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Abstract. Image stitching is important in intelligent perception and
manipulation of underwater robots. In spite of a well developed tech-
nique, it is still challenging for underwater images because of their
inevitable appearance ambiguity. For the feature based underwater image
stitching, robust feature correspondence is the key because most other
algorithmic parts are less directly associated with the characteristics of
underwater images. Structural information between feature points may
be helpful for robust feature correspondence, and based on this idea the
paper proposes a robust underwater image stitching method by incorpo-
rating structural cues as additional information, whose effectiveness is
validated on real underwater images. Specifically, the appearance infor-
mation and structural cues are integrated by a labeled weighted graph,
and the underwater image correspondence is formulated by graph match-
ing. After geometric transformation estimation, the underwater images
are finally blended into a wider viewing image.

Keywords: Underwater image · Image stitching · Feature correspon-
dence · Graph matching · Structural information

1 Introduction

Image stitching aims at the combination of two images, or more images, with
overlapped areas into a wide viewing composite, or even a panorama. It plays
a key role in those robot tasks in places presenting a difficult access for human
beings, such as some tasks by underwater robots, e.g. the remotely operated
underwater vehicle (ROV) [1], the autonomous underwater vehicle (AUV) [2], or
the autonomous remotely operated vehicle (ARV) [3]. It is because once a robot
is equipped with a camera, the visual perception of its operating environment
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is usually of interest. Since the common camera equipped to the robots usually
has a limited field of view, image stitching is thus useful to obtain a larger field
of view over the operating area.

Image stitching itself has long been an important topic in image processing
and computer vision. Many methods have come out, which can be roughly cat-
egorized into two types, i.e. the region based methods and the feature based
methods. Early image stitching usually adopts the region based methods, which
usually find a common region in two images through the region appearance
information, e.g. pixel intensity. The ideas of these methods are usually straight-
forward and easy to implement. But at the same time these methods usually
suffer from illumination changes, occlusions, geometric distortions in different
images, and therefore inappropriate for real world images, especially those images
obtained on a mobile robot platform. Recently most researchers in the computer
vision and robot vision communities tend to use the feature based image stitch-
ing methods, because of their robustness to changing factors, such as the above
mentioned changing illuminations, geometric distortions, etc. Particularly, the
emergences of many excellent local features such as SIFT [4] and SURF [5] in
the last fifteen years have promoted the success of the feature based image stitch-
ing, which is used in many real world camera applications, including those on
intelligent mobile phones. It can be said image stitching is a solved problem for
many types of images, especially the images on land.

Different from the images on land, it is still a challenging problem to stitch
underwater images. The main obstacle lies in the inevitable appearance ambigu-
ity of underwater images. It is because the limited light refracted into the water
or shot from the main robot body, would further be scattered or absorbed by
water molecules, plankton, or sands. Such a condition would significantly dete-
riorate the performance of general image stitching methods, even the feature
based methods, because the ambiguous appearance of underwater images often
leads to a poor discriminant ability, or effect lost, of the feature descriptor.

From the algorithmic perspective, the feature based methods mainly con-
sist of three steps, i.e. feature correspondence, transformation estimation, image
blending [6], where the combination of feature correspondence and transforma-
tion estimation is also known by the term image registration. It can be noticed
that the latter two steps are less directly related with the discriminant ability of
the feature descriptor, which implies that once the feature point are successfully
corresponded, the stitching of the underwater images are almost the same with
the stitching of the images on land. In other words, robust feature correspondence
of the underwater images is the key for their stitching. Since only the appearance
information is inadequate, introducing additional information or incorporating
additional constraints is a intuitive way to improve the robustness of feature cor-
respondence on underwater images. The structural information between feature
points may be an effective choice [7]. Because by incorporating the structural
constraints it requires that the structures extracted from the feature point sets
should be consistent while maintaining the appearance similarity, which may
help to avoid abnormal feature assignments.
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Based on these understandings, this paper proposes a roust underwater
image stitching method by introducing additional structural information. Specif-
ically, the appearance information and structural information are integrated by
a labeled weighted graph model, and the feature correspondence between two
underwater images is formulated and solved by graph matching, which is followed
by outlier assignment refinement. After the estimation of geometric transforma-
tion from the inlier assignments, the underwater images are finally blended into
a wider viewing image.

The remaining manuscript is organized as follows: After the discussion of
related works in Sect. 2, the proposed underwater image stitching method is
introduced in Sect. 3, which is followed by the experimental evaluation in Sect. 4.
Finally Sect. 5 concludes the paper.

2 Related Works

In this section, we first give some discussions on recent image stitching algo-
rithms, and then introduce their applications to underwater images.

2.1 Image Stitching Algorithms

In recent years, the feature based methods have overtook the area based methods
as the most common image stitching algorithms. Their success can be attributed
to the robustness to changing factors, such as the geometric distortions. A bench-
mark algorithm is the famous scale invariant feature transform (SIFT) feature
[4] based image stitching method. Then researchers have applied many types of
local features to the image stitching task, of which some representative features
include the speeded up robust feature (SURF) [5] feature, the binary robust
independent elementary features (BRIEF) [8], the shape context feature [9], etc.
Most of these algorithms are dedicated to image stitching tasks with general
purposes, and get superior performance on common natural images, especially
images on land. Only a few researchers generalize them to the underwater images,
as introduced below.

2.2 Underwater Image Applications

In the image stitching method proposed by Leone et al. [10] for underwater envi-
ronment, the Harris corner point detector with certain specific improvements
is used to extract the feature points, and the texture information is used to
built the feature point descriptor. Then the correspondence between two feature
point sets which represents two underwater images is established by matching
the feature point descriptors. The homography transformation, i.e. the transla-
tions, rotations and scaling effects, between two underwater images is estimated
based on the correspondence, and then stitched image is obtained. A similar
scheme is used by Elibol et al. [11] in their underwater image stitching work, or
called by underwater optical mapping in their work. Differently, they adopted
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the SIFT feature point and descriptor extracted from the underwater images,
of which the outlier assignments are refined by the famous random sample con-
sensus (RANSAC) technique. In the real time image stitching method proposed
by Ferreira et al. [12], after the binary robust independent elementary features
(BRIEF) based motion estimation, the SURF is used in the feature correspon-
dence step. Garcia-Fidalgo et al. [13] in their underwater image stitching method
used a feature which is a variant of BRIEF in the framework of bags of words
(BoG).

Generally, the proposed method follows a similar scheme with the above
methods, but incorporates structural constraints in the feature correspondence
step, which is useful against the ambiguous appearance of underwater images.

3 Underwater Image Stitching

The proposed underwater image stitching method is introduced in this section.
As mentioned above, robust feature correspondence is particularly important for
underwater images, which is realized by incorporating structure cues beyond the
appearance information in this paper.

A feature point extracted from an underwater image is represented by a
weighted labeled graph G to integrate the appearance information and the struc-
tural relations between feature points. Almost any of the well known local fea-
tures could be adopted as the feature extractor and descriptor, e.g. Harris corner
detector, SIFT extractor and descriptor, SURF extractor and descriptor, BRIEF
extractor and descriptor, etc., which implies that the incorporation of structural
cue lowers the demand of discriminant feature extractor and descriptor. Then
it is straightforward to represent the feature set by a labeled weighted graph by
representing each feature point by a graph vertex, representing the link between
a pair of feature points by a graph edge, describing the vertex by a so called
label using the feature descriptor, and describing the edge by a so called weight
using the spatial relation measure, e.g. length and orientation of the link. Thus
the feature correspondence problem can by assigning the vertices in two labeled
weighted graphs, abbreviated by graph below, which problem is known as graph
matching.

Mathematically, the collection of the weights in a graph G can be represented
by weighted adjacency matrices Gi, i = 1 · · · d. The number of weighted adja-
cency matrices d depends on the weight dimension. For instance, when using the
distance between feature points, i.e. the link length, as the edge weight, only one
adjacency matrix G1 is enough for a graph, where each non-diagonal entry G1

ij

denotes the distance between the ith and j vertices in G. The pre-calculated dif-
ferences between vertex labels are stored in a label cost matrix L ∈ R

M×N where
Lia denotes the distance between the label of the ith vertex in G and that of
the ath vertex in H. Given two graphs G and H of sizes M and N respectively,
their matching can be represented by an assignment matrix X ∈ {0, 1}M×N ,
where Xia = 1 means that the ith vertex in G is assigned to the ath vertex in H.
If the one-to-one matching assumption is adopted, then the assignment matrix
becomes a so called partial permutation matrix, defined by



Robust Underwater Image Stitching Based on Graph Matching 525

X ∈ D :=

{
X|

∑
i

Xia ≤ 1,
∑
a

Xia = 1,Xia = {0, 1}
}

. (1)

Without loss of generality, it is assumed that M ≤ N hereafter. Based on
the above the mathematical representations, the correspondence result can be
obtained by minimizing the following graph matching objective function:

X∗ = α min
X

d∑
i=1

‖Gi − XHiXT ‖F + (1 − α)tr(LTX), (2)

s.t X ∈ D.

The optimization problem is an NP-hard high order combinatorial optimization
problem with factorial computational complexity, for which the approximate
method are necessary. We use the graduated nonconvexity and graduated con-
cavity (GNCCP) [14], a continuous method based combinatorial optimization
framework, to approximately solve the problem. The utilize the GNCCP, the
discrete domain D should be relaxed to its domain C, defined by

C :=

{
X|

∑
i

Xia ≤ 1,
∑
a

Xia = 1,Xia ∈ [0, 1]

}
. (3)

And the GNCCP also makes use of the property that DD is exactly the extreme
point set of C. Specifically, the GNCCP first approximates the original optimiza-
tion problem (2) by a relatively simple convex optimization problem over the
continuous domain C, and step by step implicitly transforms it to be a concave
optimization problem over C. Note by a clever design both the above convex
optimization problem and concave optimization problem have exactly the same
global optimum as (2) over the discrete domain D. And the optimum point of
the concave optimization problem over a convex set lies in its extreme point set,
i.e. D by the property mentioned above. Therefore a discrete assignment matrix
could be automatically obtained when the GNCCP terminates at the concave
optimization problem, which usually exhibit superior performance.

In each step of the GNCCP process, the optimization problem is solved by
the conditional gradient descent method [15,16], also known as the Frank-Wolfe
algorithm, where the gradient of the original function (2) is needed, which is

∇=α

d∑
i=1

(2X(HiTXTXHi+HiXTXHiT )−2(GiXHiT +GiTXHi))+(1−α)L.

(4)

The solutionX∗ indicate the assignments between feature points in two under-
water images. As mentioned in Sects. 1 and 2, once these assignments obtained,
the transformation between the images ca be estimated. Before the transforma-
tion estimation, we first employ the maximum likelyhood estimation sample con-
sensus (MLESAC) [17] to refine the assignments, or say to remove the outlier
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assignments. The MLESAC is a variant of the famous RANSAC [18]. Different
from RANSAC, it aims at the solution which maximizes the likelihood instead of
the number of inliers, and is particularly appropriate for the estimation of complex
surfaces or more general manifolds from points [17]. Then the projective matrix
P between two images are estimated based on the refined inlier assignments. If a
frame sequence sampled from for example a video clip are provided, the projective
matrices are estimated sequentially following a similar way in [19].

Once the cascaded estimations of the projective transformation between
underwater images are obtained, the final step is to warp all the images accord-
ing to the transformation estimation and blending them together [6]. In order
to reduce the visual influence of the seam, the stitched images are blended by
rendering the overlapped area by the average intensities from both images.

4 Simulations

The proposed scheme is first evaluated on an underwater image sequence shot
at the Valldemossa harbour seabed (Mallorca, Spain) [13]. This dataset contains

Fig. 1. Preceding 4 samples of underwater image sequence shot at Valldemossa harbour
seabed.

SURF based method The proposed method

Fig. 2. Stitching result on underwater image sequence shot at Valldemossa harbour
seabed.
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Fig. 3. Preceding 4 samples of underwater images shot by IFREMER.

SURF based method The proposed method

Fig. 4. Stitching result on the underwater images shot by IFREMER.

201 images with 320×180 pixels, which forms a loop around a central point. Some
image samples of the dataset are shown in Fig. 1. In each image the key points are
extracted by SURF [5] together with the descriptors. The graphs are constructed
as described in Sect. 3. Specifically, the key points are represented by the graph
vertices, with the SURF descriptor as the vertex labels. The graph structure, i.e.
the set of the graph edges, are built by the Delaunay triangulation technique [20].
The length and orientation of each link in the graph structure are used as the
two-dimensional edge weight. The proposed method is compared with the SURF
based stitched method which does not consider the structural relation between
key points. Because of the memory limit of the our computer, the preceding 40
images of the total 201 images are stitched, as illustrated in Fig. 2. It can be
observed that the proposed method illustrates more smooth transition across
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the images. It is directly attributed to the accurate image registration, which
is essentially resulted from the robust feature correspondence by incorporating
structural cues.

The proposed method is also applied to another underwater dataset1 sampled
from the video released by French research institute for exploitation of the sea
(IFREMER), which is shot along the Mid-Atlantic Ridge in the North Atlantic
Ocean. Some samples are illustrated in Fig. 3. The experimental setting are the
same with the above experiment. The stitching result on the preceding 40 images
of the total 64 images are given in Fig. 4, which validate the effectiveness of the
proposed method.

5 Conclusion

This paper aims at the robust image stitching in the underwater environment,
proposes to introduce the structural information to tackle the appearance ambi-
guity problem, a specific problem for the underwater images. Simulations witness
the effectiveness of our idea. However, there may be seams or moving objects
caused ghosting areas by the current version of proposed method. Therefore, we
intend to make more investigations in the blending step in our future work.
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