
248 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014

Clique-based Cooperative Multiagent Reinforcement

Learning Using Factor Graphs
Zhen Zhang Dongbin Zhao

Abstract—In this paper, we propose a clique-based sparse rein-
forcement learning (RL) algorithm for solving cooperative tasks.
The aim is to accelerate the learning speed of the original sparse
RL algorithm and to make it applicable for tasks decomposed in a
more general manner. First, a transition function is estimated and
used to update the Q-value function, which greatly reduces the
learning time. Second, it is more reasonable to divide agents into
cliques, each of which is only responsible for a specific subtask. In
this way, the global Q-value function is decomposed into the sum
of several simpler local Q-value functions. Such decomposition is
expressed by a factor graph and exploited by the general max-
plus algorithm to obtain the greedy joint action. Experimental
results show that the proposed approach outperforms others with
better performance.

Index Terms—Multiagent reinforcement learning, factor
graph, max-plus algorithm, clique-based decomposition.

I. INTRODUCTION

THE concept of agent plays an important role in the design
of artificial intelligence. An agent can be viewed as a

computational entity that can perceive its environment through
sensors, make decisions according to a prior knowledge and
sensed information, and act upon its environment through
actuators[1]. The design goal of agent is to optimize some
performance index. For example, a traffic signal light agent
determines its phase and cycle time according to the traffic
information transmitted from the sensors of nearby lanes[2],
with the aim of minimizing the average waiting time or queues
of the vehicles crossing the intersection[3] or entering the
freeway ramps[4]. In many cases, an agent is not standalone
but connected with others, and agents interact with each other
to affect the environment together. Sometimes, each agent
can only acquire the states of its nearby environment and
the behaviors of its neighbor agents. Such a system is called
multiagent system (MAS)[5]. If agents have common interest
and coordinate to fulfill a task, they are cooperative ones, e.g.,
wireless network agents cooperate to formulate a stable grand
coalition formation to yield significant gains with respect to
average rates per link[6]. Otherwise, if each agent only pursues

Manuscript received September 26, 2013; accepted February 24, 2014.
This work was supported by National Natural Science Foundation of
China (61273136, 61034002), Beijing Natural Science Foundation (4122083),
and Visiting Professorship of Chinese Academy of Sciences. Recommended
by Associate Editor Zhongsheng Hou

Citation: Zhen Zhang, Dongbin Zhao. Clique-based cooperative multiagent
reinforcement learning using factor graphs. IEEE/CAA Journal of Automatica
Sinica, 2014, 1(3): 248−256

Zhen Zhang is with the State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China and Department of Electric Engineering, College of
Automation Engineering, Qingdao University, Qingdao 266071, China (e-
mail: zhangzdlut@gmail.com).

Dongbin Zhao is with the State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: dongbin.zhao@ia.ac.cn).

the interest of its own, they are competitive ones, e.g., the
agents in one-on-one combat games compete with each other
to make the maximum profit of each individual[7−8]. In this
paper, we only deal with cooperative agents. In MAS, an agent
has to learn its strategy from the environment and the others.
This makes the learning system more unstable to converge.
Thus, an important problem in MAS is how to make agents
achieve cooperation with partial state information and the
behaviors of their neighbors[9−10].

The strategies of the agents can be programmed in advance,
if there is sufficient a priori knowledge about the problem.
However, in many cases, the environment may change over
time, which makes the hardwired strategies hardly flexible.
Thus it is necessary for agents to learn strategies on their own.

Reinforcement learning (RL)[11] is a natural way to design
adaptive agents. Unlike supervised learning, RL learns by trial-
and-error without an explicit teacher. This is very important for
designing agent, especially in case where a priori knowledge
is limited. A strategy learned by RL is represented by a value
function or a Q-value function. A value function maps each
state to some value as an estimation of the state′s goodness in
the long run, while a Q-value function maps each state-action
pair to some value as an estimation of the action′s goodness
in the long run. When RL is employed, a transition function
can be estimated and used to update the value function online.
Previous studies have shown that this can reduce the learning
time greatly[12].

The learning dynamics or convergence of multiagent rein-
forcement learning (MARL) is the theoretical foundation. The
early analysis on the dynamics of RL in cooperative MAS was
done by Claus and Boutilier[13]. They analyzed the dynamics
of independent learners in a two-agent repeated game. Besides,
Tuyls[14] analyzed independent Q-learning (IQL) through evo-
lutionary game theory. Gomes and Kowalczyk[15] analyzed
IQL with ε-greedy exploration. Kianercy and Galstyan[16]

analyzed IQL with Boltzmann exploration. These results have
given inspiration for designing MARL algorithms. In fact,
most theoretical results on MARL are limited to repeated
games. Drawn from Markov decision process and game theory,
stochastic games are proposed as a general framework for
studying MARL[17−18]. Under this framework, many MARL
algorithms have been presented. Examples are minimax-Q[17],
Friend-or-foe[19], Nash-Q[20], IGA[21], and Wolf-PHC[22]. As
the number of agents increases, the state space and the joint
action space grow rapidly, which is the so-called problem of
curse of dimensionality in MARL. Researchers have managed
to suggest many algorithms and studied them in different
domains. Adaptive dynamic programming (ADP)[23−29] is an
effective approach to relieve such problem by using neural
networks to approximate the value function and the policy.
ADP has been applied to many fields such as air-fuel ratio

ZHANG AND ZHAO: CLIQUE-BASED COOPERATIVE MULTIAGENT REINFORCEMENT LEARNING USING FACTOR GRAPHS 249

control[30], adaptive cruise control[31] and pendulum robots
control[32]. Crites and Barto[33] used the global reward Q-
learning to dispatch a group of elevators. Bazzan et al.[34−35]

split traffic signal light agents into groups to reduce the
joint action space and proposed a way of coordinating many
agents in stochastic games. Kok et al.[36] proposed sparse
cooperative Q-learning, where the global Q-value function
was decomposed into local Q-value functions, each of which
depended only on a small subset of all variables of state and
action. Each agent maintained a local Q-value function and
updated it with the greedy joint action which was obtained
by the max-plus algorithm[37]. However, two problems still
remain to be adequately addressed. First, the original sparse
Q-learning is not used with a transition function, which usually
means a relatively low learning speed. Second, the max-plus
algorithm can only deal with local Q-value functions with two
variables, which limits the generalization of global function
decomposition.

In this paper, our aim is to solve the coordination problem
for a class of multiagent systems on tasks which can be
decomposed into subtasks. We deal with the problem in two
aspects. First, a transition function is estimated and used to
update the Q-value function with the aim of reducing the
learning time. Second, it is more reasonable to divide agents
into cliques, each of which is responsible for a specific subtask.
In this case, the global Q-value function is decomposed into
the sum of several simpler local Q-value functions which
can contain more than two variables. This implies that more
flexible decomposition can be considered according to the
problem. Such decomposition can be expressed by a factor
graph and exploited by the general max-plus algorithm to get
the greedy joint action in a distributed manner.

This paper is organized as follows. In Section II, we describe
the problem of the coordination for a distributed sensor
network (DSN). Section III introduces stochastic games and
gives possible popular MARL algorithms for comparison. In
Section IV, the clique-based sparse cooperative RL algorithm
using factor graphs is proposed. We will show how to update
the transition function, how to decompose agents into cliques,
and how to use a factor graph to solve the problem. In Section
V, the experimental results of various MARL algorithms are
presented and compared. Section VI gives the conclusions.

II. DISTRIBUTED SENSOR NETWORKS

The DSN problem is a distributed optimization problem
which was part of the NIPS 2005 benchmarking workshop[38].
It is composed of two arrays of sensors. Fig. 1 shows a DSN
with eight sensors, each of which has three actions, i.e.,
focusing on its left, focusing on its right or not focusing at all.
Notice that the action range of corner sensors is not limited
to cells. For example, Sensor 0 can focus on its left even if
that focus is outside of any cell. There are two targets moving
within three cells. Each target has equal probability to move
to its left cell, move to its right cell or just stay where it is.
The two targets take actions according to the order from left
to right. Each cell can be occupied by at most one target at
one time. If a target decides to move outside of the three cells
or move to a cell which has already been occupied by another
target, it will stay where it is. Each target has the maximum
energy value (i.e., 3) in the beginning. The energy of a target

will be decreased by 1 which is called a hit, if at least three
sensors focus on the cell it stays in. If its energy value is 0
which is called a capture, it will get vanished from DSN and
do not occupy any cell at all. If all targets are eliminated or
300 steps elapse, an episode is finished[39].

The credit assignment setting follows [39]. Every focus
action produces a reward of −1. No focus produces a reward
of 0. If a capture is caused by four sensors, only the sensors
with three highest indices are rewarded by 10, respectively.

Fig. 1. A distributed sensor network with eight sensors ⊗ and two
targets •.

Notice that sensors do not know whether a hit or a capture
has happened but they know the actions of their neighbors. The
aim is to obtain as many accumulated rewards as possible in an
episode. In this paper, two targets are initially located in two
random cells. During each step, the sensors make decisions
and act on targets first, causing an intermediate state, then it
is the turn for targets to move, transferring to the next state.
It is clear that the immediate reward is only dependent on the
intermediate state, for they contain the information of whether
there is a hit, a capture, focus or no focus. Moreover, we
assume that intermediate states can be sensed by all sensors.

In this problem, there are totally 38 = 6 561 actions and 37
states. In theory, the single agent RL algorithm can learn the
optimal strategies for a group of agents if they are regarded as
a whole. Nevertheless, there are two issues that make it infea-
sible for the DSN problem. First, the joint action space grows
exponentially as the number of agents increases. Exploring
so many state action pairs would be arduous. Second, in the
DSN problem, it is impossible for each agent to observe the
complete environment state and the actions taken by all the
other agents. Next, we introduce several MARL algorithms to
solve these problems to some extent.

III. COOPERATIVE MULTIAGENT RL

In cooperative MAS, all agents act together to make their
environment transit from one state to another, and then they
get an immediate global reward. Their objective is to get the
maximum accumulated global reward in the long run. Next,
we will introduce the theoretical framework that represents
such a problem, i.e., stochastic games. Then, several popular
MARL algorithms will be introduced and compared with the
proposed algorithm.

A. Stochastic Games

A stochastic game[17] is a tuple <S, p, A1, A2, · · · , An,
r1, r2, · · · , rn >, where S is a finite or infinite set of envi-
ronment states, n is the number of agents, Ai is the set of
agent i′s actions for i = 1, 2, · · · , n, the transition function

250 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014

p : S × A1 × A2 × · · · × An × S → [0, 1] determines the
probability of transition from state sss to sss′ under the joint action
aaa of all agents, and ri : S ×A1 ×A2 × · · ·×An ×S′ → R is
the immediate local reward function of agent i. The immediate
global reward of all agents is r(sss,aaa,sss′) =

∑n

i=1 ri(sss, ai, sss
′).

We define A = A1×A2×· · ·×An as the set of aaa, ai as agent
i′s action and aaai as the joint action of agent i and its neighbors.
The learning objective is to maximize the cumulative global
reward at each time t, i.e.,

R(t) = r(t + 1) + γr(t + 2) + · · · + γT r(t + T + 1) =
T

∑

k=0

γkr(t + k + 1), (1)

where γ is the discount factor within [0, 1], T is the ending
time of an episode, and r(t+1) is the immediate global reward
actually received at time t + 1. The smaller γ is, the more
important the rewards at early times become.

A Q-value function represents the expected cumulative
global reward for a state sss when selecting an action aaa. Ac-
cording to the Bellman equation, the optimal Q-value function
can be obtained by

Q∗(sss,aaa) =
∑

sss′

p(sss′|sss,aaa)(r(sss,aaa,sss′) + r max
aaa′

Q∗(sss′,aaa′)).

(2)

Once the optimal Q-value function is computed, the greedy
joint action for state sss is maxaaa Q∗(sss,aaa). For completeness,
we give the single agent RL algorithm first.

B. Single Agent RL

We implement single agent RL using value iteration
scheme[11], which is a standard way of solving dynamic
programming problems. In fact, it is an iterative form of
Bellman equation. In value iteration, a transition function is
estimated and used to update the Q-value function online as

Q(sss,aaa) =
∑

sss′

p(sss′|sss,aaa)(r(sss,aaa,sss′) + rQ(sss′,aaa′)). (3)

The joint action aaa is selected by the following ε-greedy policy:

aaa =

{

arg max
aaa

Q(sss,aaa) with probability of 1 − ε,

a random action ∈ A with probability of ε,
(4)

where ε ∈ (0, 1) is the exploration rate. Next, we introduce
several MARL algorithms, where ε-greedy method is also used
to balance exploitation and exploration.

C. Independent RL

In independent RL[40], each agent stores and updates a Q-
value function of its own. For agent i, the updating rule is

Qi(sss, ai) =

Qi(sss, ai) + α(ri(sss,aaa,sss′) + γQi(sss
′, a′

i) − Qi(sss, ai)), (5)

where α ∈ (0, 1) is the learning rate that controls the weights
of the old Q-value and the estimated error. The dynamics
of independent RL have been extensively studied in repeated
games[14−16]. Although there is no guarantee for convergence,
this algorithm has been applied in some situations.

D. Multiagent Q-learning with Join State Value Approxima-
tion

The motivation of the multiagent Q-learning with joint state
value approximation (MQVA)[41] is to relieve the dimension
disaster problem. Two main processes are described as follows.
First, each agent stores a Q-value function and updates it
according to

Qi(sss, ai) = Qi(sss, ai) + α(γ(sss,aaa,sss′) + γV (sss′) − Qi(sss, ai)).
(6)

Second, the joint state value function V (sss) is updated as

V (sss) = V (sss) +

{

α∆V (sss), if ∆V (sss) > 0,
0, else, (7)

where ∆V (sss) = r(sss,aaa,sss′) + γV (sss′) − V (sss). In [41], if a
greedy joint action is performed, the joint state value function
should also be updated. However, in the DSN problem, we
find that updating V (sss) by (7) can obtain more accumulated
rewards with the price of a little more steps used to capture
targets. The greedy joint action is composed of each agent′s
greedy action.

E. Sparse RL

Sparse RL[36] is based on the assumption that the global
Q-value function can be decomposed into local Q-value
functions, each of which is dependent on actions of fewer
agents. The dependency between agents can be visualised
by a coordinated graph (CG)[42]. A CG is a bipartite graph
G = (V, E), in which each node ∈ V represents an agent and
each edge (i, j) ∈ E means agents i and j are neighbors. Once
the structure of a CG is settled, it will not change thereafter.
The global function can be decomposed in terms of agents
or edges. In this subsection, we only introduce agent-based
sparse RL and edge based sparse RL with edge updating.

1) Agent-based sparse RL: The global function can be
decomposed in terms of agents. Each agent stores a local Q-
value function that depends on a small subset of variables of
all state and action. Each agent i updates its Q-value function
by

Qi(sssi,aaai) = Qi(sssi,aaai) + α(ri(sss,aaa,sss′)+

γQi(sss
′
i,aaa

′
i) − Qi(sssi,aaai)), (8)

where sssi is the state which can be perceived by
agent i. Here, we define the global Q-value function as
Q(sss,aaa) =

∑n

i=1 Qi(sssi,aaai), the greedy joint action as aaa =
argmaxaaa Q(sss,aaa), and the joint action of agent i and its
neighbors as aaai. We can see that the major difference between
sparse RL and other MARL algorithms is that it updates local
functions using greedy joint actions instead of local greedy
actions with the aim of achieving maximum global Q-value at
any time[36].

ZHANG AND ZHAO: CLIQUE-BASED COOPERATIVE MULTIAGENT REINFORCEMENT LEARNING USING FACTOR GRAPHS 251

2) Edge-based sparse RL: Another method of decompo-
sition is based on edges. The global function is decomposed
into local functions, each of which depends on the joint action
of two agents connected by an edge. Its advantage lies in that
the computation expense of global function grows linearly with
the number of neighbors. One way to assign credit between
edges is the edge-updating rule[36], i.e.,

Qij(sssij , ai, aj) =

Qij(sssij , ai, aj) + α

(

ri(sss,aaa,sss′)

|Γ(i)|
+

rj(sss,aaa,sss′)

|Γ(j)|
+

γQij(sss
′
ij , a

′
i, a

′
j) − Qij(sssij , ai, aj)

)

, (9)

where Q(sss,aaa) =
∑

(i,j)∈E Qij(sssij , ai, aj), |Γ(i)| is the num-
ber of agent i′s neighbors, sssij is the state perceived by agent
i and j. The max-plus algorithm is used to derive the greedy
joint action[37].

IV. CLIQUE-BASED SPARSE RL USING FACTOR GRAPHS

So far, we have reviewed several MARL algorithms. Among
them, the sparse RL algorithm has a great potential to learn
the optimal global Q-value function and the optimal policy
in a distributed way. Its advantage over others is that it
utilizes the dependency between agents to decompose the
global Q-value function. Then the greedy joint action is
computed and evaluated in a distributed way while others
just evaluate local greedy actions. However, two problems
still remain to be adequately addressed. First, the conver-
gence speed of the original sparse RL is slow. Second, the
global function can only be decomposed into local func-
tions containing two variables, which might be unreasonable
in some cases. Thus in the next section we extend it to
the case that local functions contain more than two argu-
ments. We will show that the proposed method reduces the
learning time and improves the quality of learned strate-
gies.

A. Sparse RL with a Transition Function

We combine the original sparse RL[36] with a transition
function to update the Q-value function as

Qi(sssi,aaai) =

Qi(sssi,aaai) + α

(

∑

sss′

i
∈Si

p(sss′i|sssi,aaai)
(

ri(sssi,aaai, sss
′
i)+

γQi(sss
′
i,aaa

′
i)

)

− Qi(sssi,aaai)

)

. (10)

The transition function p is updated online by counting
method[11]. The pseudo-code of the complete algorithm for
agent i is given in Algorithm 1. n(sssi,aaai) represents the number
of visited state-action pair (sssi,aaai). m(sssi,aaai, sss

′
i) represents the

number of visited state-action-state triple (sssi,aaai, sss
′
i).

Algorithm 1. The pseudo-code of model-based sparse
RL algorithm.

1: Initialize Qi(sssi,aaai) = 0, n(sssi,aaai) = 0, for {(sssi,aaai)|sssi ∈
Si,aaai ∈ Ai}

2: p(sss′i|sssi,aaai) = 0, ri(sssi,aaai, sss
′
i) = 0, m(sssi,aaai, sss

′
i) = 0

3: for
{

(sss′i|sssi,aaai)|sssi ∈ Si,aaai ∈ Ai, sss
′
i ∈ Si

}

do

4: memoryAction(sssi)=0 for {sssi|sssi ∈ Si}
5: Select an action aaai by some policy (like ε-greedy policy)
6: end for
7: repeat
8: Execute action aaai

9: Observe state sss′i and immediate reward ri

10: n(sssi,aaai) = n(sssi,aaai) + 1
11: m(sssi,aaai, sss

′
i) = m(sssi,aaai, sss

′
i) + 1

12: p(sss′i|sssi,aaai) =
m(sssi,aaai,sss′i)

n(sssi,aaai)

13: r(sssi,aaai, sss
′
i) = r(sssi,aaai, sss

′
i) +

ri−r(sssi,aaai,sss′i)

m(sssi,aaai,sss′
i
)+1

14: aaa′ =

{

arg max
aaa′

Q(sss′,aaa′) with the probability of 1 − ε

a random action with the probability of ε

15: Qi(sssi,aaai) = Qi(sssi,aaai)+α(
∑

sssi∈Si

p(sss′i|sssi,aaai)(r(sssi,aaai, sss
′
i)+

γQi(sss
′
i,aaa

′
i)) − Qi(sssi,aaai))

16: memoryAction(sssi) = aaai

17: sssi → sssi

18: aaai → aaai

19: until the pre-defined number of iterations is reached
20: return

The greedy joint action aaa is acquired by the general max-
plus algorithm which will be described later. Notice that when
a local function is being updated, it is impossible for agent i
to independently acquire the greedy joint action in each state
sss′i, the only thing it can do is to resort to a table memory
action(sss′i) in which once state sss′i is met, the computed greedy
joint action aaa′

i is stored.
In the DSN problem, the immediate local reward and the

next state are determined after the actions are performed.
Equation (10) can be simplified as

Qi(sssi,aaai) = Qi(sssi,aaai) + α

(

∑

sss′

i

p(sss′i|sssi,aaai)
(

ri(sssi,aaai, sss
′
i)+

γQi(sss
′
i,aaa

′
i)

)

− Qi(sssi,aaai)

)

= Qi(sssi,aaai)+

α

(

∑

sss′

i

p(sss′i|sss
inter
i)

(

ri + γQi(sss
′
i,aaa

′
i)

)

− Qi(sssi,aaai)

)

=

Qi(sssi,aaai) + α

(

ri + γ
∑

sss′

i

p(sss′i|sss
inter
i)Qi(sss

′
i,aaa

′
i)−

Qi(sssi,aaai)

)

, (11)

where sssinter
i is the intermediate state available for agent i.

Thus only the transition function p: sssi ×sssinter
i → [0, 1] needs

to be estimated.

B. Clique-based Decomposition

How to assign credits among multiple agents is an important
issue in MAS. The simplest approach is to split the global
reward equally among agents. This method is called global
reward and is widely used in cooperative MAS. It may
produce lazy agents because the reward received by an agent
does not necessarily depend on its own contribution. Another
extreme way is to assign credits to each agent according to
its own behavior, which is called local reward. But its final
outcome may deviate from the designer′s original intention,
i.e., cooperation, for there is no explicit mechanism to promote
agents to help each other[43].

252 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014

In this paper, we propose a new method by hybridizing
the two methods mentioned above. In fact, our method is very
similar to hybrid team learning[43] which has been investigated
in genetic programming by Luke[44]. In this kind of learning,
agents with the same local interest are clustered into one
clique. In each clique, there is one learner in charge of learning
and deciding for each agent within the same clique. It receives
rewards according to the performance of its clique, stores and
updates a local Q-value function which is dependent on the
local states sensed by its clique and the joint actions of agents
in its clique.

As shown in Fig. 2, eight sensors are split into three cliques.
We cluster them in the way that each clique is responsible
for hitting and capturing a target in a cell. The topology is
stationary thereafter.

Since there are overlaps between cliques, we make the
following credit assignment rules. Each clique occupies a cell,
for example, Clique 0 occupies Cell 0. In each step, if a sensor
does not focus on the cell occupied by its clique, its immediate
reward will not be added into its clique. Each clique can only
sense what happened in the cell it occupies. Take Clique 1 for
example, it can only distinguish four states, i.e., whether there
is a target in Cell 1, and how much energy is left (1, 2, or 3).

Fig. 2. Clique-based decomposition.

C. Factor Graphs and The General Max-plus Algorithm
The suggestion to use factor graphs comes from [39]. As for

a specific state, Q-value function is only dependent on action
variables. Thus the global Q-value function is decomposed in
terms of cliques as

Q(a0,a1, a2, a3, a4, a5, a6, a7) = Q0(a0, a3, a4, a7)+
Q1(a4, a5, a6, a7) + Q2(a1, a2, a5, a6), (12)

where the local Q-value functions Q0, Q1, and Q2 are stored
and updated by the learners of the three cliques, respectively.
Decomposition (12) can be expressed by a factor graph[45] as
shown in Fig. 3(a). A factor graph is a bipartite graph, and it
comprises variable nodes and factor nodes. A variable node is
visualized as an empty circle to represent a variable. A factor
node is visualized as a solid square to represent a factor. For
clarity, we use node(ai) and node(Qj) to represent the node
for variable ai and the node for function Qj , respectively. An
edge connects node(ai) and node(Qj) if and only if ai is an
argument of Qj . Two nodes are neighbors if and only if there
is an edge between them. The decomposition of the global Q-
value function in the DSN problem should obey the following
rules. On one hand, the factor graph of the sum of the local
Q-value functions should be connected, that is, there should
be at least one path for any two nodes in the factor graph.

Otherwise, there must be standalone agents or cliques. On the
other hand, the loops in the factor graph should be as few
as possible, because they will cause explosion of messages
during the message passing process. Efficient algorithms for
solving the maximum of (12) often exploit the possibility of
factorizing the global function. The first such algorithm is
belief propagation[46] which is used to approximate marginal
probability in a Bayesian belief network. Kschischang et al.[45]

proposed a general manner of belief propagation in a factor
graph which is called sum-product algorithm. The general
max-plus algorithm can be obtained from the sum-product
algorithm once we use maximization instead of summation
and then transform it to log domain. It follows a simple rule
that each node keeps sending messages to all of its neighbors
until the termination condition is met. There are two types of
messages. Let N(x) represent the set of neighbors of node
x. The message sent from the variable node node(ai) to the
factor node node(Qj) is

µt+1
node(ai)→node(Qj)

(ai) =
∑

node(Qk)∈N(node(ai))\{node(Qj)}

µt
node(Qk)→node(ai)

(ai),

(13)

where N(node(ai))\{node(Qj)} denotes the set of nodes
which belong to N(node(ai)) except node(Qj).

The message µ sent from the factor node node(Qp) to the
variable node node(al) is

µt+1
node(Qp)→node(al)

(al) =

max
aaap\al

(

Qp(aaap)+

∑

node(ak)∈N(node(Qp))\{node(al)}

µt
node(ak)→node(Qp)(ak)

)

,

(14)

where aaap\al represents the arguments of local function Qp

except al. When messages do not change any longer or the pre-
defined number of iterations is reached, the maximum solution
can be computed by maximizing messages received by each
variable node, respectively, as

a∗
i =arg max

ai

b(ai) =

arg max
ai

∑

node(Qk)∈N(node(ai))

µnode(Qk)→node(ai). (15)

The pseudo-code of the general max-plus algorithm is
shown in Algorithm 2. The number of variable nodes and
factor nodes are represented by n and m, respectively. In a
factor graph, message sending can be sequential or parallel.
In one way, messages are sent step by step from leaf nodes
to root nodes and then back propagated from root nodes to
leaf nodes. In another way, as shown in Algorithm 2, one
node does not have to wait for incoming messages before
sending them. If a unique ai exists for maximizing b(ai), the
maximum solution is unique[47]. Under this assumption, exact
solution could be obtained by using the general max-plus
algorithm in a loop-free factor graph.

Algorithm 2. The pseudo-code of the general max-plus
algorithm

ZHANG AND ZHAO: CLIQUE-BASED COOPERATIVE MULTIAGENT REINFORCEMENT LEARNING USING FACTOR GRAPHS 253

1: Initialize
2: µ0

node(ai)→node(Qj)(ai) = 0 for all ai ∈ Ai, node(Qj) ∈
N(node(ai)), i = 1, 2, · · · , n

3: µ0
node(Qp)→node(al)

(al) = 0 for all al ∈ Al, node(al) ∈
N(node(Qp)), p = 1, 2, · · · , m

4: Time t = 0

5: repeat
6: for each variable node node(ai) do
7: for each factor node node(Qj) ∈ N(node(ai)) do
8: Send message for all ai ∈ Ai

9: µt+1
node(ai)→node(Qj)(ai) =

∑

node(Qk)∈N(node(ai))\{node(Qj)}

µt
node(Qk)→node(ai)

(ai)

10: end for
11: end for
12: for each factor node node(Qp) do
13: for each variable node node(al) ∈ N(node(Qp)) do
14: Send message for all al ∈ Al

15: µt+1
node(Qp)→node(al)

(al) = max
aaap\al

(

Qp(aaap)+

∑

node(ak)∈N(node(Qp))\{node(al)}

µt
node(ak)→node(Qp)(ak)

)

16: end for
17: end for
18: t = t + 1

19: until specified iteration number is reached
20: for each variable node node(ai) do
21: a∗

i = arg max
ai

b(ai) =

arg max
ai

∑

node(Qk)∈N(node(ai))

µt
node(Qk)→node(ai)

(ai)

22: end for

23: return

As shown in Fig. 3(a), the factor graph contains loops.
Under these circumstances, the exact solution cannot be guar-
anteed by using the general max-plus algorithm directly. This
is due to the fact that the messages received by a node contain
the message sent right from it in an undetermined way, leading
to an explosion of messages. This problem can be alleviated by
using asynchronous message passing[48] and message passing
with damping[49]. The mechanism of message passing is still
unclear, nevertheless, the belief propagation like algorithms
have shown great success in some situations, for example, the
decoding of turbo codes[50].

Here, to get the exact maximum of (12), we break the
loops by merging variable nodes node(a5), node(a6) into one
node and node(a4), node(a7) into another node, as shown
in Fig. 3(b). The domain of the emerged variables is A56 =
A5 × A6 and A47 = A4 × A7.

(a) The factor graph for the sum

Q0(a0, a3, a4, a7) + Q1(a4, a5, a6, a7) + Q2(a1, a2, a5, a6)

(b) The factor graph after breaking loops by merging nodes

Fig. 3. The factor graph for clique-based decomposition.

In clique-based decomposition, there might be more than
two agents in a clique, which means a local Q-value function
may have more than two action variables. In this situation, the
maximization problem cannot be tackled directly by using the
max-plus algorithm proposed by Kok et al.[37]. Although their
techniques can be generalized to local functions with more
than two variables by converting the concerned graph to one
with only pairwise inter-agent dependencies, we believe that
it is more natural and convenient to use factor graphs and the
general max-plus algorithm to get the greedy joint action in a
distributed manner.

Next, we will test our proposed algorithm as well as the
reviewed MARL algorithms on a stochastic game-distributed
sensor network.

V. EXPERIMENTS

In this section, a DSN with eight sensors and two targets
shown in Fig. 1 is used as our test-bed for the proposed
algorithm and other MARL algorithms.

A. Experiment Settings

We average the results of 50 runs, each of which comprises
nl = 10 000 learning episodes and 5 000 strategy evaluation
episodes. In each learning episode, Q-value functions are
updated online and actions are selected with ε-greedy policy.
Exploration is performed synchronously, which means all
learners explore or exploit at each step. To realize synchroniza-
tion, we set the same random seed for each sensor and activate
them simultaneously. In each strategy evaluation episode, Q-
value functions are stationary and the greedy joint action is
always selected. We only present the average performance of
50 episodes which is an episode block. During learning, the
learning rate is decreased linearly with the number of learning
episodes as

α = α − αini/nl,

where αini is the initial learning rate and is set to be 0.7. The
exploration rate ε is constant and is set to be 0.2. The discount
factor γ is constant and is set to be 0.9. As for the general
max-plus algorithm, the maximal iteration number is set to be
10.

For a DSN problem, global states mean the position and
energy of all targets. Local states are referred to the local
environment states which can be sensed by a clique. For
example, the learning agent for Clique 1 can sense and
distinguish four different local states, i.e., whether there is
a target in Cell 0 and how much energy is left (1, 2, or
3). Agent-based sparse RL, edge-based sparse RL, and the
proposed algorithm clique-based sparse RL with a transition
function employ only local state information while the others
use global states information.

254 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014

B. Experiment Results

We list the experimental results of single agent RL and
MARL algorithms in Fig. 4 for clear comparison.

Single agent RL shows good performance in both average
accumulated rewards and steps. However, it obtains the greedy
joint action by exhaustion, which means, if there are more
sensors in the network, it would probably fail to learn a good
strategy in time.

Independent RL takes much more steps to capture targets
compared to the other algorithms, so its performance is not
shown in Fig. 4(d). We analyze its learnt strategy and find out
that sensors do not focus on some states at all. This will not
influence the accumulated rewards but do increase the number
of steps to capture targets. Independent RL and MQVA obtain
less rewards than the other algorithms. We note that the greedy
joint action of either independent RL or MQVA is composed
of each agent′s greedy action. Although MQVA uses the joint

state value function to update each agent′s Q-value function,
it does not concern other agents′ influence. Since each agent
only takes care of itself, it is hard for them to cooperate
well. MQVA and edge-based sparse RL take the second largest
number of steps to capture targets.

Agent-based sparse RL shows an average performance. It
is a natural way to decompose a task in terms of agents. Yet,
it is better to split them into several different cliques in the
DSN problem. The average accumulated rewards obtained in
this paper are higher than those obtained in [39]. The reason
might be the higher learning rate adopted in this paper.

The proposed clique-based sparse RL with a transition
function gains the highest average accumulated rewards in
minimal steps among all algorithms, that is, more than 41
average accumulated rewards in slightly more than 3 steps,
which is close to the best possible performance, i.e., 42
rewards in 3 steps[39]. Moreover, it learns faster than any other
algorithm, as shown in Fig. 4.

(a) Learning performance on average accumulated rewards per episode (b) Strategy evaluation on average accumulated rewards per episode

(c) Learning performance on average steps per episode (d) Strategy evaluation on average steps per episode

(e) Legend

Fig. 4. Average reward and steps using different RL.

ZHANG AND ZHAO: CLIQUE-BASED COOPERATIVE MULTIAGENT REINFORCEMENT LEARNING USING FACTOR GRAPHS 255

In the case of sparse RL and the proposed algorithm,
although states are partially observable, they still perform
well. We think it is benefited by the characteristics of the
DSN problem. The coordination task can be decomposed into
subtasks fulfilled by different cliques. This implies that the
states needed to fulfill a subtask are more important for a
clique. For example, for agents of Clique 1 to hit and capture
a target in Cell 0, the states of whether there is a target in Cell
0 and how much energy (1, 2, or 3) is left are much more
important than those of whether there is a target in Cell 1 or
2. This might be the reason why sparse RL and the proposed
algorithm can perform well in the DSN problem even if only
local states are available.

VI. CONCLUSION

In this paper, we deal with the problem of how to achieve
the cooperation in the DSN problem. First, we combine sparse
RL with a transition function. Second, we present clique-based
decomposition as a method to assign credit among agents.
Third, we use the general max-plus algorithm in a factor graph
to acquire the greedy joint action. In this way, each agent
needs only to sense local environment and communicate with
its neighbors. Furthermore, the local Q-value functions can
contain more than two variables, which means, more flexible
decomposition can be considered according to the problem.
Compared with other MARL algorithms, the proposed algo-
rithm gains the best learning performance and produces the
best strategies for the DSN problem.

We believe that the best way for the decomposition depends
greatly on the problem concerned. In the DSN problem, by
splitting sensors into cliques, we formulate a factor graph
which can be easily converted to a loop-free one. In more
complicated MAS, a factor graph probably has many loops,
which makes the convergence and stability of the general
max-plus algorithm not hold any more. In the future, we
will examine the feasibility and effectiveness of the proposed
algorithm in more applications such as coordination of traffic
signal lights in an artery and try to solve the problem of factor
graphs containing loops.

ACKNOWLEDGEMENT

The authors thank Prof. Nikos Vlassis and Jelle. R. Kok for
their foundation work on sparse RL. We thank Prof. Derong
Liu and Prof. Cesare Alippi for their constructive comments
and suggestions on the paper. We thank all the guest editors
of the special issue and every member of editorial board
for supporting us. We thank Yuzhu Huang , Yujie Dai and
Zhongpu Xia for typesetting with Latex.

REFERENCES

[1] Russell S J, Norvig P, Canny J F, Malik J M, Edwards D D. Artificial
Intelligence: A Modern Approach. Englewood Cliffs: Prentice Hall,
1995.

[2] Zhao D B, Dai Y J, Zhang Z. Computational intelligence in urban
traffic signal control, a survey. IEEE Transactions on System, Man and
Cybernetics Part C: Applications and Reviews, 2012, 42(4): 485−494

[3] Li T, Zhao D B, Yi J Q. Adaptive dynamic programming for multi-
intersections traffic signal intelligent control. In: Proceedings of the 11th
IEEE International Conference on Intelligent Transportation Systems.
Beijing, China: IEEE, 2008. 286−291

[4] Zhao D B, Bai X R, Wang F Y, Xu J, Yu W S. DHP for coordinated
freeway ramp metering. IEEE Transactions on Intelligent Transportation
Systems, 2011, 12(4): 990−999

[5] Vlassis N. A concise introduction to multiagent systems and distributed
artificial intelligence. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 2007, 1(1): 1−71

[6] Khan Z, Glisic S, DaSilva L A, Lehtomaki J. Modeling the dynamics
of coalition formation games for cooperative spectrum sharing in an
interference channel. IEEE Transactions on Computational Intelligence
and AI in Games, 2011, 3(1): 17−30

[7] Zhao D B, Zhang Z, Dai Y J. Self-teaching adaptive dynamic program-
ming for Go-Moku. Neurocomputing, 2012, 78(1): 23−29

[8] Tan C H, Tan K C, Tay A. Dynamic game difficulty scaling using adap-
tive behavior-based AI. IEEE Transactions on Computational Intelligence
and AI in Games, 2011, 3(4): 289−301

[9] Zeng L, Hu G D. Consensus of linear multi-agent systems with
communication and input delays. Acta Automatica Sinica, 2013, 39(7):
1133−1140

[10] Li T, Fu M Y, Xie L H, Zhang J F. Distributed consensus with limited
communication data rate. IEEE Transactions on Automatic Control,
2011, 56(2): 279−292

[11] Sutton R S, Barto A G. Reinforcement Learning: An Introduction.
Cambridge: MIT Press, 1998

[12] Wiering M A. Multiagent reinforcement learning for traffic light control.
In: Proceedings of the 17th International Conference on Machine Learn-
ing. Stanford University, US: Morgan Kaufmann, 2000. 1151−1158

[13] Claus C, Boutilier C. The dynamics of reinforcement learning in
cooperative multiagent systems. In: Proceedings of the 15th National
Conference on Artificial Intelligence and 10th Conference on Inno-
vative Applications of Artificial Intelligence. Menlo Park, CA: AAAI
Press/MIT Press, 1998. 746−752

[14] Tuyls K, Nowé A. Evolutionary game theory and multi-agent reinforce-
ment learning. The Knowledge Engineering Review, 2005, 20(1): 63−90

[15] Gomes E R, Kowalczyk R. Dynamic analysis of multiagent Q-learning
with ε-greedy exploration. In: Proceedings of the 26th International Con-
ference on Machine Learning. New York, USA: ACM, 2009. 369−376

[16] Kianercy A, Galstyan A. Dynamics of Boltzmann Q-learning in two-
player two-action games. Physical Review E, 2012, 85(4): 1145−1154

[17] Littman M L. Markov games as a framework for multi-agent reinforce-
ment learning. In: Proceedings of the 11th International Conference
on Machine Learning. New Brunswick, US: Morgan Kaufmann, 1994.
157−163

[18] Owen G. Game Theory (Second Edition). Orlando, Florida: Academic
Press, 1982.

[19] Littman M L. Friend-or-foe Q-learning in general-sum games. In:
Proceedings of the 18th International Conference on Machine Learning.
San Francisco, CA: Morgan Kaufmann, 2001. 322−328

[20] Hu J L, Wellman M P. Multiagent reinforcement learning: theoretical
framework and an algorithm. In: Proceedings of the 15th International
Conference on Machine Learning. Madison, Wisconsin, US: Morgan
Kaufmann, 1998. 242−250

[21] Singh S, Kearns M, Mansour Y. Nash convergence of gradient dynamics
in general-sum games. In: Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence. Stanford University, Stanford,
California, US: Morgan Kaufmann, 2000. 541−548

[22] Bowling M, Veloso M. Multiagent learning using a variable learning
rate. Artificial Intelligence, 2002, 136(2): 215−250

[23] Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview

256 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014

of research on adaptive dynamic programming. Acta Automatica Sinica,
2013, 39(4): 303−311 (in Chinese)

[24] Werbos P J. A menu of designs for reinforcement learning over time.
Neural Networks for Control. Cambridge: MIT Press, 1990

[25] Liu D R, Wang D, Zhao D B, Wei Q L, Jin N. Neural-network-
based optimal control for a class of unknown discrete-time nonlinear
systems using globalized dual heuristic programming. IEEE Transactions
on Automation Science and Engineering, 2012, 9(3): 628−634

[26] Huang Y Z, Liu D R. Neural-network-based optimal tracking control
scheme for a class of unknown discrete-time nonlinear systems using
iterative ADP algorithm. Neurocomputing, 2014, 125: 46−56

[27] Song Rui-Zhuo, Xiao Wen-Dong, Sun Chang-Yin. Optimal tracking
control for a class of unknown discrete-time systems with actuator
saturation via data-based ADP algorithm. Acta Automatica Sinica, 2013,
39(9): 1413−1420 (in Chinese)

[28] Wang D, Liu D R. Neuro-optimal control for a class of unknown
nonlinear dynamic systems using SN-DHP technique. Neurocomputing,
2013, 121(9) 218−225

[29] Zhang Ji-Lie, Zhang Hua-Guang, Luo Yan-Hong, Liang Hong-Jing.
Nearly optimal control scheme using adaptive dynamic programming
based on generalized fuzzy hyperbolic model. Acta Automatica Sinica,
2013, 39(2): 142−148 (in Chinese)

[30] Liu D R, Javaherian H, Kovalenko O, Huang T. Adaptive critic learning
techniques for engine torque and air-fuel ratio control. IEEE Trans-
actions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2008,
38(4): 988−993

[31] Zhao D B, Hu Z H, Xia Z P, Alippi C, Zhu YH, Wang D. Full
range adaptive cruise control based on supervised adaptive dynamic
programming. Neurocomputing, 2014, 125: 57−67

[32] Zhao D B, Yi J Q, Liu D R. Particle swarn optimized adaptive
dynamic programming. In: Proceedings of the 2007 IEEE International
Symposium on Approximate Dynamic Programming and Reinforcement
Learning. Honolulu, Hawaiian Islands, US: IEEE, 2007. 32−37

[33] Crites R H, Barto A G. Improving elevator performance using rein-
forcement learning. In: Proceedings of Advances in Neural Information
Processing Systems 8. Denver, US: MIT Press, 1996. 1017−1023

[34] Bazzan A L, de Oliveira D, de Silva B C. Learning in groups of traffic
signals. Engineering Applications of Artificial Intelligence, 2010, 23(4):
560−568

[35] Bazzan A L. Coordinating many agents in stochastic games. In: Proceed-
ings of the 2012 International Joint Conference on Neural Networks.
Brisbane, Australia: IEEE, 2012. 1−8

[36] Kok J R, Vlassis N. Sparse cooperative Q-learning. In: Proceedings of
the 21st International Conference on Machine Learning. USA: ACM,
2004. 481−488

[37] Kok J R, Vlassis N. Using the max-plus algorithm for multiagent
decision making in coordination graphs. In: Proceedings of Robot Soccer
World Cup IX, Lecture Notes in Computer Science. Berlin: Springer,
2005. 1−12

[38] Syed A, Koenig S, Tambe M. Preprocessing techniques for accelerating
the DCOP algorithm ADOPT. In: Proceedings of the 4th International
Joint Conference on Autonomous Agents and Multiagent Systems.
Utrecht, The Netherlands: ACM, 2005. 1041−1048

[39] Kok J R, Vlassis N. Collaborative multiagent reinforcement learning by
payoff propagation. Journal of Machine Learning Research, 2006, 7(S1):
1789−1828

[40] Schneider J, Wong W K, Moore A, Riedmiller M. Distributed value
functions. In: Proceedings of the 16th International Conference on Ma-
chine Learning. San Francisco, CA: Morgan Kaufmann, 1999. 371−378

[41] Chen G, Cao W H, Chen X, Wu M. Multi-agent Q-learning with joint
state value approximation. In: Proceedings of the 30th Chinese Control
Conference. Yantai, China: IEEE, 2011. 4878−4882

[42] Guestrin C, Lagoudakis M G, Parr R. Coordinated reinforcement learn-
ing. In: Proceedings of the 19th International Conference on Machine
Learning. Sydney, Australia: Morgan Kaufmann, 2002. 227−234

[43] Panait L, Luke S. Cooperative multi-agent learning: the state of the art.
Autonomous Agents and Multi-Agent Systems, 2005, 11(3): 387−434

[44] Luke S. Genetic programming produced competitive soccer softbot
teams for RoboCup97. In: Proceedings of the 3rd Annual Conference
on Genetic Programming. Madison, Wisconsin, US: Morgan Kaufmann,
1998. 214−222

[45] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory, 2001,
47(2): 498−519

[46] Pearl J. Probabilistic Reasoning in Intelligent Systems. San Mateo:
Morgan Kaufman, 1988

[47] Weiss Y, Freeman W T. On the optimality of solutions of the max-
product belief-propagation algorithm in arbitrary graphs. IEEE Transac-
tions on Information Theory, 2001, 47(2): 736−744

[48] Lan X, Roth S, Huttenlocher D, Black M. Efficient belief propagation
with learned higher-order Markov random fields. In: Proceedings of the
2006 European Conference on Computer Vision. Berlin: Springer, 2006.
269−282

[49] Som P, Chockalingam A. Damped belief propagation based near-optimal
equalization of severely delay-spread UWB MIMO-ISI channels. In:
Proceedings of the 2010 IEEE International Conference on Commu-
nications. Cape Town, South Africa: IEEE, 2010. 1−5

[50] Frey B J, Kschischang F R, Conference A. Probability propagation
and iterative decoding. In: Proceedings of the 34th Annual Allerton
Conference on Communication Control and Computing. Illinois, US:
IEEE, 1996. 1−4

Zhen Zhang Received the Ph. D. degree from the
Institute of Automation, Chinese Academy of Sci-
ences, China in 2013. He received the M. S. de-
gree in control theory and control engineering from
Dalian University of Technology, China in 2009, and
the B. S. degree from China University of Petroleum,
China in 2006. He is currently a lecturer in the
Department of Electric Engineering, College of Au-
tomation Engineering, Qingdao University, China.
His main research interest covers the application of
reinforcement learning and neural networks to urban

traffic signal control.

Dongbin Zhao Received the B. S., M. S., and Ph. D.
degrees from the Harbin Institute of Technology,
China, in August 1994, August 1996, and April
2000, respectively. He was a postdoctoral fellow
in Tsinghua University, China, from May 2000 to
January 2002. He is currently a professor with the
State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chi-
nese Academy of Sciences, China. He has published
one book and more than 30 international journal
papers. His current research interest covers the area

of computational intelligence, adaptive dynamic programming, robotics, intel-
ligent transportation systems, and process simulation. Corresponding author
of this paper.

