
  

 

Abstract—The intersection models, such as delay models and 
queuing length models, are the foundations of optimal signal 
timing for urban intersection. Lack of the field data of 
intersection, it is highly difficult to calibrate parameters of the 
intersection models. Due to the effects of intersection topology, 
channelization and traffic conditions on these models, obviously 
it is impossible for single model to be suitable for optimal control 
of various intersections.  

ACP is emerging technique for Intelligent Traffic Systems 
(ITS). It provides an effective means for problem-solving of 
complex traffic issues by constructing artificial system which is 
consistent with corresponding real counterpart.  

Based on ACP approach, we propose a self-learning optimal 
control strategy for typical intersection. In this approach, 
optimal control policy is found by systematic interaction with the 
traffic environment, so as to adapt dynamic traffic conditions 
and different intersection topologies. Furthermore, according to 
traffic characteristics analysis of intersection, joint control of all 
approaches can be reduced to optimal control of only one 
approach. Thus, the computational and storage complexities are 
decreased significantly. 

The experiment results demonstrate that our approach has 
considerably lower average delay and higher traffic capacity of 
intersection than these optimal control methods which are 
respectively based on HCM2000 and Webster models. 

I. INTRODUCTION 

Intersection is the bottleneck of urban traffic, and it also 
basic unit of traffic management and control. The optimal 
control of intersection has still been attracted considerable 
attentions in ITS community. Till now, various research 
achievements have been obtained in intersection optimal 
control fields. These control methods primarily rely on 
intersection models, which include average vehicle delay 
models [1],[2], queue length models [3], and their modified 
versions [4-6]. The achievements above have greatly improved 
current traffic situation, but it is extremely difficult to gain 
field data for modeling delay and queuing length of 
intersections. In addition, multiple uncertain factors impact on 
these models in different degrees. Thus the model parameters 
can only be calibrated roughly. Furthermore, it is impossible 
for an intersection model to be suitable for all intersections 
with different topology and road channelization.   
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Reinforcement learning is a class of unsupervised machine 
learning approach. It can find optimal behavior policy by 
systematic trial-and-error interaction with environment [7], 
and thus offers an effective way for the control of complex 
traffic system. In the past decade, some researchers have 
studied optimal control of intersection traffic signal by the use 
of reinforcement learning [8]-[11]. In their works, agent learns 
how to control the traffic light through its trial-and-error 
interaction with the environment and reward received. 
However, it is extremely difficult to perceive the states of 
traffic environment. Most RL approaches are only for the 
theoretical purpose. Meanwhile, these methods suffer from the 
exponential growth in the number of states and actions, thus 
they cannot meet the demands of practical application. 

The ACP approach was originally proposed in [12]–[14] 
for the purpose of modeling, analysis, and control of complex 
systems. And it represents another new milestone in solving 
the management difficulty of real-world complex systems. 
Through parallel interaction between an actual transportation 
system and its corresponding artificial counterparts (one or 
often more), ACP approach offers a verifiable, repeatable, and 
manipulated way for ITS research in the condition of lack of 
available large scale data. 

Based on the novel ACP approach, we develop the 
Artificial Traffic System USTCATS2.0. In this artificial traffic 
system platform, virtual traffic scenarios are built, which are 
consistent with their corresponding real traffic counterparts. 
We propose a self-learning strategy for optimal control of 
typical intersection. The traffic flow characteristics are 
analyzed and defined. On this basis, the joint actions for all 
approaches of intersection are reduced to the action for single 
approach, so as to decrease both computational complexity and 
storage complexity. The optimal control of intersection is 
achieved by the interaction between artificial traffic system 
and corresponding real counterpart. 

II. SELF-LEARNING CONTROL PRINCIPLE FOR INTERSECTION 

BASED ON ACP APPROACH 

A. The Principle Description 

ACP (Artificial systems, Computational experiments, and 
Parallel execution) approach is novel means for modeling, 
analysis, and control of complex systems [15]. This approach 
consists of three steps: 1) modeling and representation using 
artificial societies; 2) analysis and evaluation by 
Computational experiments; and 3) control and management 
through Parallel execution of real and artificial systems.  

Based on ACP approach, we develop the Artificial Traffic 
System USTCATS2.0. For the purpose of studying 
self-learning control of traffic flow in intersection, virtual 
traffic scenarios and the corresponding real traffic counterparts 
are built respectively. In this work, we focus on optimal control 
of traffic flow for typical intersection. Figure 1 shows our 
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Figure 1.  Traffic scenarios of intersection in artificial traffic system 

constructed virtual traffic scenarios in a typical intersection, 
which include vehicles, traffic signal controller, inductive loop 
sensors, and road channelization. The virtual inductive loop 
sensors are used to calculate average vehicle delay and traffic 
capacity of intersection. 

In order to find optimal control scheme for real intersection, 
we propose a self-learning control approach. Q-learning, a 
model-free machine learning algorithm, is introduced to search 
for optimal control policy of intersection based on the artificial 
traffic system platform. In this artificial system, respect to 
dynamic traffic status, agent seeks for optimal control policy 
through trail-and-error interaction with its traffic environment. 
When agent finds the optimal control policy, artificial traffic 
system will transfer this policy to its corresponding real traffic 
system to execute. Then, these two systems will respectively 
run in parallel manner and interact individual information each 
other. Therefore, the two systems are improved and perfected 
continuously. Their parallel evolution is achieved accordingly. 

This self-learning control system of intersection is defined 
in the following: 

Definition: The self-learning control system of intersection 
can expressed as a quadruple , , , . Where S
S , S , S , S  is discrete and finite set of joint states, and 
S , S , S , and S  are sub-states of joint state which 
respectively correspond to the queuing lengths of different 
approaches in intersection. A A , A , A , A  is discrete 
set of joint actions which denote signal timing scheme. 
A , A , A  and A  are possible sub-actions respect to sub-state 
S , S , S , and S  respectively. P is state transition probability, 
and R is reward-reciprocal of vehicle delay. The system aims 
at searching for optimal traffic signal control policy to 
maximize the discount cumulative rewards. 

According to the above definition, the computational and 
storage complexity of this self-learning control strategy are 
analyzed as follows:  

Let maximal size of sub-state sets S  i 1,2,3,4  be m 
and maximal size of sub-action sets A  i 1,2,3,4  be n. The 
computational complexity and storage complexity of this 
approach are respectively O n m  and S n m , which 
exponentially increase with size of state and action sets. This 

limits its application to optimizing control scheme for 
intersection, especially for large-scale urban road network. 

In order to overcome the drawbacks of this self-learning 
control strategy based on Q-learning, the traffic flow 
characteristics of intersection are further studied. When there is 
conflict relation among different approaches in intersection, 
different sub-action sets are correlated and they must be 
handled as a whole. Thus the computational and storage 
complexity of this approach cannot be decreased. In this work, 
all approaches of intersection are divided groups according to 
running directions of vehicles. For instance, east-west through, 
east-west left turning, north-south through, and north-south left 
turning lanes or directions. Obviously, there are not any 
conflicted relations among the traffic flow of different groups 
in intersection. Accordingly, different sub-action sets are 
mutual independent as well as different sub-state sets. 
Therefore, optimal control of all approaches can be reduced to 
that of only one approach in intersection. Search space of this 
self-learning control is simplified significantly. The 
computational and storage complexity of this approach are 
reduced to O nm  and S nm , respectively. 

B. Self-learning control for intersection 

According to the above definition and analysis, the 
self-learning control algorithm for intersection needs a training 
stage before its practical application. The training stage is 
addressed as follows: 

Suppose state S= 0,1,2, … , L , whereL   is possible 
maximum of queuing vehicles for all approaches. Goal state 
s 0 , which means all vehicles of an approach are released.   
Action set A is possible timing schemes for a phase, and 
A 0, a , , a .  a  is minimal green time and a  
is maximal green time. These two parameters can be 
determined empirically. The state-action pair function 
Q s , a  is defined in Equation 1. It is a discounted cumulative 
reward given that an agent starts in state s , takes an action a  
once, and follows a control policy thereafter.  

                  Q s , a r γ max AQ s , a                      (1) 

In Eq. 1,  γ is discount factor. 

For searching for optimal control policy, n vehicles are 
generated for entrance lanes, such as east-west through lanes, 
by the Artificial Traffic System platform, here  n .  
Assume there is not any new arrival vehicle. In this Artificial 
Traffic System platform, at time t, agent senses states of the 
environment-the number of queuing vehicles, selects an action, 
that is green time of the corresponding phase, to perform.  
Then the environment makes a transition from state s  to s . 
The reward r  is obtained. Considering traffic capacity of 
intersection is much easier than the other traffic parameters, we 
define reward function in term of traffic capacity per signal 
cycle. Function Q s, a  is updated by the following equation: 

Q s , a Q s , a α r γ max AQ s , b
                   Q s , a                                                                              (2) 

where α is learning rate. 

One loop ends if goal state is reached. Repeat the above 
process until all  Q s, a   values converge. As a result, optimal 
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Figure 2.  Average vehicle delay of intersection with the three 

approaches for saturation 0.8 

control policy is found and applied to real traffic control 
system.  

In searching for optimal control policy process, an agent 
faces with the tradeoff problem between exploration and 
exploitation. That is, an agent needs to make the balance 
between exploiting previous knowledge and exploring new 
actions. Exploring new actions can improve the long-term 
performances of agent’s policy. In contrast, exploiting agents’ 
previously acquired knowledge can obtain good short-term 
performance of the policy to minimize the learning costs. 
However, it may converge to a sub-optimal control policy. In 
our approach, the exploration-exploitation dilemma is handled 
effectively based on the Boltzmann exploration method. 

Let p a |s  denote choice probability of action a  under 
state s. We define probability function p a |s  as follows: 



 p a s
Q , /T

∑ Q , /T
A



where T is a positive parameter called the temperature. High 
temperatures cause the actions to be all (nearly) equiprobable. 
Low temperatures cause a greater difference in selection 
probability for actions that differ in their value estimates of 
Q-function. The costs of search process can be decreased 
considerably through selecting parameter T carefully.   

C. Algorithm description 

According to the aforementioned principle, the 
self-learning control approach is described as follows: 

Step1:  Q s, a  ← a set of initial values for 

},,2,1,0{s maxL  and  a 0, a , , a  

Step2:  parameter setting for temperature parameter T, learning 
rate α, and discount factor γ  

Step3:  repeat 

Step4: generate an initial state x randomly: 

 x L random  

Step5:    if x is the goal state then goto step 9 endif 

Step6:  Seek the action a A  in lookup table in term of 
condition s x  

         Calculate p a s
Q , /T

∑ Q , /T
A

   

         Select action a  with  ε greedy strategy 

Step7:    Execute action a , state x is transformed to y, reward 
r  is obtained 

      Update Q x, a  according to the following formula: 

  Q x, a Q x, a α r γmaxQ y, b Q x, a    

         The number of Iteration k=k+1 

         T β T, 0 1 

Step8:    x y,  goto step 5  

Step9:  until function Q s, a  are convergent for all state s and 
action a 

III. EXPERIMENTS AND DISCUSSION 

USTCsim1.0 simulator, a project which is financially 
supported by National 863 plan of China, is employed to 
validate our proposed approach. In the experiments, a typical 
intersection respectively with nonsaturation and oversaturation 
traffic conditions is selected for tests. These saturations include 
0.8, 1.2, and 1.5, which can reflect current urban traffic 
conditions.  

For the purpose of performance evaluation, we compare 
our approach to the other typical methods including optimal 
cycle equations respectively based on Webster delay model 
and HCM2000 delay model. These two methods are used for 
comparisons because they are classic optimal control methods 
that are reported to perform well on their studied problems. 

For a fair comparison among all three approaches, in all 
cases, we test them using the same intersection saturation, 
intersection topology, and road channelization. In the 
experiments, we chose the following evaluation metrics to 
examine these three approaches. 

 The average vehicle delay of intersection 

 Traffic capacity of intersection per cycle 

In the experiments, temperature T 10 ,  β 0.95 , 
learning rate α  , where n is learning times of a state, 

a 10 , a 60 , and L 50 . After the training 
process, optimal control policy is obtained and applied to the 
signal control of typical intersection. The simulation results are 
shown in Figure 2-7. 

All the three methods can be utilized to implement optimal 
control of traffic flow in the case of non-saturated traffic 
conditions of intersection (e.g. 0.8). Figure 2 and 3 show the 
experiment results by using these three methods. From the two 
figures, we can see that our approach has much lower delay 
and high traffic capacity than the methods respectively based 
on Webster and HCM2000 models. Compared to Webster and 
HCM2000 methods [16], our approach reduce intersection 
delay by 13.5% and 13%, and traffic capacity increases by 4% 
and 3.9% respectively. 
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Figure 3. Traffic capacity of intersection with the three approaches 

for saturation 0.8 

 

Figure 6. Average vehicle delay of intersection with the three 
approaches for saturation 1.5 

Figure 7. Traffic capacity of intersection with the three approaches 
for saturation 1.5 

 
Figure 4. Average vehicle delay of intersection with the three 

approaches for saturation 1.2 

 
Figure 5. Traffic capacity of intersection with the three approaches 

for saturation 1.2 

 

Webster model cannot deals with traffic signal control 
when traffic condition of intersection is oversaturated.  For 
oversaturated traffic conditions in intersection, HCM2000 
method and our proposed approach are used to carry out 
optimal control for intersection. Figure 4 and 5 show the 
simulation results when intersection saturation is about 1.2. 
Accordingly, figure 6 and 7 are the experimental results 
corresponding to saturation 1.5. 

For intersection saturation 1.2, in comparison to the 
HCM2000 based method, our approach has 8.2% reduction in 
intersection delay and 4.8% increase in traffic capacity. When 
intersection saturation increases to 1.5, intersection delay using 
our approach is reduced by 10.1% than that using the 
HCM2000 based method. Traffic capacity using our approach 
increases by 7.9% than the HCM2000 based method.  

 

In summary, for different traffic conditions of intersection, 
our proposed approach achieves the best overall performances 
in comparison to these methods respectively based on Webster 
and HCM2000 models. Furthermore, this proposed approach 
has better performances with intersection saturation increases. 
It is suitable for the control of oversaturated traffic conditions. 

IV. CONCLUSION 

Urban congestion and oversaturation have become serious 
issues in social and economic concerns around the world. 
Lack of field data which is necessary for traffic modeling and 
model parameter calibration, it is highly difficult for typical 
intersection models such as Webster and HCM2000 to 
achieve optimal control for complex and oversaturation traffic 
flow of intersection. Based on ACP approach, we develop an 
artificial traffic system and proposed a self-learning control 
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strategy for typical intersection. In order to avoid difficulty of 
obtaining intersection field data, this proposed approach can 
find optimal control policy through agent trial-and-error 
interaction with its traffic environment. The state space is 
reduced significantly by introducing the definitions of 
non-conflicted traffic flow for all approaches in the 
intersection. Our approach can be apply to optimal control of 
traffic flow under different saturation of intersection, and has 
considerably higher traffic capacity and lower delay than the 
optimal control methods which respectively based on Webster 
and HCM2000 models 

This approach offers an interesting paradigm for 
problem-solving of complex traffic system. The future work is 
to extend our proposed approach to coordination control for 
large-scale urban road network. 

REFERENCES 
[1] Webster F V. Traffic signal settings [R]. Road Research Technical 

Paper No. 39. London: HMSO, 1958. 
[2] Transportation Research Board. Highway capacity manual 2000 [R]. 

Washington D C: National Research Council, 2000. 
[3]  Q. Wang, X. Tan, and S. Zhang, Signal timing optimization of urban 

single-point intersections, Journal of Traffic and Transportation 
Engineering, vol. 6,  pp. 60-64, June 2006. 

[4] Roger P R, Prassas E S, Mcshane W R.,  Traffic Engineering [M]. 3rd  
ed. New J ersey: Pearson Prentice Hall, Pearson Education Inc., 2004: 
494 - 495. 

[5] Akcelik R, Rouphail N M., Estimation of delays at traffic signals for 
variable demand conditions [J]. Transportation Research, 
27B(1):109-131,  1993. 

[6] Akcelik R, Rouphail N M., Overflow queues and delays with random 
and platooned arrivals at signalized intersections [J]. Journal of 
Advance Transportation, 28 (2): 227-251, 1994. 

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction 
(Adaptive Computation and Machine Learning). Cambridge, MA: MIT 
Press, Mar. 1998. 

[8] B. Abdulhai, R. Pringle, and G. Karakoulas, “Reinforcement learning 
for true adaptive traffic signal control,” J. Transp. Eng., vol. 129, no. 3, 
pp. 278–285, May/Jun. 2003.  

[9] M. Shoufeng, L. Ying, and L. Bao, “Agent-based learning control 
method for urban traffic signal of single intersection,” Journal of 
Systems Eng., vol. 17, no. 6, pp. 526-530, 2002. 

[10] B. Abdulhai, R. Pringle, and G. Karakoulas, “Reinforcement learning 
for true adaptive traffic signal control,”  Journal of Transportation 
Engineering, vol. 129, pp. 278–285, 2003. 

[11] Prashanth L. A. and Shalabh Bhatnagar, Reinforcement Learning With 
Function Approximation for Traffic Signal Control, IEEE  transaction 
on intelligent transportation systems, vol.12, no.2,pp.412-421,  June 
2011 

[12] F.-Y. Wang, “Computational theory and methods for complex systems,” 
China Basic Sci., vol. 6, no. 41, pp. 3-10, 2004. 

[13] F.-Y. Wang, “Artificial societies, computational experiments, and 
parallel systems: An investigation on computational theory of complex 
social economic systems,” Complex Syst. Complexity Sci., vol. 1, no. 4, 
pp. 25–35, 2004. 

[14] F.-Y. Wang, “Parallel system methods for management and control of 
complex systems,” Control Decision, vol. 19, no. 5, pp. 485-489, 2004. 

[15] Fei-Yue Wang, Parallel control and management for ITS: concepts. 
Architecture, and applications, IEEE transaction on intelligent 
transportation systems, vol.11, no.3, pp.630-638, September 2010. 

[16] JIANG Jinyong, YUN Meiping , YANG  Peikun, Optimal Cycle Length 
Estimation Equations Based on Delay Models of HCM 2000,  
JOURNAL OF TONGJI UNIVERSITY (NATURAL SCIENCE), 
vol.37, no. 8, pp. 1024-1028, August 2009. 
 

328


