 and u,w ∈ R are state and control variables, respectively.

Select Q1(x) = 2xTx, Q2(x) = xTx, R11 = R12 = 2I, and R21 = R22 =
I, where I is an identity matrix. The optimal value functions are V ∗

1 (x) =
0.5x2

1 + x2
2 and V ∗

2 (x) = 0.25x2
1 + 0.5x2

2. For the offline and online iterative
learning, the activation functions of the critic NNs of two players are selected
as ϕc1(x) = ϕc2(x) = [x2

1 x1x2 x2
2]

T . Thus, the ideal weights of critic NNs are
wc1 = [0.5 0.0 1.0]T ;wc2 = [0.25 0.0 0.5]T .
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6.1 Offline Iterative Learning

The initial state vector is chosen as x0 = [2,−2]T . Set the the convergence
threshold ε = 10−6. The integral time interval is chosen as 0.1s. Let the length
index q = 200, which means the online data collection phase is terminated after
20s. The convergence curves of wci are shown in Fig. 1. The critic NNs weights
wci,k+1 converge to ŵc1 = [0.4956 0.098 1.0613]T ; ŵc2 = [0.2356 0.063 0.5223]T at
the fourth iteration, which are nearly the ideal values above. Compared with [9],
the knowledge of internal dynamics is relaxed in the proposed offline algorithm.
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Fig. 1. The weights wc1 and wc2 of critic NNs for player 1 and 2

6.2 Online Iterative Learning

Select the same activation functions of critic NNs. Set the initial state vector
as x0 = [1,−1]T . The experience set size selects l = 10 and the integral time
interval is also 0.1s. Note that we remove the initial probing control inputs at
80s. The learning rates α1 = 2, α2 = 4. The final critic weights for player 1
and player 2 are ŵc1 = [0.5156 0.0114 0.9906]T ; ŵc2 = [0.2592 0.0111 0.4901]T ,
which are shown in Fig. 2. The simulation results prove the effectiveness of the
proposed online off-policy method.
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Fig. 2. The weights wc1 and wc2 of critic NNs for player 1 and 2
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7 Conclusion

In this paper, we investigate the off-policy IRL technique for the nonlinear
nonzero-sum games with unknown internal dynamics. To implement the pro-
posed method, a NN-based offline and online learning with a single critic NN
structure are proposed. For the online iterative learning algorithm, the ER tech-
nique is introduced to improve the convergence rate. Finally, simulation results
demonstrate the effectiveness of the proposed algorithms.
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