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Abstract—With the ever-growing popularization of Real Time
Bidding (RTB) advertising, the Ad Exchange (AdX) platform
has long enjoyed a dominant position in the RTB ecosystem due
to its unique role in bridging publishers and advertisers in the
supply and demand sides, respectively. A novel technology called
header bidding emerged in the recent one or two years, however,
is widely believed to have the potential of challenging this
dominant position. Compared with RTB markets, header bidding
establishes a priority sub-market allowing bidding partners of the
publisher submit their bids before the ad impression delivered
to the open AdX platform, resulting in a decreased winning
probability and revenue for the AdX. As such, there is a critical
need for the AdX to tackle this challenge so as to better coexist
with header bidding platforms. This need motivates our research.
We utilize stochastic programming approach and establish a
stochastic optimization model with risk constraints to optimize
the pricing strategy for the AdX, considering that the highest
bids from the bidding partners can be characterized by random
variables. We study the equivalent forms of our proposed model
in case when the randomness is characterized by uniform or
normal random variables. With the computational experiment
approach, we validate our proposed model, and the experimental
results indicate that both the risk tolerance of the AdX and
the distribution of randomness of the highest bid from the
bidding partners can greatly affect the optimal strategy and the
corresponding optimal revenue of the AdX. Our work highlights
the importance of the risk level of the AdX and the distribution
of the randomness generated by the partners to the decision
making process of the AdXs in header bidding markets.

Keywords: header bidding, real time bidding, ad Exchange,
stochastic optimization model, risk level

I. INTRODUCTION

With the ever-growing popularization of Real Time Bidding
(RTB) advertising, the online advertising industry has entered
into a new era of big-data-driven programmatic buying. As a
central player in RTB markets, Ad Exchange (AdX) platforms
serve as a middleman bridging publishers in the supply side
and advertisers in the demand side, dispatch large numbers
of ad impressions generated from publishers’ landing pages
to the best-matched advertisers, and in this way make profits
of intermediary fee from a proportion of publishers’ revenue.
Due to this tight coupling and mutual dependency, AdXs’

marketing strategies, especially their pricing strategies of the
intermediary commission, directly affect publishers’ revenues.

The emergence and rapid development of header bidding
technology, however, has been witnessed to greatly challenge
AdXs’ dominant position in the RTB ecosystems. Technically
speaking, header bidding can offer publishers an alternative
choice by establishing a priority sub-market allowing pub-
lishers directly sell ad impressions to their allied bidding
partners, in case when these partners bid higher than that can
be sold in the open AdX markets. Obviously, header bidding
has the potential of profoundly reshaping the traditional RTB
business model. Using header bidding, publishers might enjoy
lowered dependency with AdXs, enhanced diversity in sales
channels, and in turn improved advertising revenues, and thus
are increasingly willing to embrace this novel technology. To
date, header bidding has become an important and effective
tool in publishers’ advertising arsenal. As reported by BI
Intelligence, nearly 70% of top publishers in the U.S. market
have adopted header bidding in their programmatic process1.
OpenX, one of the programmatic ad-tech providers, reported
that header bidding has experienced a 300% growth in both
the first-quarter of 20162 and the year of 2015, which accounts
for 80% of the company’s overall growth3. Furthermore,
publishers who adopted OpenX as their header bidding partner
have witnessed a 20–50% lift in their revenues1. Another
advertising company named Index Exchange claimed that 80%
of its total revenue comes from header bidding3. As a counter-
example, Rubicon Project company saw its stock fell 32% and
thus lost 200 million dollars in a Wednesday, primarily because
it failed to respond quickly to the header bidding trend3.

Just as every coin has two sides, AdXs, on the other hand,
might suffer from significantly decreased pricing power and
revenue, as well as growing challenges to their dominant

1http://www.businessinsider.com/header-bidding-gains-momentum-drives-
up-publisher-ad-revenue-2016-5

2http://www.mediapost.com/publications/article/274230
3https://adexchanger.com/platforms/great-header-bidding-shake-

begun/amp/
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position in RTB markets with header bidding. As reported
by AdExchanger, many programmatic-focused publishers who
use header bidding saw Google’s share of revenue declined
from 90% to just 40-50%4. Therefore, from the perspective
of AdXs, one might naturally ask a question that how to
effectively formulate their advertising strategies, so as to tackle
this challenge and better coexist with the novel header bidding
platforms.

Our work aims to preliminarily answer this research ques-
tion, from the aspect of optimizing AdXs’ pricing strategy of
intermediary fee. We view this pricing strategy as an important
control variable that should be carefully tuned, so as to find
an appropriate proportion to divide the sales revenue of ad
impressions between AdXs and publishers. Intuitively, on one
hand, setting a larger proportion of commission from pub-
lishers may lead to an increased revenue for the AdX, while
at the same time risk decreasing AdX’s winning probability
in single auction sessions (i.e., due to possibly returning a
price lower than publishers’ reserve price), and in the long run
losing its edge as a dominant player in RTB ecosystems. On
the other hand, setting a smaller proportion may help increase
AdX’s winning probability in auctions, at the cost of lowered
revenue both in each ad request and the entire marketing
operations. As such, there is a critical need for the AdX to
make tradeoffs and find the optimal commission proportion,
targeting at maintaining its overall stability, profitability and
effectiveness in RTB ecosystems.

In this paper, we strive to study this optimization problem
faced by the AdX in RTB markets with header bidding. As
we aforementioned, AdXs’ decreased winning probability may
lead to a lowered dependency between AdXs and publishers,
and in turn raise AdXs’ risk of losing their dominant market
position. So, we can characterize this risk by a function of
AdXs’ winning probability, and utilize the stochastic pro-
gramming approach [1] to establish a stochastic optimization
model for AdXs under risk constraints, considering that the
highest bidding of publishers’ bidding partners is randomly
distributed. When the randomness is characterized by uniform
or normal random variables, we study the equivalent forms of
our proposed model. We also utilize the computational experi-
ment approach [6] to validate our model, and the experimental
results show that in case without risk constraints, the revenue
of the AdX has a tendency of a rise first followed by a decline.
Moreover, in case with risk constraints, the optimal proportion
and the corresponding optimal revenue increase with the risk
level until it reaches a threshold, and then become stablized
when the risk level is higher than the threshold in each case.

The remainder of this paper is organized as follows. In
Section II, we first introduce the bidding process of header bid-
ding, and then we state our problem and establish a stochastic
optimization model with risk constraints. After that, we study
the equivalent model in some special cases. In Section III,
we design computational experiments to validate our proposed

4https://adexchanger.com/ad-exchange-news/appnexus-strikes-back-
against-googles-attempt-to-end-header-bidding/

model. Section IV discusses the managerial insights of our
research findings. Section V concludes.

II. THE OPTIMIZATION MODEL OF ADX IN HEADER
BIDDING

A. The Auction Process with Header Bidding

Typically, in RTB models [3, 4, 5], publishers directly
forward ad impressions to the AdX. As the unique interme-
diary agency linking publishers to advertisers, AdXs can to a
large extent determine publishers’ revenue via their pricing
strategies, and thus enjoy a dominant position in the RTB
ecosystems. In header bidding markets, however, AdXs may
face severe competition and in turn reduced pricing power
since publishers’ cooperative partners are given priority to
submit their bids for each ad impression before it is delivered
to the AdX, as is shown in Fig. 1.

Fig. 1. The bidding process of header bidding advertising

The bidding process of header bidding advertising can be
described as follows:
(1) When a user visits a webpage of the publisher, an ad

impression is generated.
(2) The publisher will first request its cooperative bidding

partners to bid for this ad impression.
(3) The highest bid among all bidding partners is returned to

the publisher.
(4) The publisher then delivers the ad impression to the open

AdX platform, seeking even higher bids from advertisers
than its partner’s bid.

(5) The AdX starts to call for bids from all the registered
Demand Side Platforms (DSPs), who bid on behalf of
their advertisers.

(6) The DSPs compete and submit their bids to the AdX.
(7) The AdX determines the highest bid among all DSPs. In

case when DSPs outbid partners, the AdX will deliver the
winning DSP’s advertisement and the resulting cost to the
publisher. Otherwise, the partner will be the winner.

(8) The publisher displays the winner’s advertisement to the
user.

B. Problem Statement and Notations

As can be seen in Section II-A, there is a two-stage auction
process in header bidding advertising markets. We consider the
case that there is only 1 ad impression. Suppose the intrinsic
reserve price set by the publisher is ρ, which will be directly
delivered to the AdX if there is no partner bidding higher
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than it. Otherwise, if the highest bids from bidding partners
d > ρ, an updated reserve price ρ

′
= d will be claimed by the

publisher and delivered to the AdX. That is,
ρ

′
= max{ρ, d}. (1)

Once receiving the ad impression with the reserve price ρ
′

from the publisher, the AdX starts an auction with its own
reserve price β(λ) among all the DSPs registered on it. As
a reward of its intermediating efforts, the AdX will charge a
proportion λ from the advertising costs. As such, the reserve
price of the AdX [2] will be set as

β(λ) =
ρ

′

1− λ
, λ ∈ [0, 1). (2)

Suppose the highest and second highest bids for the ad
impression on the AdX are b1 and b2, respectively. The
highest-bid advertiser wins the ad impression, if and only if
b1 ≥ β(λ).

If b2 ≥ β(λ), the winning advertiser needs to pay b2 to the
AdX according to the well-known Generalized Second Price
(GSP) auction mechanism, and the AdX returns the advertising
cost b2(1−λ) to the publisher. Thus, the revenue of the AdX
is

r(λ) = b2λ. (3)

If b1 ≥ β(λ) > b2, then the winning advertiser needs to pay
β(λ) to the AdX, who returns the advertising cost β(λ)(1 −
λ) = ρ

′
to the publisher. Thus, the revenue of the AdX from

the ad impression is

r(λ) = β(λ)− ρ
′
=

λρ
′

1− λ
. (4)

According to the above discussions, it is obvious that the
proportion λ of the AdX can not only determine whether the
AdX could win each ad impression, but also its revenue from
the ad impression when it wins. Thus, how to choose the best
proportion λ to maximize the revenues becomes an important
decision-making problem faced by the AdX.

Due to the complex dynamics of the advertising markets,
the AdX can hardly predict the exact value of the highest bid
d from the bidding partners. However, an estimation of the
distribution of d may be easily obtained from analyzing the
Web log of historical ad impressions. Thus, we can model d
as a random variable. Moreover, if the winning probability of
the AdX is low, the AdX will risk losing its dominant position
in the auction. Thus, we can model the risk of the AdX as a
function of the winning probability of the AdX.

In the following section, we will utilize the stochastic
programming approach and establish a stochastic optimization
model for the AdX under risk constraints.

C. Stochastic Optimization Model with Risk Constraints

Suppose that the highest bid d of the bidding partners is
a random variable distributed in [a1, a2], with the probability
distribution function f(x). In real-world markets, the possible
relation between the highest bid d and the reserve price ρ may
be d < ρ or d ≥ ρ, and the relations of d with b1 and b2 may
be d < b2, b2 ≤ d < b1 or d > b1. Moreover, it is obvious that
b2 < ρ < b1 is a simplified case of ρ < b2 according to (3)
and (4). Thus, in this paper, we only consider a general case

a1 < ρ < b2 < b1 < a2, and other cases will be discussed
analogously in an extension version of this work.

Since d is a random variable distributed in [a1, a2], accord-
ing to (1) and (2), we have

ρ
′
=

{
ρ, if x ∈ [a1, ρ)
x, if x ∈ [ρ, a2]

(5)

and

β(λ) =

{ ρ
1−λ , if x ∈ [a1, ρ)

x
1−λ , if x ∈ [ρ, a2].

(6)

Obviously, we have
β(λ) ≥ ρ

1−λ . (7)
Thus, if ρ/(1−λ) > b1, i.e., λ > 1−ρ/b1, then the revenue

of the AdX from the ad impression is 0. Therefore, in the
following, we only need to consider the case of λ ≤ 1−ρ/b1.

According to the distribution function of d, the probability
of d < ρ can be computed by

Pr{d < ρ} =
∫ ρ

a1
f(x)dx. (8)

When x ∈ [a1, ρ), the AdX will win the ad impression, and
when x ∈ [ρ, a2], the AdX will win the ad impression only
if b1 ≥ x/(1 − λ), i.e., x ≤ b1(1 − λ). Thus, the winning
probability of the AdX for the ad impression can be computed
by

p(λ)=Pr{d<ρ}+
∫ b1(1−λ)
ρ

f(x)dx=
∫ b1(1−λ)

a1
f(x)dx. (9)

In the following, we compute the revenue of the AdX, which
can be divided into the following two cases:

1) In case of b2 < ρ/(1−λ) ≤ b1, i.e., 1−ρ/b2 < λ ≤ 1−
ρ/b1, the AdX will get revenue λρ/(1−λ) when x ∈ [a1, ρ),
and λx/(1 − λ) when x ∈ [ρ, a2]. Thus, when x ∈ [a1, a2],
the expected revenue of the AdX can be computed by

E[r1(λ)]=
λρ
1−λ

∫ ρ

a1
f(x)dx+ λ

1−λ
∫ b1(1−λ)
ρ

xf(x)dx. (10)
2) In case of ρ/(1− λ) ≤ b2, i.e., λ ≤ 1− ρ/b2, when x ∈

[a1, ρ), the AdX will get revenue b2λ. When x/(1− λ) ≤ b2,
i.e., x ∈ [ρ, b2(1− λ)), the AdX will get revenue b2λ. When
b2 < x/(1 − λ) ≤ b1, i.e., x ∈ (b2(1 − λ)), b1(1 − λ))], the
revenue of the AdX is λx/(1− λ). Thus, when x ∈ [a1, a2],
the expected revenue of the AdX can be computed by

E[r2(λ)] =b2λ
∫ b2(1−λ)
a1

f(x)dx+ λ
1−λ

∫ b1(1−λ)
b2(1−λ) xf(x)dx.

(11)
According to the above discussions, if we define

I1(λ) =

{
1, if 1− ρ

b2
< λ ≤ 1− ρ

b1
0, other

(12)

and

I2(λ) =

{
1, if 0 < λ ≤ 1− ρ

b2
0, other,

(13)

then the expected value of the AdX from the ad impression
can be computed by

E[r(λ)]=I1(λ)E[r1(λ)]+I2(λ)E[r2(λ)]. (14)
Since the winning probability of the AdX is p(λ), and the

AdX will have the risk of losing the dominant position in the
auction if its winning probability is low, we can define the
risk of the AdX as 1 − p(λ). If the risk level of the AdX is
α ∈ [0, 1], then the risk constraint becomes

1− p(λ) ≤ α. (15)
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Therefore, we can formulate the following stochastic opti-
mization model for the AdX under risk constraints

max
λ∈(0,1)

V (λ)=I1(λ)E[r1]+I2(λ)E[r2]

s.t. 1− p(λ) ≤ α.
(16)

D. The Equivalent Forms
In this section, we study the equivalent form of model (16)

in the cases that d is characterized by a uniform random
variable or a normal random variable.

Theorem 1. Suppose d is a uniform random variable dis-
tributed in [a1, a2], where a1 < ρ < b2 < b1 < a2. Then
model (16) becomes

max
λ∈[0,1)

I1(λ)E[r1(λ)]+I2(λ)E[r2(λ)]

s.t. λ ≤ 1− (1−α)a2+αa1

b1
,

(17)

where
E[r1(λ)] =

λρ(ρ−2a1)
2(1−λ)(a2−a1)

+
b21λ(1−λ)
2(a2−a1)

, (18)

E[r2(λ)] =
(b21+b22)λ(1−λ)−2a1b2λ

2(a2−a1)
. (19)

Proof. Since d is a uniform random variable in [a1, a2], the
probability distribution function of d is

f(x) = 1
a2−a1

, x ∈ [a1, a2]. (20)
Thus, according to (10) and (11), the revenue of the AdX

from the ad impression is
E[r1(λ)] = λρ

1−λ

∫ ρ

a1

1
a2−a1

dx+ λ
1−λ

∫ b1(1−λ)
ρ

x
a2−a1

dx

= λρ(ρ−2a1)
2(1−λ)(a2−a1)

+
b21λ(1−λ)
2(a2−a1)

(21)

when 1− ρ/b2 < λ ≤ 1− ρ/b1, and
E[r2(λ)] =b2λ

∫ b2(1−λ)
a1

1
a2−a1

dx+ λ
1−λ

∫ b1(1−λ)
b2(1−λ)

x
a2−a1

dx

=
(b21+b22)λ(1−λ)−2a1b2λ

2(a2−a1)

(22)

when λ ≤ 1− ρ/b2.
According to (9), the winning probability of the AdX for

the ad impression is
p(λ) =

∫ b1(1−λ)

a1

1
a2−a1

dx = b1(1−λ)−a1

a2−a1
, (23)

and the risk constraint becomes
1− b1(1−λ)−a1

a2−a1
≤ α, (24)

thus, we have
λ ≤ 1− (1−α)a2+αa1

b1
. (25)

In the following, we discuss the equivalent form of model
(16) when d is a normal random variable satisfying d ∼
N (µ, σ2). For similarity, we can take the distribution interval
of d as [µ− 3σ, µ+ 3σ], since its confidence level is 0.9974
according to the properties of normal distribution.

Theorem 2. Suppose d is a normal random variable in [µ−
3σ, µ + 3σ] satisfying d ∼ N (µ, σ2), where µ − 3σ < ρ <
b2 < b1 < µ+ 3σ. Then, model (16) becomes

max
λ∈[0,1)

I1(λ)E[r1(λ)]+I2(λ)E[r2(λ))]

s.t. Φ( b1(1−λ)−µ
σ ) ≥ 1− α+Φ(−3).

(26)

where
E[r1(λ)] =

λ
1−λ ((ρ−µ)Φ(ρ−µσ )+µΦ( b1(1−λ)−µ

σ )−ρΦ(−3))

+ λσ√
2π(1−λ) (exp(−

(b1(1−λ)−µ)2
2σ2 )−exp(− (ρ−µ)2

2σ2 )),

(27)

E[r2(λ)] =
λ

1−λ ((b2(1− λ)− µ)Φ( b2(1−λ)−µ
σ )

+µΦ( b1(1−λ)−µ
σ )− b2(1− λ)Φ(−3))

+ λσ√
2π(1−λ) (exp(−

(b1(1−λ)−µ)2
2σ2 )−exp(− (b2(1−λ)−µ)2

2σ2 )).

(28)

Proof. Since d is a normal random variable satisfying d ∼
N (µ, σ2), the probability distribution function of d is

f(x) = 1√
2πσ

exp(− (x−µ)2

2σ2 ). (29)
According to (10) and (11), the revenue of the AdX from

the ad impression is
E[r1(λ)] =

λρ
1−λ

∫ ρ

µ−3σ
1√
2πσ

exp(− (x−µ)2

2σ2 )dx

+ λ
1−λ

∫ b1(1−λ)

ρ
x 1√

2πσ
exp(− (x−µ)2

2σ2 )dx

= λ
1−λ ((ρ−µ)Φ(ρ−µσ )+µΦ( b1(1−λ)−µ

σ )−ρΦ(−3))

+ λσ√
2π(1−λ)

(exp(− (b1(1−λ)−µ)2

2σ2 )− exp(− (ρ−µ)2

2σ2 ))

(30)

when 1− ρ/b2 < λ ≤ 1− ρ/b1, and
E[r2(λ)]=b2λ

∫ b2(1−λ)
µ−3σ

1√
2πσ

exp(− (x−µ)2
2σ2 )dx

+ λ
1−λ

∫ b1(1−λ)

b2(1−λ)
x 1√

2πσ
exp(− (x−µ)2

2σ2 )dx

= λ
1−λ ((b2(1− λ)− µ)Φ( b2(1−λ)−µ

σ )

+µΦ( b1(1−λ)−µ
σ )− b2(1− λ)Φ(−3))

+ λσ√
2π(1−λ) (exp(−

(b1(1−λ)−µ)2
2σ2 )−exp(− (b2(1−λ)−µ)2

2σ2 ))

(31)

when λ ≤ 1− ρ/b2.
According to (9), the winning probability of the AdX for

the ad impression is
p(λ) =

∫ b1(1−λ)

µ−3σ
1√
2πσ

exp(− (x−µ)2

2σ2 )dx

= Φ( b1(1−λ)−µ
σ )− Φ(−3),

(32)

and the risk constraint becomes
1−

(
Φ( b1(1−λ)−µ

σ )− Φ(−3)
)
≤ α, (33)

thus, we have
Φ( b1(1−λ)−µ

σ ) ≥ 1− α+Φ(−3). (34)

When analyzing model (17) and (26), it is rather difficult to
derive their accurate numerical solutions, due to the complex-
ity of the objective function of model (17) and the existence
of the standard normal distribution function Φ(·) in both the
objective function and constraints of model (26). Thus, in
the following section, we will resort to the computational
experiment approach to validate our proposed models [6].

III. COMPUTATIONAL EXPERIMENTS

In this section, we design computational experiment scenar-
ios to validate our proposed model, due to lacking high-quality
data in the newly emerging header bidding markets.

A. Computational Experiment Scenario

We consider a randomly generated experiment scenario
with 1 publisher and 1 AdX in the market, and the values
for the parameters are randomly generated according to the
assumption a1 < ρ < b2 < b1 < a2 in our proposed model:
the highest and second highest bids on the AdX are randomly
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generated in [5.00, 10.00], the reserve price of the publisher
is fixed at ρ = 4, and the highest bid from the partner is
distributed in [2.00, 11.00].

For the sake of comparison, we consider the following three
cases in our experiments:

• Baseline: In order to evaluate the effect of header bidding
on the revenue of the AdX, we utilize a typical RTB
scenario without header bidding as a baseline.

• Case-Uniform: The highest bid from the bidding part-
ner is uniformly distributed in [2.00, 11.00], i.e., d ∼
U [2.00, 11.00].

• Case-Normal: The highest bid from the bidding partner
is normally distributed in [2.00, 11.00] with µ = 6.5 and
σ = 1.5, i.e., d ∼ N (6.5, 1.52).

B. Experimental Results and Analysis

In order to evaluate the effect of the bidding partners on the
revenue of the AdX, we construct a computational experiment
with randomly generated 100 ad impressions, and conduct
1000 independent computational experiments, aiming to draw
general conclusions.

We first consider the case without risk constraints. The
revenues and the winning probability of the AdX under the
three cases are given in Fig. 2–Fig. 3, respectively, from which
we can draw the following conclusions:

(1) For each of the three cases, there exists a threshold.
When λ is smaller than this threshold, the revenue of the
AdX can be improved by increasing λ. When λ is larger
than this threshold, the revenue of the AdX will have a
tendency of decrease, though the winning probabilities of
the AdX are keeping decreased with the increasing of λ
for all three cases. One possible reason may be that before
the threshold, the positive effect of increasing λ on the
average revenue is larger than its negative effect on the
winning probability. The results illustrate that charging a
larger proportion might not always make the AdX better
off, no matter there are bidding partners or not.

(2) The thresholds in the three cases are quite different, and
the one in Baseline is larger than others in Case-Uniform
and Case-Normal, which illustrates that the existence of
bidding partners can greatly affect the optimal proportion
of the AdX. Moreover, the threshold in Case-Uniform is
larger than that in Case-Normal. One possible reason may
be that the positive effect of increasing λ on the average
revenue can be balanced out more quickly by its negative
effect on the winning probability in Case-Normal than
that in Case-Uniform, since the winning probability of the
AdX in Case-Normal decreases faster than that in Case-
Uniform. The results also illustrate that the distribution of
the highest bid of the bidding partners can greatly affect
the optimal proportion of the AdX.

(3) For all possible λs, both the revenues and the winning
probabilities of the AdX are higher in Baseline than those
in Case-Uniform and Case-Normal, which illustrates that
the existence of the bidding partners can greatly decrease

the winning probability and thus the revenues of the AdX,
possibly due to the increasing competition for the AdX.

(4) Both the revenues and the winning probabilities of the
AdX in Case-Uniform are lower than those in Case-
Normal with a smaller λ, while higher than that in Case-
Normal when λ is larger. This may be caused by the
different distribution characteristics of the two random
distributions.
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Fig. 2. The revenues of the AdX in the three cases under different λ
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Fig. 3. The winning probability of the AdX in the three cases under different
λ

Moreover, when considering risk constraints, the optimal
proportions (λ∗) and the corresponding optimal revenue of the
AdX under different risk levels in the three cases are given
in Fig. 4–Fig. 5, respectively, from which we can draw the
following conclusions:
(1) For each case, there exists a threshold. Both the optimal

proportion and optimal revenue of the AdX increase
with the risk level before the threshold, while become
stabilized when the risk level is higher than the threshold,
which illustrates that when the risk tolerance of the AdX
is weak (e.g., less than the threshold), it has great effects
on both the optimal proportion and the optimal revenue
of the AdX. When the risk tolerance is strong enough
(e.g., higher than the threshold), the risk level will not
influence the optimal proportion and the optimal revenue
of the AdX any more.

(2) When the risk tolerance of the AdX is small, there
exists no optimal proportion and optimal revenue in Case-
Uniform and Case-Normal, but the optimal proportion
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and optimal revenue exist in Baseline for any risk toler-
ance, which illustrates that the existence of the bidding
partners and the resulting competition can force the AdX
to increase its risk tolerance.

(3) For all possible risk levels, both the optimal proportion
and optimal revenue of the AdX are higher in Baseline
than that in Case-Uniform and Case-Normal. One pos-
sible reason may be that the existence of the bidding
partners and the resulting competition limit the optimal
proportion and optimal revenue of the AdX.

(4) Both the optimal proportion and the optimal revenue of
the AdX in Case-Uniform are lower than those in Case-
Normal under a lower λ, while higher than that in Case-
Normal under a higher λ, which may be caused by the
different distribution characteristics of the two random
distributions.
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Fig. 4. The optimal λ of the AdX under different risk levels in the three
cases
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Fig. 5. The optimal revenue of the AdX under different risk levels in the
three cases

IV. MANAGERIAL INSIGHTS

Our research findings can offer useful managerial insights
for AdX’s decision making in the novel header bidding mar-
kets. On one hand, the risk tolerance can greatly affect the
optimal decision and thus the optimal revenue of the AdX.
Due to the competition from the bidding partners, if the AdX
has a low risk tolerance, it can hardly win in header bidding
markets. Thus, the AdX should increase its risk tolerance in
pursuit of more revenue.

On the other hand, the random distributions of the highest
bids from the bidding partners can greatly affect the optimal

decision of the AdX. When facing two cases with different
random distributions, the AdX with a lower risk tolerance can
set a higher proportion in case of normal distribution than
that of uniform distribution, while the AdX with a higher
risk tolerance can set a higher proportion in case of uniform
distribution than that of normal distribution.

V. CONCLUSIONS AND FUTURE WORKS

In header bidding advertising, how to charge an optimal
proportion of the advertising cost (i.e., the intermediary fee)
is an important issue in AdXs’ revenue model. In this paper,
we established a stochastic optimization model with risk
constraints to seek for the optimal proportion of the AdX under
given risk levels. We also studied the equivalent forms of the
proposed model when the randomness can be characterized by
uniform or normal random variable. With the computational
experiment approach, we evaluated our proposed model, and
our research findings show that the AdX should better consider
both its risk level and the random distribution from the bidding
partners when optimizing its proportion decisions.

To our knowledge, this paper represents the first attempt
to study the decision making problems of the AdX in header
bidding markets. In our future work, we are planning to extend
this paper from the following aspects: (a) Studying the games
played by the AdX and the publishers, and analyzing the
resulting equilibrium; (b) Exploring the dynamic adjusting
strategies of the AdX with the parallel dynamic programming
approach [7].
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