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Abstract— This note gives a brief survey on discrete-time
stochastic iterative learning control (SILC) from three aspects,
namely, SILC for linear system, nonlinear system and system
with other stochastic signal. Two major approaches, stochastic
Kalman filtering approach and stochastic approximation ap-
proach, for SILC are proposed. Some open questions are also
included.

Index Terms— Discrete-time Stochastic System, Iterative
Learning Control, Linear System, Nonlinear System.

I. INTRODUCTION

In our lives, it appears that if we work on some task
repeatedly, it would perform better and better. This basic
cognition motivates the research on iterative learning control
(ILC). ILC is normally designed for those systems that
could complete some task over a fixed time interval and
perform them repeatedly. In such systems, the input and
output information of past cycles, as well as the tracking
objective, are used to formulate the input signal for the next
cycle, so that the tracking performance could be improved as
the number of cycles increases to infinity.

Taking a comparison between ILC and real life experience,
we find that the input/output information of past cycles is
equivalent to the experience of life. As is known, we usually
make a new policy when facing the same task based on the
past experience. This new policy is equivalent to the input
signal applied to the next cycle. As past experience could
make us handle affairs better, the operating information of
past cycles may be able to improve the control performance
in ILC.

Since ILC could learn from past cycles, a rather simply
updated control algorithm may achieve a high quality of
tracking. As a matter of fact, ILC has benefits that it requires
little system information, but the algorithm is still effective
[1]–[3].

In this note, we briefly review the recent issues on stochas-
tic iterative learning control (SILC). Here by SILC we mean
ILC for those systems containing stochastic signals, such as
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system noise and measurement noise, which are described
random variable of probability theory. These signals are
with both uncertainty and randomness, usually unbounded.
According to different system models and stochastic signal
types, the SILC issues reviewed later consists of three parts,

∙ SILC for linear system with system noise and/or mea-
surement noise;

∙ SILC for nonlinear system with system noise and/or
measurement noise;

∙ SILC for system with other stochastic signals such as
networked control system with random data dropout and
large-scale system with asynchronous update.

The rest of the note is arranged as follows. Section 2
discusses the linear system case, while Section 3 is for the
nonlinear system case. The SILC for other types of stochastic
signals is addressed in Section 4. Some concluding remarks
are given in Section 5.

II. SILC FOR LINEAR SYSTEM

Consider the following discrete-time linear system model

𝑥(𝑡+ 1, 𝑘) = 𝐴(𝑡)𝑥(𝑡, 𝑘) +𝐵(𝑡)𝑢(𝑡, 𝑘) + 𝑤(𝑡, 𝑘)

𝑦(𝑡, 𝑘) = 𝐶(𝑡)𝑥(𝑡, 𝑘) + 𝑣(𝑡, 𝑘)
(1)

where 𝑘 denotes different cycles, 𝑘 = 1, 2, ⋅ ⋅ ⋅ and 𝑡 denotes
an arbitrary time in an operation cycle, 𝑡 = 0, 1, ⋅ ⋅ ⋅ , 𝑁 . For
notation convenience, by 𝑡 ∈ [0, 𝑁 ] we mean 𝑡 value from 0
to 𝑁 . 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑝, 𝑦 ∈ ℝ𝑞 are state, input and output,
respectively. 𝐴(𝑡), 𝐵(𝑡), and 𝐶(𝑡) are time-varying system
matrices with appropriate dimensions. 𝑤(𝑡, 𝑘) and 𝑣(𝑡, 𝑘)
denote system noise and measurement noise, respectively.

Saab first discusses the SILC for discrete-time linear
system (1) in [4], and improves the analysis techniques in
the following research [5]–[7]. The update law in [4] is

𝑢(𝑡, 𝑘 + 1) = 𝑢(𝑡, 𝑘) +𝐾(𝑡, 𝑘)[𝑒(𝑡+ 1, 𝑘)− 𝑒(𝑡, 𝑘)] (2)

where 𝐾(𝑡, 𝑘) denotes the learning gain matrix.
In order to give recursive algorithm for the computation

of 𝐾(𝑡, 𝑘), some assumptions are needed. First, the tracking
objective 𝑦(𝑡, 𝑑) is realizable, i.e. for appropriate initial state
𝑥(0, 𝑑), there exists a unique input 𝑢(𝑡, 𝑑) generating the



trajectory for nominal plant. In other words, the following
equations hold,

𝑥(𝑡+ 1, 𝑑) = 𝐴(𝑡)𝑥(𝑡, 𝑑) +𝐵(𝑡)𝑢(𝑡, 𝑑)

𝑦(𝑡, 𝑑) = 𝐶(𝑡)𝑥(𝑡, 𝑑)
(3)

Besides, the input/output coupling matrix 𝐶(𝑡 + 1)𝐵(𝑡) is
assumed full-column rank. In the following, a pre-notation 𝛿
is used to denote the difference of desired value and actual
value, i.e. 𝛿𝑥(𝑡, 𝑘) ≜ 𝑥(𝑡, 𝑑) − 𝑥(𝑡, 𝑘), 𝛿𝑢(𝑡, 𝑘) = 𝑢(𝑡, 𝑑) −
𝑢(𝑡, 𝑘). 𝔼(⋅) denotes mathematical expectation.

The assumptions on noise and initial state given in [4] are
as follows.

Noise and Initial State Assumptions of [4]: 𝑤(𝑡, 𝑘) and
𝑣(𝑡, 𝑘) are assumed to be zero-mean white Gaussian noise
such that 𝑄𝑡 = 𝔼[𝑤(𝑡, 𝑘)𝑤(𝑡, 𝑘)𝑇 ] is positive-semidefinite
matrix, 𝑅𝑡 = 𝔼[𝑣(𝑡, 𝑘)𝑣(𝑡, 𝑘)𝑇 ] is positive-definite matrix
for all 𝑘. Besides, 𝑤(𝑡, 𝑘) is uncorrelated with 𝑣(𝑠, 𝑙),
∀𝑡, 𝑠 ∈ [0, 𝑁 ], 𝑘, 𝑙 ∈ ℝ. The initial state satisfies that
𝛿𝑥(0, 𝑘) is also zero-mean white noise whose covariance
matrix 𝑃𝑥,0 = 𝔼[𝛿𝑥(0, 𝑘)𝑥(0, 𝑘)𝑇 ] is positive-semidefinite.
Moreover, 𝛿𝑥(0, 𝑘) is uncorrelated with all noises.

In addition, [4] also gives conditions on initial input
𝑢(𝑡, 0). The initial input error 𝛿𝑢(𝑡, 0) is zero-mean white
noise, and 𝔼[𝛿𝑢(𝑡, 0)𝛿𝑢(𝑡, 0)𝑇 ] = 𝑃𝑢,0 is a symmetrical
positiveCdefinite matrix.

Remark 1: The author points out that one simple scenario
for the above conditions is to set 𝛿𝑢(𝑡, 0) ≡ 0, ∀𝑡. However,
it is quite difficult to meet this scenario when the system
information is completely unknown. In fact, the essence idea
of ILC is to achieve good input signal by repeated learning
from the past cycles for arbitrary initial input. On the other
hand, 𝛿𝑢(𝑡, 0) ≡ 0 means that the initial input has been
chosen to be the desired input 𝑢(𝑡, 𝑑). If so, there is no need
to update the input anymore, because 𝑢(𝑡, 𝑑) is actually good
enough from some point of view. The latter publications [5]–
[7], [9] of Saab also use the same assumptions.

Under these conditions, the recursive algorithm for 𝐾(𝑡, 𝑘)
is derived by minimizing input error covariance matrix
𝑃𝑢,𝑘+1 in Saab’s approach. That is, the derivation of the
trace of 𝑃𝑢,𝑘+1 according to 𝐾(𝑡, 𝑘) is set to zero, i.e.
d(trace(𝑃𝑢,𝑘+1))/d𝐾(𝑡, 𝑘) ≡ 0. This leads to the following

𝐾(𝑡, 𝑘) = 𝑃𝑢,𝑘Ξ
𝑇 (Ξ𝑃𝑢,𝑘Ξ

𝑇 + Λ𝐷,𝑘)
−1 (4)

𝑃𝑢,𝑘+1 = (𝐼 −𝐾(𝑡, 𝑘)Ξ)𝑃𝑢,𝑘 (5)

where Ξ ≜ 𝐶(𝑡 + 1)𝐵(𝑡), Λ𝐷,𝑘 ≜ (𝐶(𝑡) − 𝐶(𝑡 +
1)𝐴(𝑡))𝑃𝑥,𝑘(𝐶(𝑡) − 𝐶(𝑡 + 1)𝐴(𝑡))𝑇 + 𝐶(𝑡 + 1)𝑄𝑡𝐶(𝑡 +
1)𝑇 + 𝑅𝑡 + 𝑅𝑡+1, 𝑃𝑥,𝑡 = 𝔼[𝛿𝑥(𝑡, 𝑘)𝛿𝑥(𝑡, 𝑘)𝑇 ], 𝑃𝑢,𝑘 =
𝔼[𝛿𝑢(𝑡, 𝑘)𝛿𝑢(𝑡, 𝑘)𝑇 ].

Theorem 1 ( [4]): For system (1) and control update laws
(2) (4) (5), if 𝐶(𝑡 + 1)𝐵(𝑡) is full-column rank, then ∀𝑘, 𝑡,
there exists suitable norm ∥ ⋅ ∥ such that ∥𝐼 −𝐾(𝑡, ℎ)𝐶(𝑡+
1)𝐵(𝑡)∥ < 1. Consequently, ∥𝑃𝑢,𝑘+1∥ < ∥𝑃𝑢,𝑘∥. Further-
more, 𝑃𝑢,𝑘 → 0, 𝐾(𝑡, ℎ) → 0 uniformly in [0, 𝑁 ] as 𝑘 → ∞.

Let us call this approach as Kalman filtering approach.
From Theorem 1 it is seen the algorithm of learning gain
matrix 𝐾(𝑡, 𝑘) could guarantee the convergence of input
sequence in the mean square sense. However, a lot of
information is required by the algorithm, including system
matrices 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), noise covariance 𝑄𝑡, 𝑅𝑡, and state
error covariance 𝑃𝑥,𝑡 (see the formulation of Λ𝐷,𝑘).

In order to remove the requirement on 𝑃𝑥,𝑡, [5] proposed
a revised algorithm,

�̃�(𝑡, 𝑘) = 𝑃𝑢,𝑘Ξ
𝑇 (Ξ𝑃𝑢,𝑘Ξ

𝑇 + Λ̃𝐷)−1 (6)

𝑃𝑢,𝑘+1 = (𝐼 − �̃�(𝑡, 𝑘)Ξ)𝑃𝑢,𝑘 (7)

where Λ̃𝐷 = 𝐶(𝑡+1)𝑄𝑡𝐶(𝑡+1)𝑇+𝑅𝑡+𝑅𝑡+1. Note that 𝑃𝑥,𝑡

is removed from the above algorithm now. It is proved in [5]
that for the update law (2) with learning gain matrix 𝐾(𝑡, 𝑘)
given by (6) (7), similar convergence results of Theorem 1
still hold when 𝐶(𝑡+ 1)𝐵(𝑡) is full-column rank.

It should be pointed out that 𝑃𝑢,𝑘 is an constructed matrix
for the algorithm and it is not the real input error covariance
matrix. Denote the real input error covariance generated
by (2) (6) (7) as 𝑃𝑢,𝑘. It is shown that the convergence
characteristics of 𝑃𝑢,𝑘 are equivalent to 𝑃𝑢,𝑘. That is, 𝑃𝑢,𝑘 →
0 ⇔ 𝑃𝑢,𝑘 → 0, and the convergence rates of 𝑃𝑢,𝑘 and 𝑃𝑢,𝑘

are both inversely proportional to the iteration index 𝑘 [5].
Thus the convergence proposition is still valid although the

state error covariance matrix is removed from the algorithm.
However, in some sense, the input generated by the revised
algorithm is not optimal. Thus for expression convenience,
the update law (2) with (4) (5) containing the state error
covariance matrix is called optimal learning algorithm, while
the one with (6) (7) is called suboptimal learning algorithm.

Noticing that both [4] and [5] consider the D-type update
law (2), a natural question arises: does these results hold for
P-type update law? The answer is yes [6].

Consider the following P-type ILC law

𝑢(𝑡, 𝑘 + 1) = 𝑢(𝑡, 𝑘) +𝐾(𝑡, 𝑘)𝑒(𝑡+ 1, 𝑘) (8)

Completely similar derivation to [4], [5], it is easy to obtain
the optimal learning algorithm for 𝐾(𝑡, 𝑘),

𝐾(𝑡, 𝑘) = 𝑃𝑢,𝑘Ξ
𝑇 (Ξ𝑃𝑢,𝑘Ξ

𝑇 + Λ𝑃,𝑘)
−1 (9)

𝑃𝑢,𝑘+1 = (𝐼 −𝐾(𝑡, 𝑘)Ξ)𝑃𝑢,𝑘 (10)

where Λ𝑃,𝑘 = 𝐶(𝑡 + 1)𝐴(𝑡)𝑃𝑥,𝑘(𝐶(𝑡 + 1)𝐴(𝑡))𝑇 + 𝐶(𝑡 +
1)𝑄𝑡𝐶(𝑡+ 1)𝑇 +𝑅𝑡+1. While the suboptimal one is

�̃�(𝑡, 𝑘) = 𝑃𝑢,𝑘Ξ
𝑇 (Ξ𝑃𝑢,𝑘Ξ

𝑇 + Λ̃𝑃 )
−1 (11)

𝑃𝑢,𝑘+1 = (𝐼 − �̃�(𝑡, 𝑘)Ξ)𝑃𝑢,𝑘 (12)

where Λ𝑃 = 𝐶(𝑡 + 1)𝑄𝑡𝐶(𝑡 + 1)𝑇 + 𝑅𝑡+1. It is proved in
[6] that the above P-type optimal and suboptimal algorithms
could ensure the same convergence characteristics to [4], [5]
under suitable conditions.



So far, we already have four kinds of algorithms classified
into P-type and D-type. Someone may ask: Is there any
relationship of these P-type and D-type algorithms? In fact,
by comparing (4)(5), (6)(7), (9)(10) and (11)(12) it is found
that the essence difference among these algorithms is the
selection of the bounded positive-definite matrix Λ, which
is selected as Λ𝐷,𝑘, Λ̃𝐷, Λ𝑃,𝑘 and Λ̃𝑃 , respectively. The
algorithm would guarantee the same convergence properties
as long as the matrix Λ is bound, symmetric and positive-
definite [6]. This reveals the equivalence of the former four
kinds of Saab-type algorithms.

Notice that the input/output coupling matrix 𝐶(𝑡+1)𝐵(𝑡)
is all required to be full-column rank in [4]–[6]. To meet
the requirement, the dimension of input should be no larger
than the dimension of output. What is the case when the
dimension of input is larger? [7] presents a first step for the
following system

𝑥(𝑡+ 1, 𝑘) = 𝐴(𝑡)𝑥(𝑡, 𝑘) +𝐵𝑢(𝑡, 𝑘)

𝑦(𝑡, 𝑘) = 𝐶(𝑡)𝑥(𝑡, 𝑘) + 𝑣(𝑡, 𝑘)
(13)

There are two differences between (13) and (1), one of which
is there is no system noise 𝑤(𝑡+1, 𝑘) in (13), while the other
one is that 𝐵(𝑡) = 𝐵, ∀𝑡 ∈ [0, 𝑁 ]. Besides, the system is
assumed accurately re-initialized, i.e. 𝛿𝑥(0, 𝑘) = 0, ∀𝑘. The
convergence results are included in the following theorem.

Theorem 2 ( [7]): For system (13) and P-type optimal
learning algorithm (8) (9) (10) or P-type suboptimal learning
algorithm (8) (11) (12), if 𝐶(𝑡 + 1)𝐵 is full-row rank and
𝛿𝑥(0, 𝑘) = 0, then there exists some suitable constant 𝑐 such
that ∥𝔼[𝑧(𝑡, 𝑘)𝑧(𝑡, 𝑘)𝑇 ]∥ < 𝑐

𝑘 , lim𝑘→∞ 𝔼[𝑧(𝑡, 𝑘)𝑧(𝑡, 𝑘)𝑇 ] =
0, where 𝑧(𝑡, 𝑘) = 𝐶(𝑡+ 1)𝛿𝑥(𝑡, 𝑘).

To recap, Saab proposes optimal and suboptimal learning
algorithms based on the idea minimizing the trace of input
error covariance matrix, and proves the convergence in the
mean square sense in [4]–[7]. However, it is required in all
the algorithms to have the information of covariance of noises
and coupling matrix 𝐶(𝑡+ 1)𝐵(𝑡) as prior knowledge. This
may limit the application of these algorithms when the system
information is unknown.

Chen proposes a learning algorithm with probability 1
convergence property in [8] for the stochastic system (1),
where the system information is wiped off. Different from
[4]–[7], the control objective is to minimize the averaged
tracking error:

lim sup
𝑛→∞

1

𝑛

𝑛∑
𝑘=1

∥𝑦(𝑡+1, 𝑘)−𝑦(𝑡+1, 𝑑)∥2 = min 𝑎.𝑠. (14)

In order to take a comparison, here we list the assumptions
on noise and initial state first.

Noise and Initial State Assumptions of [8]: The noises
𝑤(𝑡, 𝑘) and 𝑣(𝑡, 𝑘) are mutually independent with zero mean
and finite but unknown moments of order 2+𝛿, where 𝛿 > 0.
𝑄𝑡 and 𝑅𝑡 are defined as previously mentioned but unknown

here. The initial state 𝑥(0, 𝑘) is mutually independent of both
𝑤(𝑡+1, 𝑘) and 𝑣(𝑡, 𝑘) with 𝔼𝑥(0, 𝑘) = 𝑥0, 𝔼∥𝑥(0, 𝑘)∥2+𝛿 <
∞. The covariance matrix is also assumed unknown.

The author of [8] provides a novel ILC algorithm based on
stochastic approximation [13]. Because all system matrices
𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), as well as noise covariance matrices 𝑄𝑡,
𝑅𝑡, are unknown, it demands an estimation of the update
direction. For this purpose, we construct vector sequences
{Δ(𝑡, 𝑘)} which is independent of noises 𝑤(𝑡, 𝑘), 𝑣(𝑡, 𝑘).
Δ(𝑡, 𝑘) = [Δ1(𝑡, 𝑘), ⋅ ⋅ ⋅ ,Δ𝑝(𝑡, 𝑘)]

𝑇 is a 𝑝-dimension vector,
whose components Δ𝑗(𝑡, 𝑘) are mutually independent and
identically distributed random variables satisfying that ∀𝑘 =
1, 2, ⋅ ⋅ ⋅ , 𝑡 ∈ [0, 𝑁 − 1], 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑝

∣Δ𝑗(𝑡, 𝑘)∣ < 𝑚, ∣ 1

Δ𝑗(𝑡, 𝑘)
∣ < 𝑛, 𝔼

1

Δ𝑗(𝑡, 𝑘)
= 0 (15)

where 𝑚, 𝑛 are positive constants. Denote

Δ(𝑡, 𝑘) =

[
1

Δ1(𝑡, 𝑘)
, ⋅ ⋅ ⋅ , 1

Δ𝑝(𝑡, 𝑘)

]𝑇
(16)

Let {𝑎𝑘}, {𝑐𝑘}, {𝑀𝑘} be real number sequences satisfying
the following conditions,

𝑎𝑘 > 0, 𝑎𝑘 −−−−→
𝑘→∞

0,
∞∑
𝑘=0

𝑎𝑘 = ∞ (17)

𝑐𝑘 > 0, 𝑐𝑘 −−−−→
𝑘→∞

0,

∞∑
𝑘=0

(
𝑎𝑘
𝑐𝑘

)1+ 𝛿
2

<∞ (18)

𝑀𝑘 > 0, 𝑀𝑘+1 > 𝑀𝑘, 𝑀𝑘 −−−−→
𝑘→∞

∞ (19)

where 𝛿 is defined in noise assumptions. The initial input
𝑢(𝑡, 0), 𝑡 ∈ [0, 𝑁 ] could be arbitrarily given. Then the update
laws are defined according even iterations and odd iterations,
respectively. For the odd cycle of operation the input is
defined as follows

𝑢(𝑡, 2𝑘 + 1) = 𝑢(𝑡, 2𝑘) + 𝑐𝑘Δ(𝑡, 𝑘) (20)

while for the even cycle

𝑢(𝑡, 2(𝑘 + 1)) =𝑢(𝑡, 2𝑘)− 𝑎𝑘
Δ(𝑡, 𝑘)

𝑐𝑘
(∥𝑒(𝑡+ 1, 2𝑘 + 1)∥2

− ∥𝑒(𝑡+ 1, 2𝑘)∥2) (21)
𝑢(𝑡, 2(𝑘 + 1)) =𝑢(𝑡, 2(𝑘 + 1)) ⋅ 𝐼[∥𝑢(𝑡,2(𝑘+1))∥≤𝑀𝜎𝑘(𝑡)]

(22)

𝜎𝑘(𝑡) =

𝑘−1∑
𝑙=1

𝐼[∥𝑢(𝑡,2(𝑙+1))∥>𝑀𝜎𝑙(𝑡)
], 𝜎0(𝑡) = 0 (23)

where 𝐼[⋅] denotes an indicator function meaning that it equals
1 if the condition indicated in the bracket is fulfilled, and 0
otherwise.

It is worthy to point out that the algorithm (20)-(23)
is the Kiefer-Wolfowitz (KW) algorithm with expanding
truncations [13]. KW algorithm is a basic type of stochastic



approximation algorithm. In this algorithm, stochastic dif-
ference of adjacent cycles is used to estimate the update
direction, while 𝑎𝑘 is the update step.

Theorem 3 ( [8]): For system (1) and algorithm (20)-
(23), if 𝐶(𝑡 + 1)𝐵(𝑡) is full-column rank, then the input
sequence {𝑢(𝑡, 𝑘)} converges to the desired input 𝑢(𝑡, 𝑑) and
minimizes the index (14).

The significance of [8] is providing an SILC approach
based on stochastic approximation, while the latter requires
much less information about the system matrices and noise
covariance matrices. This coincides with the major advantage
of ILC that it requires little information about system but
improves performance by learning in some sense.

III. SILC FOR NONLINEAR SYSTEM

A. Affine Nonlinear System

As a kind of special nonlinear system, affine nonlinear
system usually is the starting point. It contains the nonlinear
attribute, but the output depends on the input, in essence, in
a linear way. Actually, some good SILC results have been
obtained according to affine nonlinear system [9], [10].

The following affine system model is used in [9],

𝑥(𝑡+ 1, 𝑘) = 𝑓(𝑥(𝑡, 𝑘)) +𝐵(𝑥(𝑡, 𝑘))𝑢(𝑡, 𝑘)

𝑦(𝑡, 𝑘) = 𝐶(𝑡)𝑥(𝑡, 𝑘) + 𝑣(𝑡, 𝑘)
(24)

where 𝑓(⋅) denotes a vector function defined on ℝ𝑛. It is
obvious that the system equation is time-invariant, i.e. 𝑓(⋅),
𝐵(⋅) only depends on the state vector. The relative degree is
set 1 here for notation clear and expression convenience.

Comparing the conditions with [4], [7], the tracking ob-
jective 𝑦(𝑡, 𝑑) is also assumed to be realizable and coupling
matrix 𝐶(𝑡 + 1)𝐵(𝑥) is full-column rank or full-row rank.
The assumptions on noise, initial state, and initial input
are the same with [4]. The major difference lie in the
nonlinearities 𝑓(⋅) and 𝐵(⋅), which are allowed to grow as
fast as any polynomial with arbitrary order in [9]. Thus the
usual requirement of global Lipschitz condition is relaxed.

Besides, 𝑦(𝑡, 𝑘) is called measurement output in [9], while
the actual output signal that tracks 𝑦(𝑡, 𝑑) is 𝐶(𝑡)𝑥(𝑡, 𝑘). Thus
𝑒(𝑡, 𝑘) = 𝑦(𝑡, 𝑑)−𝑦(𝑡, 𝑘) is called output measurement error,
and 𝛿𝜓(𝑡, 𝑘) ≜ 𝐶(𝑡)[𝑥(𝑡, 𝑑) − 𝑥(𝑡, 𝑘)] denotes the output
tracking error. The control objective in [9] is generating input
sequence such that the output tracking error converges to zero
in the mean square sense and trajectories are bounded.

The SILC update law is designed in P-type (8). By similar
but more delicate derivation to [6], [7], the computational al-
gorithm for learning gain matrix 𝐾(𝑡, 𝑘) could be formulated
like (11) (12). The algorithm guarantees asymptotic zero-
convergence of input error covariance matrix, whose rate is
inversely proportional to the number of iteration index 𝑘.

However, the major contribution of [9] is not proposing an
ILC algorithm with its convergence analysis, but presenting
the necessary and sufficient conditions for boundedness of

trajectories and for zero convergence of output tracking error
under the measurement noise. These conditions could be
regarded as kind of guidance for the selection of suitable
learning gain matrix 𝐾(𝑡, 𝑘). All such conditions depends
only on the learning gain 𝐾(𝑡, 𝑘) and coupling matrix 𝐶(𝑡+
1)𝐵(𝑥).

Remark 2: It would be specifically mentioned that the
boundedness of [9] is defined on basis of mathematical ex-
pectation. In particular, by boundedness of 𝑥(𝑡, 𝑘) the author
actually means 𝔼[𝛿𝑥(𝑡, 𝑘)𝛿𝑥(𝑡, 𝑘)𝑇 ] is bounded. However,
strictly speaking, boundedness of covariance matrix may just
hint the second moment of some random variable is bounded,
while the random variable itself may be unbounded.

Chen and Fang have also considered the SILC for affine
nonlinear system [10], which is a further investigation of
[8]. The system model contains both system noise and
measurement noise, described as follows:

𝑥(𝑡+ 1, 𝑘) = 𝑓(𝑡, 𝑥(𝑡, 𝑘)) +𝐵(𝑡, 𝑥(𝑡, 𝑘))𝑢(𝑡, 𝑘)

+ 𝑤(𝑡+ 1, 𝑘)

𝑦(𝑡, 𝑘) = 𝐶(𝑡)𝑥(𝑡, 𝑘) + 𝑣(𝑡, 𝑘)

(25)

where 𝑓(𝑡, 𝑥) and 𝐵(𝑡, 𝑥) are time-varying functions. The
control objective also is to minimize the index (14).

The assumptions are given here. For any 𝑡 ∈ [0, 𝑁 ], 𝑓(𝑡, 𝑥)
and 𝐵(𝑡, 𝑥) are continuous in 𝑥, and bounded by some
polynomial function. That is, there exist real numbers 𝑟, 𝑠
and 𝑙 such that ∥𝑓(𝑡, 𝑥)∥+∥𝐵(𝑡, 𝑥)∥ ≤ 𝑟∥𝑥∥𝑙+𝑠. The input
is no more than the output, i.e. 𝑝 ≤ 𝑞, and the coupling matrix
𝐶(𝑡+1)𝐵(𝑡, 𝑥) is full-column rank, ∀𝑥 ∈ ℝ𝑛. The conditions
on noises and initial states are the same as those in [8] with
more additional moment requirements, 𝔼∥𝑤(𝑡, 𝑘)∥𝑟 < ∞,
𝔼∥𝑥(0, 𝑘)∥𝑟 <∞, ∀𝑟 ∈ ℤ+. Moreover, all random variables
are assumed to be i.i.d. along the iteration index, ∀𝑡.

Denote 𝑃 (𝑡, 𝑥) ≜ 𝐵𝑇 (𝑡, 𝑥)𝐶𝑇 (𝑡+1)𝐶(𝑡+1)𝐵(𝑡, 𝑥), then
𝑃 (𝑡, 𝑥) is positive-definite. For the tracking target 𝑦(𝑡, 𝑑),
the optimal input 𝑢0(𝑡) is first inductively formulated in [10]
which minimizes the index (14). Let 𝑥0(0, 𝑘) ≡ 𝑥(0, 𝑘), then
define 𝑢0(𝑡) and 𝑥0(𝑡, 𝑘) in turn along the time index as
follows,

𝑢0(𝑡) = −[𝔼𝑃 (𝑡, 𝑥0(𝑡, 𝑘))]−1

× {𝔼[𝐵𝑇 (𝑡, 𝑥0(𝑡, 𝑘))𝐶𝑇 (𝑡+ 1)𝑓(𝑡, 𝑥0(𝑡, 𝑘))]

− 𝔼[𝐵𝑇 (𝑡, 𝑥0(𝑡, 𝑘))]𝐶𝑇 (𝑡+ 1)𝑦(𝑡+ 1, 𝑑)} (26)

𝑥0(𝑡+ 1, 𝑘) = 𝑓(𝑡, 𝑥0(𝑡, 𝑘)) +𝐵(𝑡, 𝑥0(𝑡, 𝑘))𝑢0(𝑡)

+ 𝑤(𝑡+ 1, 𝑘) (27)

It is proved that 𝑢0(𝑡) is optimal in the sense minimizing
(14), and further any input sequence {𝑢(𝑡, 𝑘)} satisfying
𝑢0(𝑡)− 𝑢(𝑡, 𝑘) −−−−→

𝑘→∞
0, ∀𝑡, is also optimal. Thus the actual

objective now is to construct an algorithm generating input
sequence that converges to 𝑢0(𝑡).

ILC update algorithm is designed as (20)-(23), where the
parameters are given by (15)-(19). The authors prove that the



input sequence define by this algorithm would converge to
𝑢0(𝑡) with probability one, and thus is optimal. However, due
to limited space, only sketch of the proof is provided.

Note that the output depends on the input in a linear way
either in [9] or [10]. What is the case where the relationship
is nonlinear in essence? This will be given in the next
subsection.

B. Non-affine Nonlinear System

One of the difficulties dealing with non-affine nonlinear
system with stochastic noise may lie in the strong coupling
of random variables and nonlinear functions. Shen and Chen
make an attempt on this topic in [11], where the nonlinear is
simplified as typical nonlinearities, such as deadzone, preload
and saturation.

The SISO system is described as

𝑥(𝑡+ 1, 𝑘) = 𝑓(𝑡, 𝑥(𝑡, 𝑘)) + 𝑏(𝑡, 𝑥(𝑡, 𝑘))𝜂(𝑡, 𝑘)

𝜂(𝑡, 𝑘) = 𝒩 (𝑢(𝑡, 𝑘))

𝑦(𝑡, 𝑘) = 𝑐(𝑡)𝑥(𝑡, 𝑘) + 𝑣(𝑡, 𝑘)

(28)

where 𝜂(𝑡, 𝑘) is unknown intermediate signal. 𝒩 denotes
nonlinear function, including deadzone, preload and satu-
ration. These three nonlinearities are common in industrial
systems and make the relationship of the input and the output
be nonlinear in essence.

The tracking target is a realizable signal 𝑦(𝑡, 𝑑) and the
control objective is to minimize the index (14). The nonlinear
functions 𝑓(𝑡, 𝑥) and 𝑏(𝑡, 𝑥) are allowed to grow up not faster
than a polynomial as the state 𝑥 diverges. The measurement
noise 𝑣(𝑡, 𝑘) is mutually along the iteration index with zero
mean and finite second moment. The initial state is assumed
asymptotically accurate, i.e. 𝛿𝑥(0, 𝑘) −−−−→

𝑘→∞
0. Besides, the

symbol of 𝑐+𝑏𝑘(𝑡) is required prior known, and denote it by
sgn(𝑐+𝑏𝑘(𝑡)).

A unified algorithm is used for three different input non-
linearities,

𝑢(𝑡, 𝑘 + 1) = [𝑢(𝑡, 𝑘) + 𝑎𝑘sgn(𝑐+𝑏𝑘(𝑡))𝑒(𝑡+ 1, 𝑘)]

× 𝐼[∣𝑢(𝑡,𝑘)+𝑎𝑘sgn(𝑐+𝑏𝑘(𝑡))𝑒(𝑡+1,𝑘)∣≤𝑀𝜎𝑘(𝑡)] (29)

𝜎𝑘(𝑡) =
𝑘−1∑
𝑖=1

𝐼[∣𝑢(𝑡,𝑖)+𝑎𝑖sgn(𝑐+𝑏𝑖(𝑡))𝑒(𝑡+1,𝑖)∣>𝑀𝜎𝑖(𝑡)
] (30)

𝜎0(𝑡) = 0 (31)

where 𝑎𝑘, 𝑀𝑘 are defined by (17) and (19). The input
sequence generated by the algorithm is bounded and optimal
almost surely.

On this basis, the nonlinearity is allowed to appear not
only at the input side but also at the output side in [12].
Moreover, the nonlinearity is of general form not restricted to
a specific class as mentioned above. Specifically, the system

is established as

𝜂(𝑡, 𝑘) =𝑓(𝑡, 𝑢(𝑡, 𝑘))

𝑥(𝑡+ 1, 𝑘) =𝐴(𝑡)𝑥(𝑡, 𝑘) +𝐵(𝑡)𝜂(𝑡, 𝑘)

+ 𝜀(𝑡+ 1, 𝑘)

𝑧(𝑡, 𝑘) =𝐶(𝑡)𝑥(𝑡, 𝑘) + 𝜖(𝑡, 𝑘)

𝑦(𝑡, 𝑘) =𝑔(𝑡, 𝑧(𝑡, 𝑘)) + 𝑣(𝑡, 𝑘)

(32)

where 𝜂(𝑡, 𝑘) and 𝑧(𝑡, 𝑘) are unknown intermediate signals.
Nonlinear functions 𝑓(𝑡, ⋅) : ℝ𝑝 → ℝ𝑝, 𝑔(𝑡, ⋅) : ℝ𝑞 → ℝ𝑞,
∀𝑡 ∈ [0, 𝑇 ], denote nonlinearities appear at the input and
at the output, respectively. 𝜀(𝑡, 𝑘), 𝜖(𝑡, 𝑘) are system noises,
while 𝑣(𝑡, 𝑘) is measurement noise.

For this system, under suitable conditions, the authors
prove that the input sequence generated by (20)-(23) will
converge almost surely to the optimal control minimizing the
index (14).

The results [10], [12] show that the KW algorithm based
SILC algorithm behaves some advantages when dealing with
nonlinear stochastic system. However, the continuity require-
ments on nonlinear functions are one of the restrictions
waiting for a break-through.

IV. SILC FOR SYSTEM WITH OTHER STOCHASTIC
SIGNAL

A. Data Dropout

With the development of network technologies, networked
control system (NCS) has been increasing in applications.
This kind of system combines sensors, actuators, and con-
trollers by network, thus enhances the flexibility and relia-
bility of the system. However, the problem of data dropout
in NCS may reduce the performance. There have been some
research on ILC for NCS with data dropout [14]–[16].

Ahn et al propose develop SILC algorithms by the same
techniques as [4] for NCS with data dropout. They also obtain
convergence in the mean square sense. To make the statement
clear, let us first repeat the formulation of data dropout.

Take the data dropout at the channel that transmits output
measurement to the control center in consideration. If data
dropout happens, then there is no output signal transmitted
back, thus the input could not be updated. Let 𝛾𝑒(𝑡, 𝑘) be
the new tracking error, where 𝛾 ∈ {0, 1} denote whether
data dropout happens or not. In other words, 𝛾 = 0 means
data dropout happens, while 𝛾 = 1 means no data dropout.
Since data dropout is a random event, 𝛾 is a random variable
with Bernoulli distribution. Denote 𝛾 = 𝔼𝛾.

Consider the time-invariant case of (1), i.e. 𝐴(𝑡) ≡ 𝐴,
𝐵(𝑡) ≡ 𝐵, 𝐶(𝑡) ≡ 𝐶. The ILC update law adopted by [14]
is

𝑢(𝑡, 𝑘 + 1) = 𝑢(𝑡, 𝑘) +𝐾(𝑡, 𝑘)𝛾𝑒(𝑡+ 1, 𝑘) (33)

Completely similar derivation to [4], [6], [7], it is easy to give
the recursive computational algorithm for 𝐾(𝑡, 𝑘). Under the
learning gain matrix, the input error covariance matrix would



converge to zero as long as 𝛾 ∕= 0. In other words, as long
as the data are not missed by 100%, the similar convergence
properties to Saab’s work still hold with a lower rate.

Note that in [14] a data packet is assumed either whole
missed during the network transmission or delivered success-
fully. However, for a 𝑞-dimension output, maybe only part
information is lost while the others are still safely delivered
during a transmission. [15] considers this case for a special
class of (1), i.e. 𝑝 = 𝑞 and time-invariant. The update law
(33) is revised into

𝑢(𝑡, 𝑘 + 1) = 𝑢(𝑡, 𝑘) +𝐾(𝑡, 𝑘)Γ𝑒(𝑡+ 1, 𝑘) (34)

where Γ = 𝑑𝑖𝑎𝑔[𝛾𝑖] and 𝛾𝑖 ∈ {0, 1}, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑝 with
Bernoulli distribution. Similar analysis techniques to [4], [6],
[14] leads to similar convergence result.

So far only the data dropout of error signals is considered
[14], [15]. Following the same route, the above research is
expanded to the case where there could be data dropout
in both error signals and control signals [16]. However,
the authors does not provide a computational algorithm for
learning gain matrix as is done in [14], [15].

B. Stochastic Asynchronism

Many industrial systems are large-scale system, where
by large-scale system we mean that the whole system is
composed of many subsystems which are connected via
the large state vector but each subsystem is controlled on
the basis of its own input and output information. Due to
different efficiencies among subsystems, data missing and/or
communication delay, it is hard to achieve synchronous
updates of all subsystems. This motivates the research on
stochastic asynchrony update problem for ILC.

A class of discrete-time large scale systems with nonlin-
early connected subsystems, each of which is affine nonlinear,
and the observation equations are with noises, are considered
in [17]. The formulation of each subsystem is the SISO
case of (24). The control objective of each subsystem is to
minimize the averaged tracking error (14).

The stochastic asynchrony of large scale system are as-
sumed as follows. Denote by 𝑆𝑘 ⊂ {1, ⋅ ⋅ ⋅ , 𝑛} the set of
those subsystems which are updated at the 𝑘th iteration
and denote by 𝜏(𝑖, 𝑘) the number of control updates oc-
curred up to and including the 𝑘th iteration in system 𝑖:
𝜏(𝑖, 𝑘) ≜

∑𝑘
𝑗=1 𝐼[𝑖∈𝑆𝑗 ]. It is assumed 𝑆𝑘 and 𝜏(𝑖, 𝑘) are

random variables in [17]. Combined with these notations, an
asynchronous distributed ILC algorithm is proposed based on
asynchronous stochastic approximation.

In order to guarantee the almost surely convergence of the
input sequence to the optimal control, each subsystem should
update frequently enough: there exist integer 𝐾 large enough
such that ∀𝑘, 𝑖, 𝜏(𝑖, 𝑘+𝐾)−𝜏(𝑖, 𝑘) > 0. Note that it is only
required the existence of 𝐾 rather than specific value. How
to further relax this condition is still a open problem.

V. CONCLUSIONS

ILC is an excellent control method applied widely in
many batch-type industrial fields. Since introduced it has
drawn much attentions from researchers and engineers in the
past decades. However, there are only a few publications
on stochastic ILC. This note briefly reviews some recent
literature on stochastic ILC from three aspects, namely, SILC
for linear system, SILC for nonlinear system, and SILC for
system with other stochastic signals. Some comparisons of
related research as well as some future research directions
are provided. Due to limited space, some publications are
not included in this note. A more detailed analysis and
comparison is given in a coming paper.
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