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Abstract-This paper combines an efficient reinforcement 

learning algorithm named Multisamples in Each Cell (MEC) 
with a building thermal comfort control problem. It implements 

the efficient exploration rule and makes high use of observed 

samples. A grid is utilized to partition the continuous state into 

cells that are used to store samples. A near-upper Q function is 

obtained based on the samples in each cell. The value iteration 

technique is designed to derive the near optimal control policy. 

The algorithm can efficiently balance exploration and explo­

itation. The entire implementation process needs no model of 

systems. The thermal comfort criterion, predicted mean vote, is 

introduced to evaluate zone thermal comfort status. A two story, 

multi-zone small office building equipped with a variable air 

volume direct expansion cooling system is built in EnergyPlus to 

establish an EnergyPlus-MATLAB co-simulation platform. A 

MEC thermal comfort control simulation is implemented to 

validate the high performance property compared with Q­

learning. 

Keywords-MEC, Q-learning, thermal comfort control, 

EnergyPlus 

I. INTRODUCTION 

Energy shortage is one of the most severe problems around 
the world. In the USA, research shows that about 41 % of the 
total energy consumption is from buildings [1]. The energy 
used in office sector is the largest in building sectors which 
include residential sector, office sector, and retail sector [2]. 
And the heating, ventilation, and air conditioning (HV AC) 
parts occupy nearly 40% of the office building's operating 
energy. The ultimate goal of using HV AC system is to improve 
the comfort sensation of the room. However, the traditional 
HV AC systems adopt simple temperature/humidity controllers, 
but neglect the thermal comfort control objective. Hence the 
improvement of the control strategy for HV AC, which has 
drawn much attention, is of great significance to our society. 
The green buildings, which are applied with efficient control 
scheme, can not only provide a better thermal environment for 
occupants, but also reduce the energy consumption and 
fmancial cost. 

To implement the thermal comfort control, two basic 
elements--comfort criterion, and the model of HV AC systems 
are needed. Thermal comfort is the condition of mind that 
expresses satisfaction with the thermal environment, and is 
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assessed by sUbjective evaluation [3]. Maintaining this 
standard of thermal comfort for occupants of buildings is the 
ultimate goal of using air conditioning. Therefore, the thermal 
comfort control is introduced as a key factor in this paper. In 
the past decades, several concepts of thermal comfort index 
have been proposed, such as predicted mean vote (PMV) and 
predicted percentage of dissatisfied (PPD). PMV, which is 
proposed by Fanger [4], evaluates zone comfort condition on a 
standard scale for a large group of persons. It is well accepted 
by the all world and adopted by ISO 7730 standard [5]. 

Many studies have been made based on the building HV AC 
system model. In the past few decades, there are many 
researches on building thermal control by using optimal 
approaches. Yahiaoui et al. [6] utilize linear programming to 
maintain indoor temperature in a comfortable level. [7] reviews 
supervisory control methods and optimization techniques used 
in the HV AC systems. All these studies above show a good 
thermal comfort performance of HV AC system by applying 
advanced control methods. However, among the HV AC 
system studies, a model of the HV AC system, which is used to 
build control scheme, is required. Developing a HV AC model 
is a tough task, which needs skillful mathematical knowledge 
and numerous sensor data of HV AC component and indoor, 
outdoor environment. This will defmitely increase study 
difficulty and financial cost. So a model free control method 
can decrease the complexity of system, while saving fmancial 
cost. 

Reinforcement learning [8] is a model free control method. 
It establishes a reward-punish mechanism by iterating the 
control strategy to realize the mapping from state to action. The 
mechanism is represented by numeric signal called reward. The 
agent is not told which actions to take, as in most forms of 
machine learning, but instead must discover which actions 
yield the highest reward by trial and error. [9, 10] present the 
active and passive building thermal storage inventory control 
by using reinforcement learning (RL), and demonstrate the 
good performance of the system. 

Thanks to the development of building energy modeling 
tools, the HV AC simulation procedure becomes more 
convenient and accurate. For instance, EnergyPlus [11] is a 
validated and constantly updated energy simulation software. 
The simulation can be driven by the building parameters 
specified by the user. An update can be implemented 



throughout the building life-cycle when the details of the 
building changed. However, because of the lacking of the 
capability to interoperate the data with other simulation 
software like MATLAB, a toolbox named MLE+ [12] is 
needed to realize co-simulation between EnergyPlus and 
MA TLAB. A building model is described in EnergyPlus, while 
control methods are specified in MATLAB. As a middle-ware, 
MLE+ can link two programs and exchange data between 
them. 

In this paper, an EnergyPlus-MA TLAB co-simulation 
platform is established. The contribution presents an efficient 
RL approach to solve the thermal comfort control problem 
based on the co-simulation platform. PMV criterion is applied 
to evaluate the comfort status of the room. 

The structure of this paper is shown as follows. Section II 
introduces the thermal comfort criterion and presents the 
problem of thermal comfort control. The system framework 
and building modeling are described in Section III. RL 
background and MEC algorithm are introduced in Section IV. 
A simulation example is given to validate its effectiveness in 
Section V. Section VI draws the conclusion. 

II. PROBLEM STATEMENT 

As the condition of mind that expresses satisfaction with 
the thermal environment, thermal comfort can be evaluated by 
predicted mean vote (PMV). According to Fanger's theory [4], 
PMV can be calculated by combining air temperature, mean 
radiant temperature, relative humidity, air speed, metabolic 
rate, and clothing insulation. PMV can be defined as: 

PMV = (0.3033e-0114M + 0.028)x{(M -W) -3.05[5.733-
0.000699(M -W)-Pa]-0.42[(M -W)-58.15]-

where 

0.0173M(5.867 -Pa)-0.0014M(34-Ta)-3.96x 

108 X leI[(Tcf + 273)4 -(Tmrt + 273)4] -lei x he(T;,1 - Ta)} 

(1) 

T;,I = 35.7 - 0.028(M -W)-0.1551c/{3.96xlO-8 
(2) 

xlel[(T;,1 + 273)4 - (Tmrt + 273)4] - lel x he (r::1 -7;,)}, 

In the above equations, M is metabolic rate ( W 1m 2 ); W is 
external work, which equals to zero for most activities 
( W 1m 2 ); Pa is partial vapor pressure ( Pa ); Ie I is the ratio of 
clothed body surface area to nude body surface area; Tel is the 
surface temperature of clothing; lei is the thermal resistance of 
clothing (c10 ); he is the convectional heat transfer coefficient 

(W/m2 . K); V air is the air velocity ( m2 Is ). 

The level of comfort is often characterized by using the 
ASHRAE thermal sensation scale, which is described in Table 
I. The ideal value is 0, which represents the most comfortable 
status. Therefore, the closer the PMV value is to 0, the better 
thermal comfort one will get. 

TABLE!. ASHRAE THERMAL SENSATION SCALE 

PMVValue Sensation 
3 Hot 

2 Wann 

1 Slightly wann 

0 Neutral 

-1 Slightly cool 

-2 Cool 

-3 Cold 

With (I), we can calculate PMV value in every step by 
varying zone air temperature and air velocity. The other 
variables like metabolic rate and external work can be set to 
constants that represent the average level, since we aim to 
control an office building thermal condition during the work 
time. According to [13], the metabolic rate can be set to 117 
W/m2 for the typing activity. Therefore, the input variables are 
HV AC temperature setpoint, which is used to control zone air 
temperature, and air velocity, which is used to adjust zone air 
flow speed. The output is zone PMV value that represents the 
thermal comfort condition. Reinforcement learning approach, 
like Q-Iearning [14], can learn to derive the optimal control 
policy by interacting with environment. 

III. MEC FOR THERMAL COMFORT CONTROL 

In the basic RL problem, an agent interacts with env­
ironment and receives rewards. Four basic elements are 
included, such as the state s, the action a, the reward r , and 
the value function V(s) or the state-action value function Q(s, 
a). Define S as states set and A as actions set. The policy 1r, 
which specifies the mapping from states set to actions set, can 
be denoted as Jr : S � A . The controller chooses an action a 
following the policy 1t, then the environment will transform to 
a new state s' with reward r. The goal is to maximize the 
cumulative reward in a long term by tuning its policy. 

A value function is defined to evaluate the performance of 
control policy Jr by summing the discounted reward in infinite 
horizon. We assume the initial state So = s and follow a 
policy Jr . The value function can be defined as: 

V"(s)= LY'r(spak) I So =s,ak = Jrk(Sk) 
k�O 

(4) 

where rE (0,1) is the discount rate. The optimal policy Jr* is 

the policy that can maximize the value of VJT (s), i.e., 

Jr * = arg max V J[. Sometimes the state-action value function is 
" 



preferred, which is defined asQ"(s , a) � r(s , a) +yVJT(s') . Q 
function can also be described by applying the Bellman rule 

Q(s,a) = Q(s,a) + a(r(s,a) + rm�x Q(s',a')-Q(s,a» (5) 
a 

where a E [0,1] is the learning rate. The optimal policy can be 
obtained by 

1r* = arg max Q"(S, a). aEA (6) 

In the thermal comfort problem, the state s which is 
rounded to the range of {- l.0, -0.9, ... , l.3} is the PMV value 
in every time step. Note that the state rang is large enough to 
cover the ordinary office PMV variant range because of the 
usage of air conditioning. The actions contain two dimensions, 
i.e., the temperature setpoint action a(l) and air velocity 
action a(2) • The temperature setpoint (T;p ) is the discrete 

number in {21, 22, ... , 30} , while air velocity ( Va;r ) is 

in {0,0.05, ... , 0.5} . Therefore, the size of Q-table is 
24 x lOx 11 in the Q-Iearning approach. In the current state s , 

the agent choose action a = [d') , d2)] with respect to policy 1r . 

Then, the state s will transfer to the next state s' , and the 
agent will receive a reward r. According to [15], the optimal 
control policy, i.e., 1r; = Jr* , can be achieved if and only 

if 1r; (s) = 1r;+1 (s ), \is E S . The value iteration [8] procedure can 
be implemented to obtain the optimal policy. However, in the 
traditional Q-Iearning approach, the training process is long 
due to the large state-action space, which means the learning 
efficiency is low. It is essential to utilize an efficient learning 
algorithm to overcome this drawback. 

In order to explore efficiently for the finite Markov 
decision processes (MDPs), a new online RL, probably 
approximately correct (PAC), is developed in [16, 17]. PAC is 
an algorithm that the agent can learn a near optimal policy 
within a polynomial time or error bound. Among these 
algorithms, Zhao and Zhu [18] propose an approach named 
mUlti-samples in each cell (MEC) to approximate the near 
optimal state-action value function in the continuous MDPs. 
Compared with other RL algorithms, MEC is ensured to 
output a near-optimal policy, and the running time is finite and 
bounded, and it can make efficiently use of information of the 
system. Besides, the system dynamic is not needed by MEC. 
Hence as an efficient RL approach, MEC is suitable to the 
thermal comfort control problem. 

The main principle of MEC is collecting observed samples 
into a data set selectively. The algorithm improves its 
performance based on these samples. The MEC algorithm 
includes three parts--data set construction, near-upper Q 
iteration, and escape event. 

A. Data Set Construction 
The continuous state space is divided into several small 

cells CJI ::; i ::; Ngrid) that contain some state action pairs and do 

not overlap with each other. The total number of cells in the 
grid is Ngr;d. We use Q( C;) to represent the state space in 

cell Ci • We can defme the data set at time t as 

D, = {sk'ak,r(sk,ak),sk+I}O:>k:>'_1 . The current time is t, and k 
is the previous time step. The observed state sample in time k 
is S k ' and r(  S k , ak) is the reward taking action ak in state s k . 

Therefore, any state action pair (s k' ak ) E D, is in a cell C, . We 

apply D, (C;, a) to describe the samples in D, at a that belong 

to C;. If there are no samples in data set D" we can denote 

this as D,(C;, a) = 0. 

B. Near-Upper Q Iteration 
Given a function g: S x A � IR and for any S E Q( C;) . 

The near-upper Q iteration (NUQI) operator T can be defined 
as following: 

T= if D,(C;, a) :t: 0 
otherwise 

(7) 

K is the total number of samples in data set D, . The NUQI 
operator means that we set the upper bound of the value 
function Vmax if corresponding C; has no samples. According 

to [18], this technique can definitely encourage the sufficient 
exploration. For the thermal comfort control problem, the 
state S representing thermal comfort criterion PMV value, 
may gradually drift to the near state, though we take the same 
action a in the same state s . Therefore, the average is utilized 
to update the state-action value function, which can reduce the 
influence of drifting. Note that the original right side of NUQI 
operator in [18] is min [r(sk' ak) + rm�x g(s;, a')] , here we 

k=l a 

SkEDr(Cj,O) 

modify it to the average operation in (7) to eliminate the 
influence of drifting. 

NUQI operator T has a fixed solution because it is a 
contraction. We assume Q, is the fixed solution to (5) with 

respect to D, . Value iteration method can be implemented to 

solve Q, . Note that for arbitrary state in cell C;' they share the 

same samples set when calculating Q, by (5). Hence there is 

no need to compute Q, for all the states. Value iteration stops 
when the difference between two consecutive state value 
function is less than a positive number (e.g., 0.05 in this 
paper). Then, the greedy policy can be obtained by 



Jr, = arg max Q,(s, a). 
aeA (8) 

C. Escape Event 
Once the greedy policy is obtained, one can implement the 

policy at current state s and transfer to the next state s' . 
However, whether the new state can provide new infonnation 
about the system or not, one can refer to the following notion 
known. Assuming s E Q(CJ, the state action pair (s, a) is 

called known if and only if D, (C;, a) *" 0, and there exists a 

sample (�,a,;,�'
)E D, (C"a) such that �' 

and s' are in the 

same cell, where �' 
and s' are the next state when taking a in 

A 

state sand s , respectively. Otherwise, the pair (s, a) is called 
unknown. If the sample at time t is known, then it can't bring 
new infonnation and just is ignored. Otherwise, it is added to 
the data set D, and (5) is solved to obtain the new 

solution Q'+l , which can be used to derive the new greedy 

policy Jr,+1 with respect to (6). 
The escape event can be defined as: starting a trial 

from s and following policy Jr, an unknown pair (sr,ar) is 

encountered within Te/3 steps, where t :::; r :::; t + T£l3 -1 . Te/3 is 

the £ / 3 -horizon time, where c is the error bound. If the 
escape event occurs, it means that unknown pairs are 
encountered in the next T£l3 steps, so the agent is still learning. 
Therefore, the MEC algorithm can be obtained in Table II. 

TABLE II. MEC ALGORITHM 
Algorithml: MEC Algorithm for Comfort Control 

Require: V",,, and a grid over state space {C,} 
1. Initialize: Do �0,Qo �V,,,a,,,,ro(s)=argm,:v'Qo(s,a) 
2. For I = 0,1,2 ... do 

3. Observe (sk,ak,r(sk,ak),sk+') 
4. 

5. 

6. 

7. 

8. 

If (s"a,) is unknown in D" then 

(sk,ak,r(sk,ak),sk+') is added to D, 
Update Q, according to NUQI 

Compute If, according to greedy rule 

End If 

9. Execute If, on agent 

10. End For no escape event happens 

IV. FRAMEWORK AND BUILDING MODELING 

A. System Framework 
Fig. 1 shows the framework of the thennal comfort control 

system. The control algorithm is implemented in MA TLAB, 
which is connected with EnergyPlus by MLE+ tool box. The 
building features that are specified in EnergyPlus input file is 
shown in Table III. We give two input variables- 1',,,, �If to 
EnergyPlus, and the PMV value will be computed by (1). 

Then, the PMV value can be transmitted to thennal comfort 
controller via MLE+. If the reward is poor by taking above 
actions, which means that Q(s, a) will decrease, the agent will 
find a better action in the rest actions with respect to Q( s, a) in 
the next time step. Eventually, the agent can learn the optimal 
policy Jr' 

by interacting with environment according to [18]. 
The controller can follow the optimal policy Jr' 

and deliver the 
optimal action to EnergyPlus via MLE+. 

I Thermal Comfort Controller I 
I:p,Vair PMV 

I MLE+ I 
T:p' Vair PMV 

I EnergyPlus : I PMV I I Calculation 

Fig. 1. Framework of simulation system. 

TABLE III. MODEL FEATURES IN ENERGYPLUS 
Floor area 618.7 m2 

Window to wall ratio 0.29 

Occupant 13 
Internal loads Lighting 12.1 kW 

Equipment 2750 W 

Occupied hours 7:00 am - 18:00 pm 

HVAC system VAV Direct Expansion 

Natural ventilation None 

Metabolic rate: 117 W 1m' 
Comfort variables Summer clothing resistance: 0.5 col 

Winter clothing resistance: 1.0 col 

B. Building Modeling 
The model built in this paper is a two story small office 

building shown in Fig. 2. Each floor includes two thermal 
zones: one north facing, and the other south facing. The details 
of model are listed in Table III. 

Fig. 2. 3-D Building model of small office. 



V. SIMULATION 

In this section, the MEC approach is applied to the building 
HV AC system described above. It will be compared with the 
Q-learning algorithm. A thermal comfort controller, which is 
controlled by MEC and Q-Iearning algorithm, respectively, is 
developed. 

As described above, PMV can be utilized to judge the 
thermal comfort sensation. Therefore, the PMV value in every 
step is regarded as state s. The range of PMV value in this 
problem is around [-1.0,1.3], which is obtained from the prior 
knowledge of the HV AC system according to temperature 
setpoint and air velocity range described below. Note that the 
above PMV range is sufficiently large in the common place 
like office and home. Additionally, the PMV in [-0.1,0.1] is 
regarded as the same state, while other states are obtained by 
discretizing state space with step 0.1. The reason why the PMV 
in [-0.1,0.1] can be seemed as one state will be explained 
when we introduce reward definition. The total number of 
states is 24. In order to cover a large thermal comfort range, the 
temperature setpoint T;p is set to the range of {21, 22 ... 30}, 
and the second action-zone air velocity Valr is set to the range 
of {O, 0.05 ... 0.5}. So the actions space is a matrix with the size 
of 10 by 11. According to the meaning of PMV value, zero is 
the ideal value that represents the most comfortable sensation. 
The closer the PMV value is to zero, the better thennal comfort 
status we get. Basing this rule, the reward can be defmed as: 

{O, 

r = -200(lpMVI -O . I)2 , 

if IpMVI < 0.1 
otherwise (9) 

One can tell from (9) that the control goal is to keep PMV 
value in [-0.1, 0.1] by changing the temperature setpoint. Any 
action leading the PMV value out of this range will be 
punished with different degree. 

The two control algorithms are implemented in MA TLAB, 
which is connected with EnergyPlus by MLE+ tool box. As the 
data exchange layer, MLE+ receives a two dimensional action 
vector and transmits it to EnergyPlus by using building 
controls virtual test bed (BCVTB). A new simulation round is 
implemented by utilizing the new action following policy 1r . 
The output of the new round will feedback to controller by 
MLE+ to update the Q function by (5) or (7). The HVAC 
system is on from 7:00 to 18:00 at June 1St, and the time step is 
1 minute (EnergyPlus inner time line). 

The parameters of two control approaches are as follows. In 
the MEC algorithm, Vrnax is set to 0. In Q-Iearning algorithm, 
the learning rate a is 0.1. The exploration probability £ is 
initialized by 0.25 and decreases by 0.005 per episode. The 
discount rate r is set to 0.98. The initial state of each episode 
is chosen randomly from states space, while the Q-table 
continues using the last one. Each episode contains 660 steps. 

Both approaches are trained offline. Fig. 3 illustrates the 
convergence process via the summation of discounted rewards, 

i.e., the value function. The solid blue line is the MEC training 
process, while the dashed red line refers to the Q-Iearning's. 
One can tell from Fig. 3 that MEC algorithm converges around 
the 33rd episode with a higher value function which equals to -
123.7. The traditional Q-Iearning algorithm converges slower 
than MEC and yields a lower value function around -139.5. 

We assume the system has been trained according to the 
above training process. Set the initial PMV as 0.75. Fig. 4 
shows the thennal comfort performance of the two control 
approaches. One can tell that the MEC algorithm can control 
the PMV value to the range [-0.1, 0.1] in 4 minutes. However, 
it takes about 12 minutes to get into that range by using Q­
learning algorithm. The green lines in the Fig. 4 are the upper 
and lower bound of the comfortable sensation. 
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Fig, 3, The convergence process of thermal comfort control. 
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Fig. 4. The thermal comfort performance from state 0.75. 
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Fig. 5. The action trajectories from state 0.75. 



The corresponding trajectories of temperature setpoint (a) 
and air velocity (b) are described in Fig. 5. The actions of two 
approaches are stable on different actions because of the 
different policy. As to the stable speed, MEC method is faster 
than Q-Iearning. 

Note that change the initial status will not influence the 
good performance of MEC approach. Set the initial PMV as 
0.4 and utilize the trained controller to handle the thermal 
comfort status. Fig. 6 illustrates the thermal comfort perfor­
mance of the two control approaches. The MEC approach can 
also reach the goal faster than Q-Iearning. The corresponding 
action trajectories are shown in Fig. 7. 

All these results indicate that the MEC method can obtain 
not only higher convergent speed, but also the better value 
function compared with Q-Iearning method. 
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Fig. 7. The action trajectories from state 0.4. 

VI. CONCLUSION 

In this paper, MEC approach is presented for a building 
HV AC system without accessing the dynamic model. PMV 
criterion is introduced to analyze the variables affecting zone 
thermal comfort condition. Value iteration approach is imple­
mented to obtain the optimal control policy. A small office 
building HVAC system is built in EnergyPlus. The MLE+ 
toolbox is utilized as a middleware to link EnergyPlus and 
MA TLAB. MEC and Q-learning controller are trained in 
MA TLAB with the data gained from EnergyPlus through 
MLE+. 

A building HV AC system thermal comfort control 
simulation is implemented to test the effectivity and feasibility 
of the control method. This example illustrates that MEC 
approach can realize the optimal comfort control and keep the 
zone sensation into a good status. Additionally, the learning 
speed of MEC is higher than the Q-Iearning approach, and the 
thermal comfort performance is better than the Q-Iearning's. 
Hence the example demonstrates that the MEC approach is 
more effective for building thermal comfort control. 

Future work will be on the extension to multi-objective 
control of the building energy system with respect to energy 
consumption analysis. 
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