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Abstract

We study the infinitely many-armed bandit problem with bud-
get constraints, where the number of arms can be infinite
and much larger than the number of possible experiments.
The player aims at maximizing his/her total expected reward
under a budget constraint B for the cost of pulling arm-
s. We introduce a weak stochastic assumption on the ratio
of expected-reward to expected-cost of a newly pulled arm
which characterizes its probability of being a near-optimal ar-
m. We propose an algorithm named RCB-I to this new prob-
lem, in which the player first randomly picks K arms, whose
order is sub-linear in terms of B, and then runs the algorith-
m for the finite-arm setting on the selected arms. Theoretical
analysis shows that this simple algorithm enjoys a sub-linear
regret in term of the budget B. We also provide a lower bound
of any algorithm under Bernoulli setting. The regret bound of
RCB-I matches the lower bound up to a logarithmic factor.
We further extend this algorithm to the any-budget setting
(i.e., the budget is unknown in advance) and conduct corre-
sponding theoretical analysis.

1 Introduction

The multi-armed bandit (MAB) problem is a classical se-
quential decision problem, where a player receives a ran-
dom reward by pulling one of the K arms of a slot ma-
chine at each round and wants to maximize the expected
cumulative reward. Each arm has an unknown reward dis-
tribution. The player can only observe the reward of the
pulled arm at each round. The core problem of MAB is
the tradeoff between exploration (i.e., pulling the less pulled
arms) and exploitation (i.e., sticking to the empirical best
arms). Numerous real-world applications can be described
by MAB models, such as personalized news recommen-
dation (Li et al. 2010), auction mechanism design (Mohri
and Munoz 2014), online advertising (Tran-Thanh et al.
2014), crowdsourcing (Zhou, Chen, and Li 2014) and so
on. MAB problems have been extensively studied in ma-
chine learning and statistics community (Lai and Robbins
1985; Beygelzimer et al. 2011; Bubeck and Cesa-Bianchi
2012). Many algorithms have been proposed, like UCB1,
ǫn-Greedy (Auer, Cesa-Bianchi, and Fischer 2002), UCB-
V (Audibert, Munos, and Szepesvári 2007; 2009), KL-UCB
(Garivier and Cappé 2011), and Bayes-UCB (Kaufmann,
Cappé, and Garivier 2012).

Recently, the MAB problem with budget constraints (i.e.,
budgeted MAB), has been utilized to model some new in-
dustrial situations, for example, online bidding optimization
in sponsored search (Amin et al. 2012; Tran-Thanh et al.
2014) and on-spot instance bidding in cloud computing (Ag-
mon Ben-Yehuda et al. 2013; Ardagna, Panicucci, and Pas-
sacantando 2011). In budgeted MAB, besides the random
reward, each arm is also associated with an unknown ran-
dom cost. At each round, the player pulls an arm, receives
a random reward and pays a random cost, until his budget
runs out. Many algorithms have been developed under d-
ifferent settings for the budgeted MAB. Tran-Thanh et al.
(2010), Tran-Thanh et al. (2012), and Vanchinathan et al.
(2015) designed ǫ-first, KUBE and GP-SELECT algorithms
respectively to study the budgeted MAB with deterministic
cost of each arm. Ding et al. (2013) studied the problem with
unknown discrete cost distributions and proposed the UCB-
BV algorithm. Xia et al. (2015a) designed the budget-UCB
algorithm to investigate the random continuous costs. An-
other line of research, the best arm identification problem
for budgeted MAB, was proposed in (Xia et al. 2016b).

Berry et al. (1997) first addressed the MAB problem with
infinitely many arms, where each arm is associated with a
Bernoulli reward distribution. They tried to characterize the
case in which the number of arms can be infinite and much
larger than the possible number of experiments. The general
reward distribution problems are studied by Wang, Audibert,
and Munos (2009) and Carpentier and Valko (2015). Wang,
Audibert, and Munos (2009) proposed UCB-V(∞) algorith-
m to deal with this case. Carpentier and Valko (2015) ad-
dressed the optimal arm identification problem for infinite-
arm setting and provided SiRI algorithm. However, the costs
per round in the aforementioned works are all 1’s. In this pa-
per, we introduce the random cost into the infinitely many-
armed setting, and propose the infinitely many-armed ban-
dits problem with budget constraints (denoted as∞-BMAB,
where the first “B”refers to “Budgeted”.).

All prior works on budgeted MAB focus on the finite
number of arms, in which each arm will be sufficiently ex-
plored. These algorithms cannot be directly applied to an
infinitely many-armed bandit problem, since it is impossible
to make exploration on each arm. We design efficient algo-
rithms to this new problem and perform formal theoretical
analysis. Our contributions can be summarized in the fol-



lowing two aspects:
Algorithm: We propose a Ratio Confidence Bound for∞-

BMAB (briefly denoted as RCB-I) algorithm in this work.
The algorithm consists of two steps: first, we randomly pick
K arms, where the choice of K should balance the trade-
off between exploring enough arms (in order to include the
arm whose expected reward to expected-cost ratio1 is close
enough to the supremum ratio of all candidates), and avoid-
ing selecting too many arms (in case that we waste much
budget on exploring them). Then we adopt a UCB-style al-
gorithm to tackle the finite arms problem (See Section 3).
The choice of K usually depends on budget B. On the other
hand, we will often come across the case that B is unknown
in advance. Therefore, we propose an any-budget algorith-
m with a variant of the RCB-I algorithm, named RCB-AIR
to deal with this case, in which we will check whether we
should explore a new arm at the beginning of each round
(See Section 5).

Theoretical analysis: We make extensive theoretical anal-
ysis on∞-BMAB. We prove that both RCB-I and RCB-AIR
enjoy sub-linear regrets in terms of the budget. Compared
with the prior works, there are two challenges for∞-BMAB
to be tackled: (i) we cannot make full exploration of all the
arms since the number of arms is infinite; (ii) we cannot de-
compose the expected pulling number of each suboptimal
arm as that of the finite-arm setting, otherwise we cannot
get a finite regret bound. For the first challenge, we make
investigation on finitely chosen arms, and bridge the regret
between the finitely selected arms and all the infinite arms
through the stochastic regularity assumption on the ratio dis-
tribution (see (1)). As to the second one, we decompose the
expected pulling number of each suboptimal arm till round
τB as in Eqn. (10), which includes a product term. It is the
product form that enables us utilizing Eqn. (1) and obtain-
ing a finite regret bound. Then we provide a lower bound
for any algorithm for Bernoulli bandits (whose rewards and
costs are either 0 or 1) with infinitely many arms. We show
that our proposed RCB-I can match the lower bound up to a
logarithmic factor.

2 Problem Formulation

We consider a stochastic infinitely many-armed bandit prob-
lem with budget constraints. At each round t ∈ N+, the play-
er pulls an arm i ∈ N+, receives a random reward ri(t) and
pays a random cost ci(t), until he/she runs out of the budget
B. B is a positive real number, which might be known/not
known in advance. Both the reward ri(t) and cost ci(t) are
supported in [0, 1]. We follow the setting in (Xia et al. 2015a)
and make the assumptions about independence of reward-
s and costs: (i) the rewards (costs) of the same arm at d-
ifferent rounds are independent and identically distributed;
(ii) the rewards and costs of an arm are independent of the
other arms. Note that we do not assume that the rewards of
an arm are independent of its costs. For any i ∈ N+, de-
note the expected reward and expected cost of arm i as ur

i

1According to the previous literature and the analysis of our
work, the ratio of expected-reward to expected-cost of each arm is
an important factor.

and uc
i respectively. Without loss of generality, we assume

ur
i ∈ (0, 1) and uc

i ∈ [λ, 1), where λ belongs to (0, 1). This
assumption is very reasonable and natural, since in practice
whatever non-trivial action a player takes, he/she needs to
afford a certain non-zero cost. Denote the ratio of expected

reward to expected cost of arm i as ρi, i.e., ρi =
ur
i

uc
i

.

Since there is infinite number of arms in our setting, it
is impossible to pull each arm once. Similar to (Berry et
al. 1997; Wang, Audibert, and Munos 2009; Carpentier and
Valko 2015), we make the following stochastic regularity as-
sumption on the ratio of expected reward to expected cost:
given ρ∗, which is the supremum (or, maximum) expected-
reward to expected-cost ratio, the probability that a newly

pulled arm is ǫ-optimal is of order ǫβ for small ǫ(> 0), where
β(≥ 0) is a parameter known in advance. Mathematically,

P{ρ > ρ∗ − ǫ} = Θ(ǫβ), for ǫ → 0, (1)

where ρ is the ratio of the expected reward to the expected

cost of the newly pulled arm, and Θ(ǫβ) means that there
exist two positive constants c1 and c2 such that for any ǫ ∈
[0, ρ∗],

c1ǫ
β ≤ P{ρ > ρ∗ − ǫ} ≤ P{ρ ≥ ρ∗ − ǫ} ≤ c2ǫ

β . (2)

One can verify that the uniform distribution on (0, ρ∗) sat-
isfies the Eqn. (1) with β = 1, any c1 ∈ (0, 1/ρ∗] and any
c2 ∈ [1/ρ∗,∞).

Our goal is to design algorithms for∞-BMAB in order to
maximize its expected cumulative rewards, or equivalently
to minimize the pseudo-regret, before the budget runs out.
We define the pseudo-regret of any algorithm as follows:

Ralg = R∗ − E[

∞
∑

t=1

rIt(t)1{Bt ≥ 0}], (3)

where R∗ is the supremum of expected reward of all the
possible pulling algorithms2, It denote the arm chosen at
round t, 1{·} is the indicator function, Bt is the remain-

ing budget at round t, i.e., Bt = B −
∑t

s=1 cIs(s), R
alg

is the regret of algorithm “alg”, and the expectation E is tak-
en w.r.t. the randomness of the rewards, costs and the pulling
algorithm3. Note that in our setting, there are not such hard
constraints that the pulling procedures cannot exceed spe-
cific rounds, which make our work differ from (György
et al. 2007; Badanidiyuru, Kleinberg, and Slivkins 2013;
Badanidiyuru, Langford, and Slivkins 2014; Wu et al. 2015).

3 Algorithms
As pointed in (Xia et al. 2016a), even when the number of
arms is finite, and the reward and cost of each arm are deter-
ministic, the budgeted MAB problem is an unbounded knap-
sack problem (Martello and Toth 1990), which is NP-hard
(Lueker 1975). Consequently, it is much more challenging
to obtain the optimal algorithms for the infinitely many arm-
s setting.

According to (Xia et al. 2016a), we have that for budgeted
MAB with finite arms: (a) When the reward and cost distri-
butions of each arm are known, always pulling the arm with

2According to the analysis in Appendix B, we have that R∗ is
smaller than (B + 1)ρ∗, which shows that R∗ exists.

3All the notations are summarized at the end of this paper.



the maximum ratio (denote the ratio as ρ̃) of expected re-
ward to expected cost can bring almost the same expected
reward as the optimal policy (the policy which can bring the
maximum expected reward given the reward and cost distri-
butions of all the arms) , the gap of which is at most 2ρ̃. (b)
When the reward and cost distributions of each arm are not
known, at each round, we should try to pull the arm with the
maximum ratio of empirical reward to empirical cost, while
maintaining enough exploration on the less pulled arms.

Given the assumption in Eqn. (1), we know that if we ran-
domly pick K arms where K is large enough, the maximum
expected-reward to expected-cost ratio of the selected arm-
s is close enough to that of the infinitely many arms. Then,
we could run the algorithms for finite-arm budgeted MAB
on the randomly picked arms. When choosing K, we should
consider the tradeoff between exploring more arms in or-
der to search a candidate arm with the expected-reward to
expected-cost ratio close enough to the best one and exploit-
ing the empirical best arm in order not to waste much budget
on exploration.

Algorithm for Finite-arm Case For ease the reference,
let Ti(t− 1), ri,t, ci,t and Ei,t denote the number of pulling
rounds, the empirical average reward, the empirical average
cost and a confidence term of arm i before (excluding) round
t respectively. Mathematically,

Ti(t− 1) =

t−1
∑

s=1

1{Is = i}, Ei,t =

√

Et−1

2Ti(t− 1)
,

ri,t =

∑t−1
s=1 ri(s)1{Is = i}

Ti(t− 1)
, ci,t =

∑t−1
s=1 ci(s)1{Is = i}

Ti(t− 1)
,

where {Et}t≥0 is a nondecreasing sequence of nonnegative
numbers. We call Et as exploration sequence.

We adapt a ratio confidence bound style algorithm intro-
duced in (Xia et al. 2016a) as a subroutine of our algorithm,
which can deal with the finite-arm budgeted MAB. For ease
of reference, denote the subroutine as RCB. At each round,
one should pull the arm with the maximum index defined as
follows:

Di,Ti(t−1),t =
min{ri,t + Ei,t, 1}

max{ci,t − Ei,t, 0}
. (4)

Note that arms with larger ratio of empirical average reward
to empirical average cost, or fewer pulling rounds, would
have larger indices. RCB is formally described4 in Algorith-
m 1.

Algorithm for Infinite-arm Case Given the algorithm for
finite-arm case, we only need to design the number of ran-
domly picked arms. After careful derivations, we find that if
we randomly select K arms, where

K =

{

Θ(Bβ/2) if β < 1,

Θ(B
β

1+β ) if β ≥ 1.
(5)

we could achieve sub-linear regret w.r.t. the budget. Our
proposed algorithm for budgeted MAB with infinite arms,
Ratio Confidence Bound for Infinitely many-armed bandits
with budget constraints (briefly denoted as RCB-I), is shown
in Algorithm 2.

4In step 4 of Algorithm 1, if there is more than one arm with
maximum index Di,Ti(t−1),t, randomly pick one.

Algorithm 1: RCB subroutine

1 Input: The randomly picked K arms;
2 Pull each arm once at the first K rounds and set
t← K + 1;

3 while the budget has not run out do
4 Pull arm It with the largest index of Eqn. (4), i.e.,

It = argmaxi∈[K] Di,Ti(t−1),t;

5 Update TIt(t), r̄It,t, c̄It,t and the left budget; set
t← t+ 1.

Algorithm 2: RCB-I Algorithm

1 Input: The ratio distribution regularity parameter β,
the budget B;

2 Randomly choose K arms, which is defined in Eqn. (5);
3 Run RCB subroutine on the selected K arms.

4 Theoretical Analysis

In this section, we conduct theoretical analysis for our pro-
posed algorithm. We first give an upper bound of the regret
of RCB-I. Then, we derive a lower bound for any algorithm
under budgeted Bernoulli setting (whose rewards and costs
are either 0 or 1). At last, make some discussions on upper
bound and lower bound of the regret.

For ease of reference, we introduce the following two no-
tations, which would be used quite frequently.

(i) ∆k := ρ∗ − ρk, which describes the difference of the
expected-reward to expected-cost ratio between the possible
optimal one and that of a suboptimal arm k.

(ii) τB := ⌊ 2B
λ
⌋, which can be seen as the pseudo stop-

ping time of the budgeted MAB problem, since when B is
large enough, the probability that the pulling rounds can ex-
ceed τB , bounded by X (B), is very small, where X (B) de-

notes the order O
(

B exp(−Bλ
2 )

)

.

4.1 Upper Bound ofRRCB-I

In this subsection, we derive an upper bound of the regret
for the RCB-I algorithm, as shown in Theorem 1.

Theorem 1. For the ∞-BMAB satisfying Eqn. (1), when
the exploration sequence Et satisfies: 2 log(4(log2 t+1)) ≤
Et ≤ log t, the upper bound of the regret of RCB-I is shown
as below.

RRCB-I ≤















CB1/2 logB if β < 1,

CB1/2(logB)2 if β = 1,

CB
β

1+β logB if β > 1,

(6)

where C is a constant depending only on c1, c2, β, λ.

Our proof consists of three main steps: First we analyze
the regret on the randomly chosen K arms. Then we make
a bridge of the regret between the randomly chosen K arms
and infinitely many arms through the stochastic regularity
assumption on the ratio distribution (see (1)). Finally, we
summarize all the derivations and eventually get Theorem 1.

To increase readability, we leave some detailed deriva-
tions in the Appendix C and provide the proof sketch only.



(S1): Regret analysis on the selected K arms.

Define the regret of RCB on the given K arms5, compared
to the optimal policy obtained from the infinity many arms,
as follows:

RRCB-I
K = R∗ − E

[

∞
∑

t=1

K
∑

k=1

rk(t)1{It = k,Bt ≥ 0}
∣

∣SK

]

, (7)

where SK represents the event “randomly select K arms”,
and R∗ is defined in (3).

Conditioned on SK , by similar derivations to the Eqn.

(10) in (Xia et al. 2016a), we can obtain that6

RRCB-I
K ≤

2

λ
+

K
∑

k=1

∆kE[Tk(τB)] +O
(

B exp(−
1

2
Bλ)

)

, (8)

where Tk(τB) denotes the pulling number of arm k from
round 1 to round τB . The order O(·) in (8) comes from
the randomness of the stopping time. The reasons why we
bridge RRCB-I

K and Tk(τB) are: (i) The randomness of the
stopping time is removed since we introduce the pseudo
stopping time τB , due to which which we can use concen-
tration inequalities safely; (ii) We can adapt the techniques
about bounding the pulling rounds of suboptimal arms from
finite-armed MAB’s.

Next we only need to focus on upper bounding E[Tk(τB)].
(S1-1): Decompose E[Tk(τB)].

Given SK , for any positive integer Lk, E[Tk(τB)] can be
decomposed into three components: a constant invariant to t
and the two probability terms. Specifically, we get that

E[Tk(τB)] ≤Lk +

τB
∑

t=1

t−1
∑

s=Lk

P{Ek,s,t} (9)

+

τB
∑

t=1

∏

k′ 6=k

P{∃s′ ∈ [1, t− 1], E′
k′,s′,t}, (10)

where Lk = ⌈ 2 log τB
η(λ)2∆2

k

⌉, η(λ) = λ2

3+2λ , ϕk = ρk + 1
2∆k,

and Ek,s,t, E
′
k′,s′,t denote these two events 1{Dk,s,t > ϕk}

and 1{Dk′,s′,t ≤ ϕk} respectively.
In the following two sub-steps, we get down to bounding

the two probability terms in (9) and (10).
Remark: The

∏

k′ 6=k P{·} in term (10) does not exist in

the analysis of finite-armed budgeted bandits. If we directly
use the proof technique for the finite-armed settings, term
(10) would become linear w.r.t. K, and consequently, make
the regret bound not a finite number.
(S1-2): Bound term (9).

It is easy to verify the following inequality holds for any
k ≥ 1:

ϕk = ρk +
1

2
∆k ≥

ur
k + λ2

3+2λ
∆k

uc
k − λ2

3+2λ
∆k

. (11)

For any k ∈ [K], s ∈ [Lk, t− 1] and t ∈ [1, τB ], we define
the following two events:

5For ease of reference, throughout step (S1), denote the indices
of the selected K arms as 1, 2, · · · ,K.

6Throughout (S1), the expectation E(·) and the probability P{·}
are E(·|SK) and probability P{·|SK}. We omit the SK for simplic-
ity.

(i) Er
k,s,t : rk,t − ur

k > η(λ)∆k −
√

Et−1

2s ;

(ii) Ec
k,s,t : ck,t − uc

k < −η(λ)∆k +
√

Et−1

2s .

If Ek,s,t holds, at least one of the two events Er
k,s,t and

Ec
k,s,t would hold. As a result, we have

P{Ek,s,t} ≤ P{Er
k,s,t}+ P{Ec

k,s,t}. (12)

By leveraging Hoeffding’s inequality on the two terms in
the right-hand side of (12), we obtain that

P{Er
k,s,t} ≤ exp(−

sη(λ)2∆2
k

2
);

P{Ec
k,s,t} ≤ exp(−

sη(λ)2∆2
k

2
).

(13)

Consequently, by conducting some derivations, we have

τB
∑

t=1

t−1
∑

s=Lk

P{Ek,s,t} ≤
5

η(λ)2∆2
k

. (14)

(S1-3): Bound term (10).

For ease of the reference, we define another three events
as follows, for any k′ 6= k ∈ [K], s ∈ [1, t − 1] and t ∈
[1, τB ]:

(iii) Ẽk′,s′,t : Dk′,s′,t ≤ ρk′ ;

(iv) Ẽr
k′,s′,t : rk′,t − ur

k′ ≤ −
√

Et−1

2s ;

(v) Ẽc
k′,s′,t : ck′,t − uc

k′ ≥
√

Et−1

2s .

It is easy to obtain that

∏

k′ 6=k

P{∃s′ ∈ [1, t− 1], E′
k′,s′,t}

≤
∏

k′:ρk′>ρ∗− 1
2
∆k

P{∃s′ ∈ [1, t− 1], Ẽk′,s′,t},
(15)

If Ẽk′,s′,t holds, at least one event of Ẽr
k′,s′,t and Ẽc

k′,s′,t

holds. Thus, we have

P{∃s′ ∈ [1, t− 1],Ẽk′,s′,t} ≤ P{∃s′ ∈ [1, t− 1], Ẽr
k′,s′,t}

+P{∃s′ ∈ [1, t− 1], Ẽc
k′,s′,t}.

(16)
The two terms in the right-hand side of (16) could be upper
bounded as below. By applying the peeling argument with a
geometric grid over the time interval [1, t−1] and hoeffding
maximal inequality (Bubeck 2010), we have

P{∃s′ ∈ [1, t− 1], Ẽr
k′,s′,t} ≤ (log2(t− 1) + 1) exp(−

Et−1

2
).

Similarly, we have

P{∃s′ ∈ [1, t− 1], Ẽc
k′,s′,t} ≤ (log2(t− 1) + 1) exp(−

Et−1

2
).

Since Et ≥ 2 log(4(log2 t + 1)), the following inequality
holds:

P{∃s′ ∈ [1, t− 1], Ẽk′,s′,t} ≤
1

2
. (17)



Therefore,

τB
∑

t=1

∏

k′ 6=k

P{∃s′ ∈ [1, t− 1], E′
k′,s′,t} ≤ τB2

−N∆k , (18)

where N∆k
is the cardinal of {k′ ∈ [K] : ρk′ > ϕk}.

In conclusion, by combining inequalities (9), and (14) in
(S1-2) and (18) in (S1-3), we get that

E[Tk(τB)] ≤ ⌈
2 log τB
η(λ)2∆2

k

⌉+
5

η(λ)2∆2
k

+ τB2
−N∆k . (19)

(S2): BridgeRRCB-I
K andRRCB-I.

The first step (S1) makes progress based on the condition
that the randomly chosen K arms are given. In this step,
we try to utilize the stochastic regularity assumption on the
expected-reward to expected-cost ratio distribution (See (1)
in Section 2) in order to bridgeRRCB-I

K andRRCB-I.
According to Eqn. (1), the quantities ∆1, ...,∆K are i.i.d.

random variables satisfying 0 ≤ ∆k ≤ ρ∗ and P{∆k ≤
ǫ} = Θ(ǫβ). Combine (8) and (19), and take expectations
w.r.t. all sources of randomness. Therefore, we have

RRCB-I =E[RRCB-I
K ] ≤

2

λ
+KE

[( 10

η(λ)2∆1
log τB

)

∧ (τB∆1)
]

+τBKE
[

∆1 · 2
−N∆1

]

+O
(

B exp(−
1

2
Bλ)

)

,

(20)

where a ∧ b := min {a, b}.
Then we only need to bound the two expectation terms in

the right-hand side of (20) in the next two sub-steps.

(S2-1): Bound the first expectation term in (20).

Since P{∆1 ≤ ǫ} = Θ(ǫβ) and according to the expecta-
tion definition, we can obtain that

E[(
10 log τB
η(λ)2∆1

)

∧ (τB∆1)] ≤















O
(

τ
1−β
2

B log τB
)

if β < 1,

O
(

(log τB)
2)

if β = 1,

O
(

log τB
)

if β > 1.

(S2-2): Bound the second expectation term in (20).
Conditioning on ∆1, N∆1

follows a binomial distribution

with parameters K − 1 and P{ρ1 > ρ∗− ∆1

2 |∆1}. Then ac-
cording to the total expectation formula and the expectation
definition, we can obtain that

E[∆12
−N∆1 ] ≤ O

(

K−1−1/β log(K)
)

. (21)

(S3): Bound the regret of the RCB-I algorithmRRCB-I.
Combine the above steps, we get that

RRCB-I ≤















C
[

KB
1−β
2 logB +BK−1/β logK

]

if β < 1,

C
[

K(logB)2 +BK−1/β logK
]

if β = 1,

C
[

K logB +BK−1/β logK
]

if β > 1,

where C is a constant depending only on c1, c2, β (See Eqn.
(2)) and λ. Substitute K by Eqn. (5), and then we can get the
desired result.

4.2 Lower Bound of Any Algorithm

In this subsection, we derive a lower bound for the regret
of any algorithm for Bernoulli ∞-BMAB. A Bernoulli ∞-
BMAB is a special bandit, where the rewards and costs of
each arm follow two Bernoulli distributions with unknown
parameters. The lower bound of regret of any algorithm for
Bernoulli∞-BMAB is shown as follows:

Theorem 2. For any Bernoulli∞-BMAB, if the parameters
of any newly pulled arm satisfy Eqn. (1), for any β > 0, any

algorithm suffers a regret larger than cB
β

1+β for some small
enough constant c depending on c2, β and λ.

Due to space restrictions, here we just only show the proof
sketch of Theorem 2, and leave the completed proof into the
Appendix D.
(S1): Lower bound analysis on SK .

Given K randomly selected arms (denoted as SK), under
the Bernoulli setting, according to (Xia et al. 2015b), we
have

RRCB-I
K =

K
∑

k=1

uc
k∆kE[Tk(B)] ≥ λ

K
∑

k=1

∆kE[Tk(B)], (22)

where Tk(B) denotes the pulling number of arm k until the
budget B runs out.

Since the cost of each arm is no larger than 1, the algo-

rithm runs at least B rounds, i.e.,
∑K

k=1 E[Tk(B)] ≥ B.
Now let 0 < δ < δ′ < ρ∗. Similar to the derivations of

Theorem 3 in (Wang, Audibert, and Munos 2009), we have

RRCB-I
K ≥ λBδ1{ρ̂ ≤ ρ∗ − δ}+ λκδ′1{ρ̂ > ρ∗ − δ;K ≥ κ}.

(23)

where κ > 0 is a parameter to be determined, K denotes

the cardinality of {k ∈ {Ĩ1, ..., ĨK∗−1 : ρk ≤ ρ∗ − δ′},
K∗ := min{l ∈ N

+, ρĨl > ρ∗−δ}, Ĩl is the l-th arm drawn,

ρ̂ denotes the expected reward to expected cost ratio of the

best arm in {Ĩ1, ..., ĨK}.
(S2): BridgeRRCB-I

K andRRCB-I.

First, let we take κ = Bδ
δ′

and take expectations on both
sides of (23). Therefore, we have

RRCB-I = E[RRCB-I
K ] ≥ λBδP{K ≥ κ}. (24)

Next, we need to obtain the distribution of K. Since K∗ fol-
lows a geometric distribution with parameter P{ρ > ρ∗−δ},
and given K∗, K follows a binomial distribution with pa-
rameters K∗ − 1 and P{ρ ≤ ρ∗ − δ′}, by technical deriva-

tions, we can obtain that the random variable K follows a
distribution as follows.

P{K = ι} =

[

P{ρ ≤ ρ∗ − δ′}
]ι

[

P{ρ /∈ (ρ∗ − δ′, ρ∗ − δ]}
]ι+1 . (25)

Therefore, we have

RRCBI ≥ λBδ
P{ρ ≤ ρ∗ − δ′}κ

P{ρ /∈ (ρ∗ − δ′, ρ∗ − δ]}κP{ρ > ρ∗ − δ}
. (26)

Taking δ = δ′B− 1
1+β , where δ′ could be any constant in

(0, ρ∗), we have κ = B
β

1+β , and we obtain the desired result.



4.3 Discussions

In this subsection, we make some discussions on Theorem 1
and Theorem 2.

(1) Theorem 1 shows that RCB-I achieves a sub-linear re-
gret bound with respect to the budget B, and we have
limB→∞(RRCB-I/B) = 0.

(2) Comparing Theorem 1 with Theorem 2, we obtain that
the upper bound of the regret of RCB-I matches the low-
er bound up to a logarithmic factor7 logB.

(3) Compared with the budgeted MAB with finite arms, the
regret bound of proposed algorithm, as well as the low-
er bound for any algorithm under Bernoulli reward/cost
distributions setting, cannot achieve O(lnB). This is be-
cause we have to explore enough arms so as to obtain
an arm with the expected-reward to expected-cost ratio
close enough to the ρ∗ with high probability.

5 Extension to Any Budgets

In practice, we often come across the case that B is not
known in advance, or changed through time. Inspired by
(Wang, Audibert, and Munos 2009), in this section, we
present an any-budget algorithm with a variant of the RCB-I
algorithm, named RCB-AIR (short for Arm Increasing Rule)
to deal with the case. The main idea is that, at the beginning
of each round, we will check whether we should explore a
new arm (which is determined by the number of the explored
arms and the round number), then run the procedure for the
finite arm case.

Denote Kt as the arms pulled up to round t. Define Kt =
|Kt|. We set Kt = ∅ and K0 = 0. The RCB-AIR algorithm
is shown in Algorithm 3.

Algorithm 3: RCB-AIR Algorithm

1 Input: The ratio distribution regularity parameter β > 0;
2 while the budget has not run out do

3 At round t, if Kt−1 <

{

tβ/2 if β < 1

t
β

β+1 if β ≥ 1
,

randomly pick a new arm at and set Kt ← Kt−1∪
{at}; otherwise, set Kt ← Kt−1;

4 Run Step 4 and 5 of Algorithm 1 on the selected Kt.

The regret bound of RCB-AIR algorithm is shown as fol-
lows:

Theorem 3. For the∞-BMAB satisfying Eqn. (1), when the
exploration sequence {Et} satisfies 2 log(4(log2 t + 1)) ≤
Et ≤ log t, for any budget B, the upper bound of the regret
for RCB-AIR is shown as follows.

RRCB-AIR ≤







C(logB)2B
1
2 if β > 1,

C(logB)2B
β

1+β if β ≤ 1,
(27)

where C is a constant depending only on c1, c2, β, λ.

7In fact, the upper bound matches (up to a logarithmic factor)
the lower bound in the case β ≥ 1. We will consider the case β < 1
in the future.

Similar to the proof of Theorem 1, the proof of Theorem
3 also consists of three steps: First, analyze the regret on
the randomly chosen {Kt}

τB
t=1 arms. Note to mention that

the arms chosen until round τB progressively enter in com-
petition, which is different from the RCB-I setting; second,
relateRRCB-AIR

KτB
toRRCB-AIR by leveraging the stochastic as-

sumption on the expected-reward to expected-cost ratio dis-
tribution; third, combine the results of the above two steps.
We leave the detailed proofs into Appendix E.

6 Conclusion and Future Work

In this paper, we design an arm pulling algorithm, RCB-I,
for the∞-BMAB. We have proved that when the budget is
known in advance, RCB-I achieves a sub-linear regret bound
with respect to the budget, and matches (up to a logarith-
mic factor) the lower bound. We further make an extension
to any budget setting, propose the RCB-AIR algorithm, and
conduct corresponding theoretical analysis.

For the future work, there are many important and in-
teresting directions: (1) the distribution-free regret bound-
s remain empty for our proposed algorithm, which need to
be solved; (2) whether the lower bound for β < 1 can be
improvable is also an intriguing problem in need of discus-
sion; (3) the case that the rewards and costs of different arms
are correlated requires further investigation; (4) the best ar-
m identification problem for∞-BMAB is another important
problem.

Notations

Notation Meaning

B budget

Bt budget at round t
ri(t), ci(t) reward (cost) of arm i at round t
ur
i , u

c
i expected reward (cost) of arm i

λ uniformly lower bound of expected
cost

ρi, ρ
∗ expected-reward to expected-cost

ratio of arm i and maximum ratio

β parameter of ratio distribution

∆k difference between ρ∗ and ρk
Ti(t− 1) arm i’s pulling number before round

t
It the arm pulled at t-th round

K,Kt randomly chosen arms (at time t)
Et exploration sequence at round t

Di,Ti(t−1),t arm i’s estimated ratio index at
round t

R∗ supremum of expected reward of all
possible pulling algorithms

Ralg,RRCB-I,RRCB-AIR regret of any algorithm, RCB-I and
RCB-AIR algorithm

τB speudo stopping time

Table 1: Notations: We summarize the notations used in our
paper in this table.
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A Preparation
In this section, we make some preparations for the following proofs, including introducing some notations and important facts.

At first, we introduce the following notation:
Ht−1 denotes the history information at round t, specifically,

Ht−1 = {Is, rIs(s), cIs(s), s = 1, 2, ..., t− 1}. (1)

Next, let we introduce some important facts that we often used in the following proofs.

Fact A.1 (Fubini’s Theorem). (Durrett 2010) If f ≥ 0 or
∫

|f(x, y)|d(x, y) < ∞, then
∫

X

(

∫

Y

f(x, y)dy
)

dx =

∫

X×Y

f(x, y)d(x, y) =

∫

Y

(

∫

X

f(x, y)dx
)

dy (2)

where X and Y are Euclidean spaces, and X × Y denotes the product space.

Fact A.2. (Flajolet and Jaillet 2015) Consider n random variables X1, ..., Xn with support in [0, 1], if for any t ∈
[n],E[X1, ..., Xt−1] ≥ µ, then for any a > 0, we have

P{X1 + ...+Xn ≤ nµ− a} ≤ exp(−
2a2

n
).

Fact A.3 (Hoeffding’s Maximal Inequality). (Bubeck 2010) X1, ..., Xn are centered i.i.d. random variables, for any x > 0, t ≥
1, we have

P{∃s ∈ {1, ..., t},
s

∑

t=1

Xt > x} ≤ exp(−
2x2

t
).

B Bound R
∗

Similar to the proof of Lemma 2 in (Xia et al. 2016), we compute the upper bound of expected reward under any algorithm,
then we can get the upper bound of R∗.

Ralg =E[

∞
∑

t=1

rIt(t)1{Bt ≥ 0}]

≤E[

∞
∑

t=1

rIt(t)1{Bt−1 ≥ 0}] since {Bt ≥ 0} implies {Bt−1 ≥ 0}

=
∞
∑

t=1

∞
∑

k=1

E[rk(t)1{It = k,Bt−1 ≥ 0}] according to Fubini’s Theorem

=
∞
∑

t=1

∞
∑

k=1

E{E[rk(t)1{It = k,Bt−1 ≥ 0}|Ht−1]}

=
∞
∑

t=1

∞
∑

k=1

E{1{It = k,Bt−1 ≥ 0}E[rk(t)|Ht−1]} since 1{It = k,Bt−1 ≥ 0} is measurable w.r.t. Ht−1

=
∞
∑

t=1

∞
∑

k=1

E{ur
k1{It = k,Bt−1 ≥ 0}} since rk(t) is independent of Ht−1

(3)



=
∞
∑

t=1

∞
∑

k=1

E{ρku
c
k1{It = k,Bt−1 ≥ 0}}

≤ρ∗
∞
∑

t=1

∞
∑

k=1

E{uc
k1{It = k,Bt−1 ≥ 0}}

≤ρ∗
∞
∑

t=1

∞
∑

k=1

E{E[ck(t)1{It = k,Bt−1 ≥ 0}|Ht−1]}

≤ρ∗
∞
∑

t=1

∞
∑

k=1

E{ck(t)1{It = k,Bt−1 ≥ 0}}

≤(B + 1)ρ∗

Therefore, we have
R∗ ≤ (B + 1)ρ∗ (4)

C Proof of Theorem 1

C.1 Detailed Derivations of (S1) in the proof of Theorem 1

E[
∞
∑

t=1

rIt(t)1{Bt ≥ 0}] ≥ E[
∞
∑

t=1

rIt(t)1{Bt−1 ≥ 1}] since {Bt−1 ≥ 1} implies {Bt ≥ 0}

=

∞
∑

t=1

K
∑

k=1

E[rk(t)1{It = k,Bt−1 ≥ 1}] by Fubini’s Theorem

=
∞
∑

t=1

K
∑

k=1

E{E[rk(t)1{It = k,Bt−1 ≥ 1}|Ht−1]} by Conditional Expectation Property

=
∞
∑

t=1

K
∑

k=1

E{1{It = k,Bt−1 ≥ 1}E[rk(t)|Ht−1]} since {It = k,Bt−1 ≥ 1} is measurable w.r.t. Ht−1

=
∞
∑

t=1

K
∑

k=1

E{ur
k(t)1{It = k,Bt−1 ≥ 1}} since rk(t) is independent of Ht−1

=

∞
∑

t=1

K
∑

k=1

E{ρku
c
k(t)1{It = k,Bt−1 ≥ 1}}

=
∞
∑

t=1

K
∑

k=1

E{ρkE[ck(t)|Ht−1]1{It = k,Bt−1 ≥ 1}} since ck(t) is independent of Ht−1

=

∞
∑

t=1

K
∑

k=1

E{E[ρkck(t)1{It = k,Bt−1 ≥ 1}|Ht−1]}

=E[
∞
∑

t=1

K
∑

k=1

ρkck(t)1{It = k,Bt−1 ≥ 1}] by Fubini’s Theorem

=E[

∞
∑

t=1

ρ∗c∗(t)1{It = i∗, Bt−1 ≥ 1}] + E[

∞
∑

t=1

K
∑

k=1,k 6=i∗

ρkck(t)1{It = k,Bt−1 ≥ 1}]

=E[
∞
∑

t=1

ρ∗c∗(t)1{It = i∗, Bt−1 ≥ 1}] + E[
∞
∑

t=1

K
∑

k=1,k 6=i∗

ρ∗ck(t)1{It = k,Bt−1 ≥ 1}]− E[
∞
∑

t=1

K
∑

k=1,k 6=i∗

(ρ∗ck(t)− ur
k)1{It = k,Bt−1 ≥ 1}]

=E[

∞
∑

t=1

K
∑

k=1

ρ∗ck(t)1{It = k,Bt−1 ≥ 1}]− E[

∞
∑

t=1

K
∑

k=1,k 6=i∗

(ρ∗ck(t)− ur
k)1{It = k,Bt−1 ≥ 1}]

≥(B − 1)ρ∗ − E[
∞
∑

t=1

K
∑

k=1,k 6=i∗

(ρ∗ck(t)− ur
k)1{It = k,Bt−1 ≥ 1}].

(5)



Therefore, we have

RRCB-I =R∗ − E[

∞
∑

t=1

rIt(t)1{Bt ≥ 0}]

≤2ρ∗ + E[
∞
∑

t=1

K
∑

k=1,k 6=i∗

(ρ∗ck(t)− ur
k)1{It = k,Bt−1 ≥ 1}]

=2ρ∗ + E[

∞
∑

t=1

K
∑

k=1

(ρ∗ck(t)− ur
k)1{It = k,Bt−1 ≥ 1}]

=2ρ∗ + E{

∞
∑

t=1

K
∑

k=1

E[(ρ∗ck(t)− ur
k)1{It = k,Bt−1 ≥ 1}|Ht−1]}

=2ρ∗ + E{

∞
∑

t=1

K
∑

k=1

E[(ρ∗ck(t)− ur
k)|Ht−1]1{It = k,Bt−1 ≥ 1}}

=2ρ∗ + E[

∞
∑

t=1

K
∑

k=1

(ρ∗uc
k − ur

k)1{It = k,Bt−1 ≥ 1}]

=2ρ∗ +
K
∑

k=1

uc
k(ρ

∗ − ρk)E[
∞
∑

t=1

1{It = k,Bt−1 ≥ 1}] by Fubini’s Theorem

≤2ρ∗ +

K
∑

k=1

uc
k∆kE[

∞
∑

t=1

1{It = k,Bt ≥ 0}]

≤2ρ∗ +

K
∑

k=1

uc
k∆kE[

τB
∑

t=1

1{It = k,Bt ≥ 0 +

∞
∑

t=τB+1

1{It = k,Bt ≥ 0]

≤
2

λ
+

K
∑

k=1

∆kE[Tk(τB)] +
X̃ (B)

λ
since uc

k ∈ [λ, 1], ρ∗ ∈ [0,
1

λ
]

(6)

where X̃ (B) = (⌊ 2B
λ ⌋+ 1) exp(−Bλ) + 1

λ2 exp(λ
2 − 2Bλ), which is order O

(

B exp(− 1
2Bλ)

)

.

C.2 Detailed Derivations of (S1-1) in the proof of Theorem 1

Given K randomly chosen arms, for any positive integer Lk ∈ N
+, we have

Tk(τB) = 1 +

τB
∑

t=K+1

1{It = k,Bt ≥ 0}

≤Lk +

τB
∑

t=Lk

1{It = k,Bt ≥ 0, Tk(t− 1) ≥ Lk}

=Lk +

τB
∑

t=Lk

1{It = k,Bt ≥ 0, Tk(t− 1) ≥ Lk}

≤Lk +

τB
∑

t=Lk

1{It = k, Tk(t− 1) ≥ Lk}

(7)

Let Zk(Lk, t) := 1{It=k,Tk(t−1)≥Lk}. We have

Zk(Lk, t) =1{It = k, Tk(t− 1) ≥ Lk}

≤1{∀k′ 6= k,Dk,Tk(t−1),t ≥ Dk′,Tk′ (t−1),t, Tk(t− 1) ≥ Lk}
(8)

For any positive number ϕk > 0, we have

Zk(Lk, t) =1{It = k, Tk(t− 1) > Lk}

≤1{Dk,Tk(t−1),t > ϕk, , Tk(t− 1) ≥ Lk}+ 1{∀k′ 6= k,Dk′,Tk′ (t−1),t ≤ ϕk, Tk(t− 1) ≥ Lk}

≤1{∃s ∈ [Lk, t− 1], Dk,s,t > ϕk}+ 1{∀k′ 6= k, ∃s′ ∈ [1, t− 1], Dk′,s′,t ≤ ϕk}

(9)



Therefore,

E[Tk(τB)] ≤ Lk +

τB
∑

t=1

t−1
∑

s=Lk

P{Dk,s,t > ϕk}+

τB
∑

t=1

∏

k′ 6=k

P{∃s′ ∈ [1, t− 1], Dk′,s′,t ≤ τ} (10)

C.3 Detailed Derivations of (S1-2) in the proof of Theorem 1

In order to bound the term
∑τB

t=1

∑t−1
s=Lk

P{Dk,s,t > ϕk}, we take

ϕk = ρ∗ −
1

2
∆k = ρk +

1

2
∆k. (11)

We can verify that

ϕk = ρk +
1

2
∆k =

ur
k

uc
k

+
1

2
∆k ≥

ur
k + λ2

3+2λ
∆k

uc
k − λ2

3+2λ
∆k

, (12)

where uc
k − λ2

3+2λ∆k > 0.

Denote λ2

3+2λ as η(λ).

P{Dk,s,t > ϕk}

=P
{

min {rk,t +
√

Et−1

2s
, 1}

max {ck,t −
√

Et−1

2s
, 0}

> ϕk

}

≤P
{

min {rk,t +
√

Et−1

2s
, 1}

max {ck,t −
√

Et−1

2s
, 0}

>
ur
k + η(λ)∆k

uc
k − η(λ)∆k

}

≤P
(

min {rk,t +

√

Et−1

2s
, 1} > ur

k + η(λ)∆k

)

+ P
{

max {ck,t −

√

Et−1

2s
, 0} < uc

k − η(λ)∆k

}

≤P
{

rk,t +

√

Et−1

2s
> ur

k + η(λ)∆k

}

+ P
{

ck,t −

√

Et−1

2s
< uc

k − η(λ)∆k

}

(13)

Define the following events:
Ek,s,t : Dk,s,t > ϕk;

Er
k,s,t : rk,t − ur

k > η(λ)∆k −
√

Et−1

2s ;

Ec
k,s,t : ck,t − uc

k < −η(λ)∆k +
√

Et−1

2s .

From (13), we have
P{Ek,s,t} ≤ P{Er

k,s,t}+ P{Ec
k,s,t}. (14)

Take Lk = ⌈ 2 log τB
η(λ)2∆2

k
⌉, according to hoeffding inequality, we have

P
{

rk,t +

√

Et−1

2s
> ur

k + η(λ)∆k

}

= P
{

rk,t − ur
k > η(λ)∆k −

√

Et−1

2s

}

=P{Er
k,s,t} ≤ exp(−

sη(λ)2∆2
k

2
)

(15)

Similarly, we have

P
{

ck,t −

√

Et−1

2s
< uc

k − η(λ)∆k

}

=P{Ec
k,s,t} ≤ exp(−

sη(λ)2∆2
k

2
)

(16)

Therefore,
t−1
∑

s=Lk

P{Dk,s,t > ϕk} ≤2

t−1
∑

s=Lk

exp(−
sη(λ)2∆2

k

2
) ≤ 2

∞
∑

s=Lk

exp(−
sη(λ)2∆2

k

2
)

=2
exp(−

Lkη(λ)
2∆2

k
2

)

1− exp(−
η(λ)2∆2

k
2

)
=

2

1− exp(−
η(λ)2∆2

k
2

)

1

τB

(17)



Since

1− e−x ≥
4x

5
, for 0 ≤ x ≤

2

9
, (18)

and

η(λ)2∆2
k

2
≤ 2 · (

λ2

3
)2 ·

1

λ2
= 2 ·

λ2

9
≤

2

9
, (19)

so we have
t−1
∑

s=Lk

P{Dk,s,t > ϕk} ≤
5

η(λ)2∆2
k

·
1

τB
(20)

Therefore,
τB
∑

t=1

t−1
∑

s=Lk

P{Dk,s,t > ϕk} =
5

η(λ)2∆2
k

. (21)

C.4 Detailed Derivations of (S1-3) in the proof of Theorem 1

For ease of reference, define the following events:

E′
k′,s′,t : Dk′,s′,t ≤ ϕk;

Ẽk′,s′,t : Dk′,s′,t ≤ ρk′ ;

Ẽr
k′,s′,t : rk′,t − ur

k′ ≤ −
√

Et−1

2s ;

Ẽc
k′,s′,t : ck′,t − uc

k′ ≥
√

Et−1

2s ;

Therefore,

∏

k′ 6=k

P
{

∃s′ ∈ [1, t− 1], Dk′,s′,t ≤ ϕk

}

≤
∏

k′:ρk′>ρ∗− 1
2
∆k

P
{

∃s′ ∈ [1, t− 1], Dk′,s′,t ≤ ρk′

}

=
∏

k′:ρk′>ρ∗− 1
2
∆k

P
{

∃s′ ∈ [1, t− 1],
max {rk′,t +

√

Et−1

2s
, 1}

min {ck′,t −
√

Et−1

2s
, 0}

≤
ur
k′

uc
k′

}

=
∏

k′:ρk′>ρ∗− 1
2
∆k

[

P
{

∃s′ ∈ [1, t− 1],max {rk′,t +

√

Et−1

2s
, 1} ≤ ur

k′

}

+ P
{

∃s′ ∈ [1, t− 1],min {ck′,t −

√

Et−1

2s
, 0} ≥ uc

k′

}]

≤
∏

k′:ρk′>ρ∗− 1
2
∆k

[

P
{

∃s′ ∈ [1, t− 1], rk′,t +

√

Et−1

2s
≤ ur

k′

}

+ P
{

∃s′ ∈ [1, t− 1], ck′,t −

√

Et−1

2s
≥ uc

k′

}]

(22)

That is,
∏

k′ 6=k

P
{

∃s′ ∈ [1, t− 1], E′
k′,s′,t

}

≤
∏

k′:ρk′>ρ∗− 1
2
∆k

[

P
{

∃s′ ∈ [1, t− 1], Ẽr
k′,s′,t

}

+ P
{

∃s′ ∈ [1, t− 1], Ẽc
k′,s′,t

}]
(23)

What’s more,

P
{

∃s′ ∈ [1, t− 1], Ẽr
k′,s′,t

}

=P
{

∃s′ ∈ [1, t− 1],
s

∑

l=1

(rk′,l − ur
k′) ≤ −

√

sEt−1

2

} (24)

We apply the peeling argument with a geometric grid over the time interval [1, t − 1](Bubeck 2010). More precisely, if



s ∈ [1, t− 1], then ∃j ∈ {0, ..., log2(t− 1)} : 2−(j+1)t < s ≤ 2−jt. Thus we get

P
{

∃s′ ∈ [1, t− 1], rk′,t +

√

Et−1

2s
≤ ur

k′

}

≤

log(t−1)
log 2
∑

j=0

P
{

∃s : (
1

2
)j+1t < s ≤ (

1

2
)jt,

s
∑

l=1

(rk′,l − ur
k′) ≤ −

√

sEt−1

2

}

≤

log(t−1)
log 2
∑

j=0

P
{

∃s : (
1

2
)j+1t < s ≤ (

1

2
)jt,

s
∑

l=1

(rk′,l − ur
k′) ≤ −

√

2−12−(j+1)tEt−1|K arms
}

≤

log(t−1)
log 2
∑

j=0

exp(−
2(
√

2−12−(j+1)tEt−1)
2

2−jt
) by Hoeffding’s maximal inequality

≤(log2(t− 1) + 1) exp(−
Et−1

2
)

(25)

Since Et ≥ 2 log(4(log2 t+ 1)), we have

P
{

∃s′ ∈ [1, t− 1],max {rk′,t +

√

Et−1

2s
, 1} < ur

k′

}

≤
1

4
(26)

Similarly,

P
{

∃s′ ∈ [1, t− 1],min {ck′,t −

√

Et−1

2s
, 0} ≤ uc

k′

}

≤
1

4
(27)

Combine inequality (22), (26) and (27), we have
∏

k′ 6=k

P
{

∃s′ ∈ [0, t− 1], Dk′,s′,t ≤ ϕk

}

≤ 2−N∆k ,
(28)

where N∆k
is the cardinal of {k′ ∈ {1, 2, ...,K}, ρk′ > ρ∗ − 1

2∆k}.
Therefore,

τB
∑

t=u+1

∏

k′ 6=k

P{∃s′ ∈ [1, t− 1], Dk′,s′,t ≤ ϕk} ≤ τB2
−N∆k (29)

C.5 Detailed Derivations of (S2) in the proof of Theorem 1

According to (S2), we have

E[Tk(τB)] ≤ ⌈
2 log τB
η(λ)2∆2

k

⌉+
5

η(λ)2∆2
k

+ τB · 2−N∆k . (30)

Hence, we have

RRCB-I ≤
2

λ
+

K
∑

k=1

E

[

( 10

η(λ)2∆k
log τB

)

∧ (τB∆k) + τB∆k · 2−N∆k

]

+
X̃ (B)

λ
, (31)

where a ∧ b := min{a, b}.
The quantities ∆1, ...,∆K are i.i.d. random variables satisfying 0 ≤ ∆k ≤ ρ∗ and P{∆k ≤ ǫ} = Θ(ǫβ).
So from inequality (31), we have

RRCB-I ≤
2

λ
+KE

[

( 10

η(λ)2∆1
log τB

)

∧ (τB∆1) + τB∆1 · 2
−N∆1

]

+
X̃ (B)

λ
. (32)

C.6 Detailed Derivations of (S2-1) in the proof of Theorem 1

Step 9: Bound E[( 10
η(λ)2∆1

log τB
)

∧ (τB∆1)].

Define function f(t) = ( 10
η(λ)2t

)

∧ (τBt). By leveraging Fubini’s Theorem, we have

E[f(∆1)] =f(ρ∗)− E

∫ ρ∗

∆1

f ′(t)dt = f(ρ∗)−

∫ ρ∗

0

f ′(t)P(∆1 ≤ t)dt

≤f(ρ∗) +

∫ ρ∗

√

1
τB

10

η(λ)2t2
c2t

βdt

(33)



∫ ρ∗

√

1
τB

10

η(λ)2t2
c2t

βdt ≤



































10

η(λ)2
c2

1− β
(τB)

1−β
2 if β < 1,

10c2
η(λ)2

[log ρ∗ +
1

2
log τB ] if β = 1,

10c2
η(λ)2

(ρ∗)β−1

β − 1
if β > 1.

(34)

Then we have

E[f(∆1)] ≤



































10

η(λ)2
[ 1

ρ∗
+

c2
1− β

(τB)
1−β
2

]

if β < 1,

10

η(λ)2
[ 1

ρ∗
+ c2(log ρ

∗ +
1

2
log τB)

]

if β = 1,

10

η(λ)2
[ 1

ρ∗
+

c2(ρ
∗)β−1

β − 1

]

if β > 1.

(35)

According to the above inequalities, we have

E[(
15

η(λ)2∆1
log τB

)

∧ (τB∆1)] ≤



































10

η(λ)2
[ 1

ρ∗
+

c2
1− β

(τB)
1−β
2

]

log τB if β < 1,

10

η(λ)2
[ 1

ρ∗
+ c2(

1

2
log τB − log λ)

]

log τB if β = 1,

10

η(λ)2
[ 1

ρ∗
+

c2(λ)
1−β

β − 1

]

log τB if β > 1.

(36)

C.7 Detailed Derivations of (S2-2) in the proof of Theorem 1

The proof of this subsection is similar to (Wang, Audibert, and Munos 2009).
Denote p = P{ρ > ρ∗ − δ/2}. Conditioning on ∆1 = δ, N∆1

follows a binomial distribution with parameters K − 1 and p,
therefore, we have

E[2−N∆1 |∆1 = δ] = (1− p/2)K−1. (37)

So

E[∆12
−N∆1 ] = E∆1[1− p/2]K−1 = E∆1[1− P{ρ > ρ∗ −

∆1

2
}/2]K−1 ≤ EΓ(∆1), (38)

with Γ(µ) = µ(1− c1
2β+1µ

β)K−1, Since

Γ′(µ) = (1−
c1

2β+1
µβ)K−2[1−

c1
2β+1

(1 + (K − 1)β)µβ ], (39)

and Γ′(µ) ≤ 0, for µ ≥ µ0, where µ0 = 1
[

c1
2β+1 (1+(K−1)β)]1/β

.

Thus, Γ(µ) ≤ Γ(µ0), and

Γ(µ0) =
(1− 1

1+(K−1)β
)K−1

[ c1
2β+1 (1 + (K − 1)β)]1/β

≤ (
c1

2β+1
β)−1/β(K − 1)−1/β . (40)

For any µ1 ∈ [µ0, ρ
∗], we have

EΓ(∆1) ≤Γ(µ0)P{∆1 ≤ µ1}+ Γ(µ1)P{∆1 > µ1}

≤Γ(µ0)P{∆1 ≤ µ1}+ Γ(µ1).
(41)

We take µ1 = c5(
logK
K )1/β , where c5 is a positive constant depending on c1 and β sufficiently large to ensure µ1 ≥ µ0 and

Γ(µ1) ≤ K−1−1/β . (42)

Therefore, we obtain

E[∆12
−N∆1 ] ≤ EΓ(∆1) ≤ c6K

−1−1/β log(K), (43)

where c6 is a positive constant depending on c1 and β.



C.8 Derive the Regret Bound w.r.t. B and K
Combine the above steps, we have

RRCB-I ≤



































2

λ
+

10K

η(λ)2
[ 1

ρ∗
+

c2
1− β

(τB)
1−β
2

]

log τB + c6K
−1/β(logK)τB +

1

λ
X̃ (B) if β < 1,

2

λ
+

10K

η(λ)2
[ 1

ρ∗
+ c2(

1

2
log τB − log λ)

]

log τB + c6K
−1/β(logK)τB +

1

λ
X̃ (B) if β = 1,

2

λ
+

10K

η(λ)2
[ 1

ρ∗
+

c2(λ)
1−β

β − 1

]

log τB + c6K
−1/β(logK)τB +

1

λ
X̃ (B) if β > 1.

(44)

Since η(λ) = λ2

3+2λ ≥ λ2

5 , τB = ⌊ 2B
λ ⌋, we have

R ≤



































2

λ
+

c′2
1− β

λ− 3+5β
2 KB

1−β
2 log

B

λ
+

c′7λ
−4

ρ∗
K log

B

λ
+ c′6λ

−1K−1/β(logK)
B

λ
+

1

λ
X̃ (B) if β < 1,

2

λ
+

c
′′

2K

λ4
(log

B

λ
)2 +

c7
′′λ−4

ρ∗
K log

B

λ
+ c6

′′λ−1K−1/β(logK)
B

λ
+

1

λ
X̃ (B) if β = 1,

2

λ
+

c
′′′

2 K

β − 1
λ−3−β log

B

λ
+

c7
′′′λ−4

ρ∗
K log

B

λ
+ c6

′′′λ−1K−1/β(logK)
B

λ
+

1

λ
X̃ (B) if β > 1.

(45)

Since we take

K =

{

Θ(Bβ/2) β < 1,

Θ(B
β

1+β ) β ≥ 1,
(46)

Therefore, we have

R ≤















CB1/2 = O(B1/2) β < 1,

CB1/2(logB)2 = O
(

B1/2(logB)2
)

β = 1

CB
β

1+β logB = O(B
β

1+β logB) β > 1,

(47)

where C only depends on c1, c2, β, and λ.

D Proof of Theorem 2

(S1): Lower bound analysis on SK .
Given K randomly selected arms, under the Bernoulli Setting, we have

RRCB-I
K =

K
∑

i=1

uc
i∆iE[Ti(B)|K arms], (48)

where RRCB-I
K is the regret under the setting given K randomly selected arms, Ti(B) is the pulling number of each arm until

the budget runs out. Since uc
i ∈ [λ, 1], we can obtain that

RRCB-I
K ≥ λ

K
∑

i=1

∆iE[Ti(B)|K arms]. (49)

Just as in the paper (Wang, Audibert, and Munos 2009), we suppose that arm Ĩ1 is the first arm drawn, Ĩ2 6= Ĩ1 is the second
arm drawn, and so on. Let 0 < δ < δ′ < ρ∗. Let K∗ denote the smallest l sucn that ρĨl > ρ∗ − δ, that is,

K∗ := min{l ∈ N
+, ρĨl > ρ∗ − δ}. (50)

Let K be the number of arms in {Ĩ1, ..., ĨK∗−1} with expected-reward-to-expected-cost ratio samller that or equal to ρ∗ − δ′,
that is,

K := ♯|ρi ≤ ρ∗ − δ′, i ∈ {Ĩ1, ..., ĨK∗−1}|. (51)

Let ρ̂ be the expected-reward-to-expected-cost ratio of the arm in {Ĩ1, ..., ĨK∗−1} with maximum ratio. Let κ > 0 be a
parameter to be chosen, we have

RRCB-I
K = RRCB-I

K 1{ρ̂ ≤ ρ∗ − δ}+RRCB-I
K 1{ρ̂ > ρ∗ − δ}. (52)

Furthermore,

RRCB-I
K 1{ρ̂ ≤ ρ∗ − δ} ≥ λδ

K
∑

i=1

E[Ti(B)]1{ρ̂ ≤ ρ∗ − δ} ≥ λδB1{ρ̂ ≤ ρ∗ − δ}. (53)



The last ≥ holds in the above inequality (53), since ci(t) ≤ 1, and accordingly
∑K

i=1 E[Ti(B)] ≥ B.

RRCB-I
K 1{ρ̂ > ρ∗ − δ} ≥ λ

K
∑

i=1

∆iE[Ti(B)]1{ρ̂ > ρ∗ − δ} ≥ δK1{ρ̂ > ρ∗ − δ}. (54)

Combine the above inequalities (53) and (54), we have

RRCB-I
K ≥λδB1{ρ̂ ≤ ρ∗ − δ}+ λδ′K1{ρ̂ > ρ∗ − δ}

≥λδB1{ρ̂ ≤ ρ∗ − δ}+ λδ′κ1{ρ̂ > ρ∗ − δ;K ≥ κ}.
(55)

(S2): Bridge RRCB-I
K and RRCB-I.

By taking expectations on both sides and taking κ = Bδ
δ′ , we obtain

RRCB-I = ERRCB-I
K =P{ρ̂ ≤ ρ∗ − δ}+ λδ′κP{ρ̂ > ρ∗ − δ;K ≥ κ}

≥λδBP{ρ̂ ≤ ρ∗ − δ}+ λδ′κ
[

P{ρ̂ > ρ∗ − δ} − P{K < κ}
]

=λδ′κP{K ≥ κ}.

(56)

Since K∗ follows a geometric distribution with parameter P{ρ > ρ∗ − δ}, and given K∗, K follows a binomial distribution
with parameters K∗ − 1 and P{ρ ≤ ρ∗ − δ′}. In order to bound RRCB-I

K , from Eqn. (56), we need to compute the distribution of

K.

P{K = ι} =
∞
∑

n=ι

P{K = ι,K∗ = n}

=
∞
∑

n=ι

P{K = ι|K∗ = n}P{K∗ = n}

=

∞
∑

n=ι

Cι
n−1(

P{ρ ≤ ρ∗ − δ′}

1− P{ρ > ρ∗ − δ}
)ι(

1− P{ρ > ρ∗ − δ} − P{ρ ≤ ρ∗ − δ′}

1− P{ρ > ρ∗ − δ}
)n−ι

P{K∗ = n}

=
∞
∑

n=ι

Cι
n−1(

P{ρ ≤ ρ∗ − δ′}

1− P{ρ > ρ∗ − δ}
)ι(

1− P{ρ > ρ∗ − δ} − P{ρ ≤ ρ∗ − δ′}

1− P{ρ > ρ∗ − δ}
)n−1−ι[1− P{ρ > ρ∗ − δ}]n−1

P{ρ > ρ∗ − δ}

=

∞
∑

n=ι

Cι
n−1(P{ρ ≤ ρ∗ − δ′}ι(1− P{ρ > ρ∗ − δ} − P{ρ ≤ ρ∗ − δ′})n−1−ι

P{ρ > ρ∗ − δ}

=
[P{ρ ≤ ρ∗ − δ′}]ι

[P{ρ /∈ (ρ∗ − δ′, ρ∗ − δ]}]ι+1

(57)
Therefore,

P{K ≥ κ} =
∞
∑

ι=κ

P{K = ι} =

[P{ρ≤ρ∗−δ′}]κ

[P{ρ/∈(ρ∗−δ′,ρ∗−δ]}]κ+1

1− P{ρ≤ρ∗−δ′}
P{ρ/∈(ρ∗−δ′,ρ∗−δ]}

=
[P{ρ ≤ ρ∗ − δ′}]κ

[P{ρ /∈ (ρ∗ − δ′, ρ∗ − δ]}]κP{ρ > ρ∗ − δ′}
(58)

So we have

R ≥ λδ′κ
[P{ρ ≤ ρ∗ − δ′}]κ

[P{ρ /∈ (ρ∗ − δ′, ρ∗ − δ]}]κP{ρ > ρ∗ − δ′}
. (59)

Taking δ = δ′B− 1
1+β and δ′ a constant in (0, ρ∗), we haveκ = B

β
1+β , and we obtain the desired result.



E Proof of Theorem 3
Denote Kt as the number of arms played up to time t.

E[

∞
∑

t=1

rIt1{Bt ≥ 0}]

=E[

∞
∑

t=1

r∗(t)1{It = i∗, Bt ≥ 0}] + E[

∞
∑

t=1

Kt
∑

k=1,k 6=i∗

rk(t)1{Bt ≥ 0, It = k}]

≥E[
∞
∑

t=1

r∗(t)1{It = i∗, Bt−1 ≥ 1}] + E[
∞
∑

t=1

Kt
∑

k=1,k 6=i∗

rk(t)1{Bt−1 ≥ 1, It = k}]

=E[
∞
∑

t=1

ρ∗c∗(t)1{It = i∗, Bt−1 ≥ 1}] + E[
∞
∑

t=1

Kt
∑

k=1,k 6=i∗

ur
k1{Bt−1 ≥ 1, It = k}]

=E[
∞
∑

t=1

ρ∗c∗(t)1{It = i∗, Bt−1 ≥ 1}] + E[
∞
∑

t=1

Kt
∑

k=1,k 6=i∗

ρ∗ck(t)1{Bt−1 ≥ 1, It = k}]

−E[
∞
∑

t=1

Kt
∑

k=1,k 6=i∗

(ρ∗ck(t)− ur
k)1{Bt−1 ≥ 1, It = k}]

=E[
∞
∑

t=1

Kt
∑

k=1

ρ∗ck(t)1{Bt−1 ≥ 1, It = k}]− E[
∞
∑

t=1

Kt
∑

k=1,k 6=i∗

(ρ∗ck(t)− ur
k)1{Bt−1 ≥ 1, It = k}]

≥(B − 1)ρ∗ − E[

∞
∑

t=1

Kt
∑

k=1,k 6=i∗

(ρ∗ck(t)− ur
k)1{Bt−1 ≥ 1, It = k}]

(60)

Let Ĩ1, ..., ĨKτB
denote the selected arms: Ĩ1 is the first arm drawn, Ĩ2 the second, and so on. We have

RRCB-AIR
KτB

≤2ρ∗ + E[

∞
∑

t=1

Kt
∑

k=1

(ρ∗ck(t)− ur
k)1{Bt−1 ≥ 1, It = k}]

≤2ρ∗ + E[
∞
∑

t=1

Kt
∑

k=1

(ρ∗uc
k − ur

k)1{Bt ≥ 0, It = k}]

=2ρ∗ + E[

τB
∑

t=1

Kt
∑

k=1

uc
k∆k1{Bt ≥ 0, It = k}] + E[

∞
∑

t=τB+1

Kt
∑

k=1

uc
k∆k1{Bt ≥ 0, It = k}]

≤2ρ∗ + E[

τB
∑

t=1

Kt
∑

k=1

uc
k∆k1{Bt ≥ 0, It = k}] + E[

∞
∑

t=τB+1

Kt
∑

k=1

1

λ
1{Bt ≥ 0, It = k}] since uc

k∆k ∈ [0,
1

λ
]

≤2ρ∗ + E[

τB
∑

t=1

KτB
∑

k=1

uc
k∆k1{Bt ≥ 0, It = k}] + E[

∞
∑

t=τB+1

Kt
∑

k=1

1

λ
1{Bt ≥ 0, It = k}]

≤2ρ∗ +

KτB
∑

k=1

E[∆k

τB
∑

t=1

1{Bt ≥ 0, It = k}] +
1

λ

∞
∑

t=τB+1

P{Bt ≥ 0} since uc
k ≤ 1

=2ρ∗ +

KτB
∑

k=1

∆kE[Tk(τB)|Ĩ1, ..., ĨKτB
] +

1

λ
X̃ (B).

(61)

Let Sk denote the arm k being played for the first time. We have 1 = SĨ1
< SĨ2

< ... < SĨKτB

. Since arms Ĩ1, ..., ĨKτB

progressively enter in competition, make some modifications of the upper bound proof, we can get that for k ∈ Ĩ1, ..., ĨKτB
,

E[Tk(τB)|Ĩ1, ..., ĨKτB
] =Lk +

τB
∑

t=1

t−1
∑

s=Lk

P{Dk,s,t > ϕk|Ĩ1, ..., ĨKτB
}+Ωk, (62)

where Ωk :
∑τB

t=1

∏

k′ 6=k,Sk′≤t P{∃s
′ ∈ [1, t − 1],Dk′,s′,t ≤ ϕk|Ĩ1, ..., ĨKτB

}, Lk = ⌈ 2 log τB
(η(λ))2∆2

k
⌉, η(λ) = λ2

3+2λ , and ϕk =

ρ∗ − 1
2∆k. As in the proof of Theorem 4.1, since the exploration sequence satisfies Et ≥ 2 log(4(log2 t+ 1)), we have

P{∃s′ ∈ [1, t− 1],Dk′,s′,t ≤ ϕk} ≤ 1/2, (63)



for arms k′ such that ρk′ ≥ ϕk. As a result, letting Nϕk,k,t denotes the cardinal of the set {k′ : k′ 6= k, ρk′ ≥ ϕk, Sk′ ≤ t}, we
have

Ωk ≤

τB
∑

t=1

2−Nϕk,k,t . (64)

Just as (Wang, Audibert, and Munos 2009), we can prove that

E(∆Ĩl
ΩĨl

) ≤
2β + 1

β

KτB
∑

j=1

j1/βE
(

∆Ĩl
[1− c̃∆β

Ĩl
]j−1). (65)

Using the similar method in the proof of Theorem 4.1, we can get that

E(∆Ĩl
ΩĨl

) ≤







c10(logKτB )2 β ≥ 1,

c11(logKτB )K
1−β
β

τB β < 1.
(66)

where c10, c11 are constants depending on c1, c2, λ, β. According to proof of Theorem 4.1, we know that

τB
∑

t=1

t−1
∑

s=Lk

P{Dk,s,t > τ |Ĩ1, ..., ĨKτB
} ≤=

5

η(λ)2∆2
k

. (67)

Combine the above inequalities, we have

RRCB-AIR = ERRCB-AIR
KτB

≤







C(logB)2B
1
2 β > 1,

C(logB)2B
β

1+β β ≤ 1,
(68)

where C is a constant depending only on c1, c2, β, λ.
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