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a b s t r a c t 

We propose a new mechanism to pave the way for efficient learning against class-imbalance and improve 

representation of identity vector (i-vector) in automatic speaker verification (ASV). The insight is to ef- 

fectively exploit the inherent structure within ASV corpus — centroid priori. In particular: (1) to ensure 

learning efficiency against class-imbalance, the centroid-aware balanced boosting sampling is proposed to 

collect balanced mini-batch; (2) to strengthen local discriminative modeling on the mini-batches, neigh- 

borhood component analysis (NCA) and magnet loss (MNL) are adopted in ASV-specific modifications. The 

integration creates adaptive NCA (AdaNCA) and linear MNL (LMNL). Numerical results show that LMNL is 

a competitive candidate for low-dimensional projection on i-vector (EER = 3.84% on SRE2008, EER = 1.81% 

on SRE2010), enjoying competitive edge over linear discriminant analysis (LDA). AdaNCA (EER = 4.03% on 

SRE2008, EER = 2.05% on SRE2010) also performs well. Furthermore, to facilitate the future study on boost- 

ing sampling, connections between boosting sampling, hinge loss and data augmentation have been es- 

tablished, which help understand the behavior of boosting sampling further. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Automatic speaker verification (ASV) is an important yet diffi-

cult pattern recognition task, and it can be divided into two cate-

gories: text-dependent ASV and text-independent one. We focus on

the latter task in this work. An ASV system is usually composed of

two modules: one is front-end for acoustic feature extraction and

voice activity detection (VAD), and the other is back-end for repre-

sentation extraction (e.g., i-vector [1] ) and similarity measure. 

Technically, ASV systems are susceptible to intersession variabil-

ity (intra-speaker variability [3,4] and inter-speaker one [5] ), caus-

ing local confusions (left of Fig. 1 ). Class-imbalance is another is-

sue (right of Fig. 1 ), being counterproductive to learning as the

training signal can be biased by class-imbalance data. To improve

results against the issues, many methods [6–10] have been pro-

posed. Amongst the previous literature of improved representation

of i-vector space, it is observed that the adverse effect of class-

imbalance seems to have received little attention. But we argue

that class-imbalance does inhibit optimization progress and render
∗ Corresponding author. 
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he representation space of not discrimination enough, especially

hen the amount of data is limited (e.g., SRE 2008). 

With the point in mind, we try to investigate how to improve

he i-vector space and eschew class-imbalance simultaneously. The

ey idea here is to propose a mechanism efficiently exploiting the

entroid-priori of ASV corpus [11] . In particular: (1) centroid-aware

alanced boosting sampling collects class-balance mini-batches for

fficient learning process, and (2) neighborhood component analy-

is (NCA) [12] or magnet loss (MNL) [13] strengthens local discrim-

native modeling on the mini-batches. Integrating the two modules

as shown in Fig. 2 ) creates adaptive NCA (AdaNCA) and linear MNL

LMNL). Comparisons with several typical metric learning methods

emonstrate the effectiveness of our mechanism. 

The main contributions of this work are summarized as follows:

1. Centroid-aware balanced boosting sampling is developed to

mollify class-imbalance and pave the way for efficient learning,

like hard example mining. 

2. AdaNCA and LMNL based on NCA and MNL are developed with

ASV-specific modifications to strengthen local discriminative

modeling. 

3. Connections are established between boosting sampling, hinge

loss and data augmentation to further reveal the behavior of

boosting sampling. 

http://dx.doi.org/10.1016/j.patcog.2017.07.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.07.007&domain=pdf
mailto:weiming.dong@ia.ac.cn
mailto:weiming.dong@ia.ac.cn
http://dx.doi.org/10.1016/j.patcog.2017.07.007
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Fig. 1. Feature visualization (t-SNE) [2] of i-vectors from the background corpus in National Institute of Standards and Technology speaker recognition evaluation (SRE) 2010 

( left ) and the corresponding histogram of numbers of instances of each speaker ( right ). 

Fig. 2. Illustration of the pipelines of the training stage of the mechanism (instance sampling + local discriminative modeling) and the validation stage in ASV task scenarios. 
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The rest of the paper is organized as follows. Section 2 in-

roduces the related works. Section 3 describes the problem set-

ing and the proposed mechanism. Section 4 presents details of

he experiments and Section 5 summarizes useful knowledge in

SV. Section 6 carries out further investigation on the boosting

ampling strategy. Section 7 elaborates the conclusions and future

orks. 

. Related works 

.1. I-vector in ASV 

Identity vector (i-vector) [1] , also known as total variabil-

ty modeling, aims to model the utterance variability in a low-

imensional space. Total variability originates from joint factor
nalysis, and the model is represented as 

 (s ) = m + T · ω(s ) , (1)

here s denotes a target speaker; m is a speaker-/channel-

ndependent supervector, which is taken from a universal back-

round model (UBM) supervector; T is the total factor matrix,

hich is an expanded subspace of speaker-/channel-dependent in-

ormation; ω( s ) is the i-vector extracted from the input utterance

details are available in [14] ). I-vector has proved to be an effective

epresentation for the inherent information of speakers (see e.g.,

15–17] ). 

As previously noted, however, the performance degradation in

SV systems is attributed to the two issues. Many researchers

ttempt to mollify the issues with metric learning techniques,

uch as linear discriminant analysis (LDA), nearest neighbor dis-

riminant analysis (NDA) [18] for low-dimensional projection on
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i-vector, or probabilistic LDA (PLDA) [7,19] for intersession variabil-

ity compensation. In this work, we resort to better representation

of i-vector space and tackle class-imbalance issue at the same time

to encourage the optimization to progress further, resulting in im-

proved ASV result. 

2.2. Distance metric learning 

Distance metric learning aims at learning a transformation to a

representation space where the distance corresponds with a task-

specific notion of similarity. Classical examples of this research

field are listed as follows. 

Given the set of N (i-vector, label) pairs { (x i , y i ) } N i =1 
, LDA is

commonly used for low-dimensional projection on i-vector be-

fore PLDA in ASV for the sake of computational efficiency. NDA

[20] models the variances based on K nearest neighbors (KNN) of

x i , NN K ( x i ), to better preserve the local data structure. NCA [12] is

another scheme used to train the linear transformation A on near-

est neighbors modeling (i.e., p ij in Eq. (2) ), which is akin to t-SNE

[2] — i.e., a useful technique to unveil the structure in data. 

f (A ) = 

N ∑ 

i =1 

p i = 

N ∑ 

i =1 

∑ 

j∈{ l| y l = y i } 
p i j , 

with p i j = 

exp (−‖ Ax i − Ax j ‖ 

2 
2 ) ∑ 

k � = i exp (−‖ Ax i − Ax k ‖ 

2 
2 
) 

(p ii = 0) (2)

Weighted class-oriented linear regression [21] and fast NCA

(FNCA) [22] leverage adaptive weighted learning to reinforce the

local awareness of models. Large margin nearest neighbor (LMNN)

[23] learns the transformation with two parts in Eq. (3) ( μ denotes

the tradeoff): 

L (A ) = (1 − μ) · L pull (A ) + μ · L push (A ) (3)

where L pull ( A ) pulls instances of identical class closer and L push ( A )

pushes data of different label farther. Comparatively, stochastic

triple embedding [24] learns the representation in a triplet man-

ner, and joint Bayesian model (JBM) starts from a different as-

sumption to obtain success in face verification task [25] . Magnet

loss (MNL) [13] and lifted structured feature embedding [26] are

two latest well-designed methods for enhanced local discrimina-

tion modeling. 

In ASV scenarios, NDA has proved to be a strong substitute for

LDA [18] . It should be noted that, the exploitation of the local

data structure is at the heart of the success of NDA. Inspired by

NDA and the recently successful applications of local discrimina-

tive modeling (see e.g., [13,27,28] ), we desire to improve the rep-

resentation of i-vector space by virtue of the local discriminative

modeling in exploiting the inherent structure in ASV data. 

2.3. Sampling strategies in stochastic gradient descent 

Mini-batch stochastic gradient descent (SGD) is an optimization

algorithm and has proved to be beneficial to various tasks [29] . Eq.

(4) shows the idea: 

 k +1 = W k − λk ·
( 

1 

| B k | 
∑ 

x i ∈ B k 
∇L (x i , W k ) 

) 

(4)

where B k denotes the mini-batch, W k is the weight being opti-

mized at step k with learning rate λk ; L ( x i , W ) refers to the loss

given data x i and weights W . 

Since random shuffling is unable to ensure training efficiency

against undesirable properties in data (e.g., noise or redundancy)

in many tasks, many researchers strengthen the training signal

via better mini-batches. For example, Shrivastava et al. [30] made

it through an online hard example mining method. Yang et al.
31] enhanced the optimization efficiency by proposing drop-

ample algorithm. Miguel et al. [27] leveraged complete-linkage

luster to discover compact data cliques and enabled CNNs in

xemplar learning. Canévet et al. [32] regarded the problem in

ollecting false positives as an exploitation (focus on false posi-

ives) versus exploration (use the entire data) dilemma and ap-

lied Monte Carlo tree search to solve it. They share one idea:

ell-selected unbiased mini-batch B k possesses obvious advantage

ver randomly-selected ones in ensuring the quality and learning

fficiency of models. With this view, the approach to collect B k is

enerally task-specific and worthy of effort. 

Inspired by the idea, to prevent the gradient estimates from

eing vitiated by the imbalance corpus and exploit the benefit

n online mini-batch selection for learning efficiency, we need to

evelop an effective class-balance sampling strategy during the

ourse of optimization in ASV setting. 

. Problem setting and modifications 

.1. Problem setting 

Considering N (i-vector, label) pairs { (x i , y i ) } N i =1 
, where x i ∈

 

d i v ector and y i ∈ {1, ���, N class }, we train a linear transformation

 with an objective or loss (e.g., LMNL Eq. (8) and AdaNCA Eq. (7) )

or a transformed space { r i = A · x i } N i =1 
, where r i ∈ R 

d projection , with

 low equal error rate (EER, the error value when the false accep-

ance rate is equal to the false rejection rate after adjusting the

hreshold value). Fig. 3 shows the pipeline. 

In the test/validation stage, the similarity between two in-

tances is: 

 i, j (A ) = r T i · r j = 

x 

T 
i 

· A 

T A · x j 

‖ Ax i ‖ 2 · ‖ Ax j ‖ 2 

. (5)

osine metric, Eq. (5) , is adopted for similarity scoring to reveal

he discrimination of the representation. To further ensure the ne-

essity of the low-dimensional projection from A in the ASV com-

unity — i.e., whether lower EER can be achieved — PLDA should

e performed on the transformed space. 

As mentioned previously, the main purpose of this work is to

etter ASV results with improving representation of i-vector while

oosting optimization efficiency against class-imbalance. We pro-

ose a mechanism to attain the goal by exploiting the inherent

tructure in ASV data. Specifically, centroid-aware sampling (see

ection 3.2 ) generates genuinely hard unbiased mini-batch to en-

ure the learning efficiency, and local discriminative objective (see

ection 3.3 ) is introduced to help strengthen local discriminative

odeling on the mini-batches. 

The motivations behind the combination are twofold. First, a

ell-designed sampling strategy is a promising solution to ensure

he training efficiency of models, especially when there is class-

mbalance issue or when there are much more easy examples than

eaningfully hard ones, which would weaken the training sig-

al. Second, a local discriminative objective can effectively absorb

he information from mini-batches of the collected genuinely hard

nstances (e.g., high error) and result in a better representation

pace, leading the sampling process to mine for other confusable

eighbor structures. Therefore, we believe that the integration of

he solutions helps get the best of both worlds. 

.2. Centroid-aware balanced boosting sampling 

In this section, we describe the centroid-aware balanced boost-

ng sampling algorithm, which uncovers the internal structure

ithin ASV corpus to combat class-imbalance for efficient learning.

he pseudocode is shown in Algorithm 1 . 
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Fig. 3. Workflow of experiments with distance metric learning in ASV. 

Algorithm 1 Centroid-aware balanced boosting sampling. 

Require: { x i , y i } N i =1 
; A ; C = { C j = { i | y i = j}} N class 

j=1 
( N class refers to 

the total number of different classes in the corpus); F = { F j ∈ 

{ 0 , 1 }} N class 
j=1 

records whether the class j has been sampled dur- 

ing sampling for a single mini-batch, and index (1: M·D ) records 

data indexes in a single mini-batch; In each mini-batch: M is 

the number of different classes and D denotes the number of 

samples of identical label; N batch refers to the number of mini- 

batches (for computational efficiency and stable training dy- 

namics) 

Ensure: vector of indexes of samples in mini-batches 

index mini −batch 
(1: M·D ) 

1: Perform length-normalization { ̂ r i ← 

A ·x i ‖ A ·x i ‖ 2 } N i =1 
for feature com- 

parability 

2: Initialize the array of sampling flags F i ← 0 (i = 1 , · · · , N class ) 

3: Initialize index mini −batch 
(1: M·D ) and index (1: M·D ) as empty vector 

4: Generate L ← { (i, j, S CENT (C i , C j )) | i, j ∈ { 1 , 2 , · · · , N class } and 

i < j} 
5: Sort L in a descend manner by S CENT (C i , C j ) 

6: while L is not empty and | index mini −batch 
(1: M·D ) | < N batch do 

7: pop one tuple (i, j, S CENT (C i , C j )) from the top of L 

8: if F i == 0 and | C i | ≤ D and | index (1: M·D ) | < M · D then 

9: randomly pick D indexes out of C i and stack them into 

index 1: M·D 
10: F i ← 1 // 1 for being sampled yet 

11: end if 

12: do the same on class C j as lines 8 to 11 

13: if | index (1: M·D ) | == M · D then 

14: Stack index (1: M·D ) into index mini −batch 
(1: M·D ) 

15: re-initialize F i (line 2) and reset index (1: M·D ) as an empty 

vector 

16: end if 

17: end while 

18: return index mini −batch 
(1: M·D ) 

19: // The total computational complexity is : O( N + N 

2 
class 

·
log (N class ) ) 
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The motivation behind Algorithm 1 is: clustering is a natural av-

nue to reveal the inherent data structure, as it can organize data

nto cliques and make it easy to detect the confusing regions, akin

o hard example mining [30,31] . However, it may also incur un-

esirable high computational workload. To avoid extra clustering

omputation cost, we propose three techniques as follows: 

• Centroid similarity of two clusters of different speakers. Given

clusters of two speakers (i.e., C i = { l| y l = i } , C j ), four metrics

[33] in Eq. (6) are available : S GA ( C i , C j ) (group-average), S SL ( C i ,

C j ) (single-link), S CL ( C i , C j ) (complete-link) and S CENT ( C i , C j ) (cen-
troid similarity). 

S SL (C i , C j ) = min 

a ∈ C i ,b∈ C j 
<x a , x b >, S CL (C i , C j )= max 

a ∈ C i ,b∈ C j 
<x a , x b > 

S CENT (C i , C j ) = 

1 

| C i | · | C j | 
∑ 

a ∈ C i 

∑ 

b∈ C j 
<x a , x b > 

S GA (C i , C j ) = 

1 

(| C i | + | C j | )(| C i | + | C j | + 1) 

×

⎡ 

⎣ 

∥∥∥∥∥ ∑ 

a ∈ C i ∪ C j 
x a 

∥∥∥∥∥
2 

2 

− (| C i | + | C j | ) 
⎤ 

⎦ (6)

Fig. 4 illustrates these similarity measures for better under-

standing. Intuitively, different measures uncover different as-

pects of data, and it’s the specific task that determines which

is the best (e.g., S SL ( C i , C j ) for agglomerative clustering; S CL ( C i ,

C j ) for compact cliques detection [27] ). In this case, we choose

S CENT ( C i , C j ). As centroid prior is intrinsic in ASV data [11] and

S CENT ( C i , C j ) can be aware of the centroid of speakers (evidence

in Section. 5 ). That is why Algorithm 1 is called centroid-aware .

• Class-balance boosting sampling with replacement. Essentially, 

class-imbalance decreases the ratio of hard examples as train-

ing progresses, and then models succumb to the biased train-

ing signal. So we’d better focus on the instances of large er-

ror to learn the fastest and eventually the best [34] . To this

end, we generate mini-batches in a pairwise, hard-instance-first

and class-balance manner. In particular, we evaluate S CENT ( C i ,

C j ) of pairs of different speakers (line 4 of Algorithm 1 ), sort

them in descending order (line 5 of Algorithm 1 ), and maintain

class-balance of each mini-batch (lines 6 to 17 of Algorithm 1 ).

Replacement strategy (according to { F j } N class 
j=1 

in Algorithm 1 ) is

also adopted to equip models with the capability to reuse crit-

ical data points adaptively, and consequently, we can boost the

training efficiency further. 

• Random sampling as a regularizer. There is always some over-

fitting or oscillatory training dynamics coming with boosting

sampling. To combat the detrimental effect, we perform ran-

dom sampling (lines 9 to 10 of Algorithm 1 ) in mini-batch gen-

eration. We believe that random sampling can help generate

relatively unbiased mini-batches and make the gradient direc-

tions more explorative (e.g., less overfitting) to mitigate overfit-

ting, working better than nearest neighbor sampling (e.g., NDA

[18] or FNCA [22] ). 

Combine the aforementioned techniques and we propose

lgorithm 1 , the sampling strategy in our optimization process.

he algorithm is able to incorporate useful data structures, i.e.,

lass-balance meaningfully hard mini-batches, into a local adap-

ive metric for deeper optimization while keeping the computa-

ional cost tolerable. We share the same idea with Allen-Zhu et al.

35] that the optimal sampling process corresponds to gathering

ore instances of larger gradient contribution. Furthermore, the
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Fig. 4. Schematic illustrations of the four similarity measures: single-link similarity, complete-link similarity, centroid similarity, and group-average similarity. 
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encoded sampling encourages models to learn in an ensemble

manner for high model stability and low generalization error. 

Class-aware sampling [36] is most closely related to

Algorithm 1 . However, our method is endowed with S CENT ( C i ,

C j ), boosting sampling and replacement strategy, which are useful

techniques in encouraging the optimization to progress. No shuffle

operation is performed on all the mini-batches, as our empirical

results show that keeping the order of mini-batches boosts the

training effectiveness. 

3.3. Objective selection and modifications 

As for the other module of our mechanism, we introduce two

objectives — NCA [12] and MNL [13] — to strengthen local discrim-

inative modeling. The reasons for the choices are twofold. First, a

desirable representation modeling should originate from the inher-

ent structure in data. Being independent of any task-free data as-

sumption means that the model can get rid of the limitations from

the predefined assumptions and mine the internal data structure

directly. Consequently, the representation space from the model

can be consistent with the real data distribution. Second, for the

sake of local discrimination, a desired objective should be aware

of the internal structure in data, neither simply pair-wise [23] nor

triplet-wise [37] . Intuitively, such awareness can lead to a promis-

ing remedy for local discriminative modeling on i-vector space. 

In this case, centroid priori is associated with ASV corpus

[11] and readily available. Hence, NCA and MNL are two promis-

ing objectives to formalize the idea: NCA [12] performs the mod-

eling on neighbor assignment akin to t-SNE, and MNL [13] offers a

promising approach to take advantage of centroid prior. Given one

mini-batch S i in index mini −batch 
(1: M·D ) from Algorithm 1 , their ASV-specific

modifications, AdaNCA in Eq. (7) and LMNL in Eq. (8) , are shown

as follows. 

ˆ A = arg max 
A 

1 

Z 

∑ 

j∈ S i 

∑ 

k ∈{ a | y a = y j ,a � = j}∩ S i 

exp(− 1 
2 σ 2 ‖ A ·(x j −x k ) ‖ 

2 
2 ) ∑ 

l ∈ S i ,l � = j exp(− 1 
2 σ 2 ‖ A ·(x j −x l ) ‖ 

2 
2 
)

with Z = M · D, μ(x i ) = 

1 

D 

∑ 

j∈{ l| y l = y i } 
x j , 

σ = 

1 

Z − 1 

∑ 

j∈ S i 
‖ A · (x j − μ(x j )) ‖ 

2 
2 

s.t. : S i = index mini −batch 
(1: M·D ) [ i ] f rom Alg. 1 (7)

where μ( x i ) refers to the centroid of class of x i , σ is a normal-

ization factor to facilitate local discriminative modeling for a given

mini-batch S i . 

ˆ A = arg min 

A 

1 

Z 

M ∑ 

m =1 

D ∑ 

d=1 

{ 

−log 
exp(− 1 

2 σ 2 ‖ r m 

d 
− μm 

‖ 

2 
2 − α) ∑ 

μ: C (μ) � = C (r m 
d 
) exp(− 1 

2 σ 2 ‖ r m 

d 
− μ‖ 

2 
2 
) 

} 

+

with Z = M · D, r m 

d = A · x 

m 

d , μm 

= 

1 

D 

D ∑ 

d=1 

r m 

d , 

σ = 

1 

Z − 1 

M ∑ 

m =1 

D ∑ 

d=1 

‖ r m 

d − μm 

‖ 

2 
2 

s.t. : x 

m denotes the r epr esentation of d th index of m th class in S i 
d 
S i = index mini −batch 
(1: M·D ) [ i ] f rom Alg. 1 (8

here C ( ·) denotes the class ID of input (given a centroid μ, C ( μ)

efers to the class ID from which we calculate μ); α is the margin

n hinge loss. 

To our knowledge, this paper is the first to leverage MNL in ASV

etting. We choose to adopt MNL without deep learning and pro-

ide mini-batches via Algorithm 1 to work better in ASV scenar-

os. The results help better understand MNL and provide valuable

nowledge for enhancing ASV systems. 

. Experiment configurations 

.1. Corpora usage 

Generally, the corpus for ASV task contains three disjoint sets:

evelopment set, enrollment set and trial set. The development set

s utilized for training UBM, i-vector extractor and others tech-

iques (e.g., LDA, PLDA) in the back-end; the remaining two sets

re used to estimate the generalized performance of a given ASV

ystem. 

Information about the corpus usage is summarized in Table 1 .

ll available corpora are collected to achieve good results, whereas

 few useless (e.g., near silence or laughter) or poor (e.g., strong

cho or noise) utterances are omitted to eliminate their negative

ffects on the training process. 

.2. Experimental setup: front-end and i-vector extraction 

In the experiments, MFCCs of 20 dimensions (19 + energy)

n the window of 20 ms with 10 ms shift are augmented with

heir delta and double delta coefficients, producing 60-dimensional

eature vectors. Then, the feature vectors are subjected to fea-

ure warping. Prior to short-time cepstral mean and variance nor-

alization, silence in recordings is trimmed with VAD. Subse-

uently, gender-independent UBM (full covariance 2048 compo-

ent GMM) and gender-dependent i-vector ( d i −v ector = 600) extrac-

ors are trained. On the basis of i-vector (EER = 6.41% on SRE2008

nd EER = 6.23% on SRE2010), several different metric learning

ethods are performed for improved representation space and

etter ASV results. The code for feature extraction, VAD, and i-

ector processes (e.g., training and extraction) comes from kaldi

38] , a popular toolkit for speech recognition and speaker verifica-

ion. Hence our baseline ASV system is guaranteed to be realistic. 

Male telephone data (det6) from core condition (short2-short3)

n SRE2008 and male telephone data (det5) on SRE2010 are used

n the evaluation, and EER is evaluated based on the scores from

q. (5) . 

.3. Configurations of methods in the experiments 

Given the non-convexity in AdaNCA and LMNL, SGD with mo-

entum is utilized for optimization purpose. For a good initial-

zation of A to encourage convergence of training, we leverage

he orthogonal matrix from LDA to initialize A , similar to Dehak

t al. [16] , since LDA has demonstrated obvious improvements on i-

ector and training stability. Besides, the normalization pre-process

zero-average normalization and length normalization) on i-vectors
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Table 1 

Corpora for different modules during experiments on SRE2008 and SRE2010. 

Corpus UBM T-matrix Back-end for SRE2008 Back-end for SRE2010 

Switch Board 
√ √ 

SRE 2004 
√ √ √ √ 

SRE 2005 
√ √ √ √ 

SRE 2006 
√ √ √ √ 

SRE 2008 
√ √ √ 

Table 2 

Parameter setting of various distance metric learning methods in experiments. 

Method Parameters 

LDA output dimension = 210 

LMNN [23] PCA pre-process, K = 3, μ = 0.5 

ITML [39] γ = 1.0 

NDA [18] K = 8 

JBM [25] PCA pre-process 

AdaNCA LDA-initial, M = 60, D = 4, N batch = 60, λ = 0.14, momentum = 0.9 

LMNL LDA-initial, M = 200, D = 4, N batch = 20, α = 0.5, λ = 0.1, momentum = 0.6 

Table 3 

Comparison of different metric learning methods on i-vector representation and their corre- 

sponding verification performance (EER) on SRE2008 and SRE2010. The dimension of the PLDA 

speaker subspace remains the same as the dimension of input representation. 

Locality Parametric Sampling SRE2008 SRE2010 

modeling distribution method cosine (PLDA) cosine (PLDA) 

i-vector 6.41% (5.61%) 6.23% (1.98%) 

LDA 
√ 

4.69% (4.00%) 2.55% (1.99%) 

LMNN [23] 
√ 

random 8.88% 10.40% 

ITML [39] 
√ 

15.98% 12.75% 

NDA [18] 
√ √ 

nearest 5.49% 2.55% 

JBM [25] 
√ 

6.89% 3.08% 

AdaNCA 
√ 

Algorithm 1 4.38% (4.03%) 2.34% (2.05%) 

LMNL 
√ 

Algorithm 1 4.24% ( 3.84% ) 2.29% ( 1.81% ) 
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hould be performed prior to the training to facilitate optimization

rogress. 

In addition to the proposed mechanism, various metric learn-

ng methods 1 are taken into account (see Table 2 for the spe-

ific parameter setting) in comparison experiments to figure out

he key in optimizing the transformation in ASV. Moreover, we be-

ieve that a wide range of methods, different assumptions (e.g.,

DA, NDA [18] , ITML [39] and JBM [25] ) or representation model-

ng (e.g., LMNN [23] , AdaNCA and LMNL), can collaborate precisely

s exploratory techniques to understand the inherent structure in

ata and provide enlightening insights for further development in

SV systems. 

. Result analysis 

Important information of various metric learning methods (i.e.,

heir properties and ASV results) is organized in Table 3 for com-

arison. To further verify the role of AdaNCA and LMNL in ASV

ommunity, we perform PLDA on the raw i-vectors (to check the

ecessity of low-dimensional projection) and the representations

fter low-dimensional projection (LDA, AdaNCA and LMNL). 

The table shows considerable valuable knowledge on ASV as

ollows: 

• Local structure modeling is critical in improving representa-

tion of i-vector. NDA (variances from nearest neighbors ), AdaNCA

( neighbor assignments with p ij ), and LMNL ( centroid priori within
1 We adopt the code sources online: LDA in kaldi, Matlab toolbox for dimen- 

ionality reduction for LMNN, and Python implementations of metric learning al- 

orithms for ITML. 

 

 

 

 

ˆ μm 

) adopt different local discrimination modeling, and they

generally outperform global discrimination methods in EER.

Specifically, LMNL builds a better representation of i-vector to

enable PLDA to achieve lower EER performance. Therefore, the

proposed mechanism (boosting sampling + local discriminative

modeling) is very competitive and efficient in ASV task scenar-

ios. 

Besides the good results, it’s also observed that when M or

D increases too high or diminishes too small in Algorithm 1 ,

or when B k are randomly collected, the learning efficiency is

poor and the learned models always result in high EER. That

is, the improper exploitation of the hard mini-batches (e.g., too

greedy or too weak) results in poor explorative properties in

SGD progress (e.g., underfitting), and subsequently, models tend

to converge on local minima of high EER. Hence, it is clear that

a proper approach for exploitation of the inherent structures in

ASV corpus requires some effort s and we provide an applicable

mechanism that is worthy of reference. 

• Priority should be given to intra-class variation. In AdaNCA or

LMNL, models prefer to pull instances of the same label closer

than to push instances of impostor farther, as the gradient sig-

nal from neighbors of the target speaker generally surpasses

that from non-target ones. Their successes imply that the pull

force from target speakers makes more contributions to useful

gradient estimates than the push force from non-target speak-

ers does. Intuitively, the push force from a great number of

non-target instances is prone to be contaminated by noise. 

To analyze the contribution of pull or push force quantitively,

we resort to LMNN — L pull ( A ) and L push ( A ) easy the analysis. We

train LMNN in various hyper-parameters ( K ∈ {1, 3, 5}, μ ∈ {0.1,

���, 0.9} and PCA dimension ∈ {100, 110, ���, 400}), and the
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Fig. 5. Box plots of EER of LMNN with different settings of parameters on SRE2008. EER goes with the output dimension of PCA ( Left ) and EER goes with the μ ( Right ). 

Fig. 6. T-SNE visualization on i-vectors from the background set of SRE2010 (green 

points) and the results (blue points) of mean-shift. Although a few mismatches are 

found, large parts of the centroid successfully cover a single local region of i-vectors 

of the same speaker. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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results are shown in Fig. 5 . Two box plots show the influence

of each hyper-parameter on the ASV performance. The tradeoff

value, μ, in Eq. (3) of around 0.3 appears to be the best, sug-

gesting that L pull ( A ) from the same speaker takes more credits

than L push ( A ) from samples of different impostors for promising

results. 

• S CENT ( C i , C j ) reveals more useful internal structures for ASV than

others in Eq. (6) . As noted before, measures in Eq. (6) lead mod-

els to focusing on different aspects of data. Experimental re-

sults show that S CENT ( C i , C j ) exhibits training stability and low

EER. Comparatively, S GA ( C i , C j ) presents higher EER (about 0.2%

higher than S CENT ) and reaches the training convergence at a

slower rate; S SL ( C i , C j ) and S CL ( C i , C j ) seem to be vulnerable to

data noise and even render the optimization oscillatory, result-

ing in EER values just moderately lower than the baseline. 

Fig. 6 also buttress the role of centroid in ASV setting: mean-

shift performs satisfactory in modeling the data distribution

of i-vectors. In spite of some misfits, a large ratio of speakers

properly center around each corresponding centroid. So it is ar-
guable that exploiting centroid prior within the mini-batch gen-

eration or the objective function helps obtain accurate repre-

sentation modeling and promote ASV performance. 

. Further investigation on boosting sampling 

Since the integration of two solutions has proved to be effective

or ASV task, a natural question follows: can we find some equiv-

lence between sampling process (e.g., Algorithm 1 ) and local dis-

riminative objective (e.g., Eq. (3) )? In what follows, we provide

nsights into the behavior of boosting sampling by establishing its

onnections with hinge loss and data augmentation. The insights

an shed a new light on boosting sampling strategy. 

.1. Hinge loss and boosting sampling 

As the visualization in Fig. 7 shows: with the help of sampling

lgorithm, models tend to pour more attention on regions of sim-

lar impostors while ignoring easy-to-classify areas. That is, both

daNCA and LMNL are only triggered by hard instances: AdaNCA

onducts SGD iterations on mini-batches from Algorithm 1 , and

MNL filters index mini −batch 
(1: M·D ) further with hinge loss. Thus, some

onnections exist between boosting sampling strategy and hinge

oss. 

Another evidence comes from the derivative functions: hinge

oss ( Eq. (9) ; α is the margin) and loss function based on the col-

ected set from sampling ( Eq. (10) ) both emphasize on instances

ith large gradients to perform better near the decision bound-

ry. 

 (y ) = 

∑ 

i 

max (0 , α − t i · y i ) , (t i = ±1 , y i f or a classi f ier score ) 

∂� 

∂w 

= 

∑ 

i 

−t i · 1 { α > t l · y l } · ∂y i 
∂w 

= 

∑ 

i ∈{ l| t l ·y l <α} 
−t i ·

∂y i 
∂w 

(9)

 sampling (y ) = 

∑ 

i ∈ col l ected set 

L (y i ) , (y i f or a classi f ier score ) 

∂L sampling 

∂w 

= 

∑ 

i ∈ col l ected set 

∂L 

∂y i 
· ∂y i 
∂w 

(10)
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Fig. 7. A schematic illustration of centroid-aware balanced boosting sampling working in a similar way to hinge loss. T-SNE visualization on i-vectors from SRE2008 ( left ) 

and the corresponding heatmap of frequency data being sampled as SGD iterations proceed ( right ). 

Fig. 8. Data augmentation ( left ) and boosting sampling with replacement ( right ) al- 

low a single training sample to contribute to the learning in different mini-batches. 
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2 We randomly sample approximately 70% of the original frames from each utter- 

ance for 50 copies and extract the corresponding i-vector. Given that the artificial 

i-vectors are closely similar to the original one, the augmentation strategy will not 

change the correct class. 
hey are almost the same when the collected set — collected via a

ertain mini-batch generation algorithm — is { l | t l · y l < α}. Further-

ore, they are also reciprocal: boosting sampling collects mean-

ngful mini-batches from corpus for hinge loss, and hinge loss fil-

ers the mini-batches further (as LMNL does in Eq. (8) ). Many

esearchers integrate hard example mining into their models as

n indispensable step for promising results. For instance, Chen

t al. [40] proposed double-header hinge loss with hard quadru-

lets based on sampling for significantly large margin and compu-

ational efficiency. 

On this basis, a connection is established between boosting

ampling and hinge loss, and it can lead to better design of the

ptimization process. 

.2. Data augmentation and boosting sampling with replacement 

There is also a link existing between boosting sampling and

ata augmentation. This deduction is best illustrated with the two

ase studies in Fig. 8 . In the left branch, each utterance gener-

tes several artificial copies to appear in different mini-batches

ithout changing the labels. In the right branch, boosting sam-

ling with replacement enables the model to adaptively reuse crit-

cal instances. They both allow every instance to contribute to the

raining signal several times in each SGD iteration over the whole

evelopment set. Moreover, boosting sampling with replacement

elps mollify the challenges in designing augmentation (e.g., how

nd how many). Thus, boosting sampling with replacement en-
odes data augmentation into optimization without the need for

 specific augmentation strategy. 

In fact, we tried to augment the extracted i-vectors from ASV

orpus using a class invariant method 

2 , but models suffer from

hose artificial copies and EER decreases. Therefore, boosting sam-

ling with replacement strategy is a preferable choice in ASV and

ther SGD methods, especially no effective augmentation strategy

s available. 

. Conclusion and future works 

In this paper, an effective mechanism is proposed to ensure

earning efficiency against class-imbalance and improve local dis-

riminative modeling on the representation space of i-vector, re-

ulting in competitive EER results. Specifically, we develop the

entroid-aware balanced boosting sampling to gather class-balance

ard mini-batches to pave the way for efficient optimization. Next,

e choose NCA and MNL for representation modeling to absorb

he meaningful information in the mini-batches. The combination

esults in AdaNCA and LMNL. AdaNCA (EER = 4.03% on SRE2008,

ER = 2.05% on SRE2010) and LMNL (EER = 3.84% on SRE2008,

ER = 1.81% on SRE2010) both enjoy strong competitive perfor-

ances and keep the computational workload low at the same

ime. Several typical metric learning methods are also compared

o ensure the conclusion, and comparison experiments offer useful

nowledge for further development in ASV task. Besides, we in-

estigate the behavior of boosting sampling strategy further by es-

ablishing its connections with hinge loss and data augmentation.

he connections can help us design improved optimization process

ith boosting sampling. 

The results in this work can be improved with deep learning

echniques further, and call for additional efforts in designing bet-

er approaches to exploit the intrinsic data structure — e.g., more

ffective hard example mining or objectives using centroid priori

in ASV task. 
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