
 
 

 

 

Abstract—Positioning rovers with a large distance is an 
important mission of the ground tele-operation center, which 
can decrease or eliminate the position errors accumulated in 
continuous measurement and multiple calculations, and 
facilitate the rover to arrive at faraway scientific probing targets. 
Currently, the most representative high-accuracy positioning 
methods are implemented with multi-camera photogrammetric 
model, which takes the homonymous point pairs extracted from 
images as constraint points of camera bundles to establish 
observation equations. The amount, spatial distribution and 
matching accuracy of homonymous point pairs will affect the 
effectiveness and accuracy of rover positioning. However, in the 
case of long-range moving, the images acquired by rover in two 
positions with a fairly big distance are difficult to match due to 
existence of large scale and rotation transformations, reflected 
view of the same scenery and different illumination conditions 
between acquired images, and a lot of outliers will be generated. 
In this paper, we introduce projective transformations, which 
are approximately calculated with imaging relations of two 
positions, to tackle the outlier elimination problem, and design 
an iterative algorithm to reduce the outliers and refine the 
positioning results simultaneously. With this method, the initial 
approximate positioning information of the rover can be utilized 
to constrain the range of each feature point projected to another 
image, and outliers are reduced gradually, preserving almost all 
the inliers. Finally, several experiments are conducted with 
lunar surface images acquired by Chang’E-3 rover, which 
witness the validity of the proposed method. 

I. INTRODUCTION 
ETERMINATION of its own position and orientation is 
very important to a lunar rover, which guarantees the 

rover reach the target to be probed and accomplish the 
probing tasks. Due to the limitation of rover on-board 
processing capacity, accurate localization is usually 
implemented by the ground tele-operation center. For 
example, in the China’s ChangE-3 mission, positions of all 
navigation station that the “Yutu” rover reaches are calculated 
and estimated by the ground tele-operators. Different from 
positioning on the earth where a lot of priori knowledge on 
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the environments exists and the GPS-like devices can be 
easily used to acquire accurate positions in a long-term travel, 
position determination of the lunar rover should depend on 
the very limited information acquired by the rover and 
transmitted to the ground tele-operation center. Especially in 
the case of long-range moving, the images transmitted to the 
ground may be acquired by rover in two positions with a 
fairly big distance, and there could exist large scale and 
rotation transformations, reflected view of the same scenery, 
and different illumination conditions between acquired 
images, which makes the image correspondence work very 
difficult. How to use these images, associated with some 
other remote sensing information, to accomplish accurate 
localization is a hard but very crucial task for long range 
exploration of the rover. 

Currently, many researchers have proposed typical 
positioning models to solve the problem, mainly include 
spatial intersection [1, 2], visual odometry [3, 4] and bundle 
adjustment [5, 6]. These methods have been applied to lunar 
and mar exploration, successfully guiding rovers move in a 
long-distance range. Among these methods, localization 
based on bundle adjustment model can take ground control 
points, tie points, camera calibration parameters, and various 
distortion parameters into account to iteratively decrease the 
position error to a low level [6], consequently generating 
more precise results. In the condition that camera calibration 
parameters and various distortion parameters are known, how 
to exactly extract and recover control points and tie points 
from rover-acquired images becomes the key issue of rover 
localization. 

Over the past few decades, there have been many concerns 
on vision-based localization of rovers in unstructured 
environments and major advances have occurred in guiding 
an extra-tellurian patrolling exploration. The most 
representative cases are the vision odometry systems installed 
in Spirit, Opportunity, and Curiosity Mars rovers [7, 8]. The 
system computes an update to the six-degree-of-freedom 
rover pose by finding features in a stereo image pair and 
tracking them from one frame to the next. In their method, an 
interest operator tuned for corner detection (e.g. Forstner or 
Harris) is applied to an image pair, and pixels with the highest 
interest values are selected. Each selected feature's 3D 
position is computed by stereo matching, which is done 
strictly along the epipolar line with only a few pixels of offset 
buffer above and below it. Similar works are also done by 
others [3, 4], which uses different methods in the stereo 
matching and meanwhile brings the rover motion-predict 
model into feature tracking. In the stereo matching, 
normalized correlation method is adopted to find the 
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corresponding location for each of selected features from the 
right image of the stereo. In the feature tracking, the prior 
knowledge of the approximate robot motion is used to 
constrain the search space, which improves the tracking 
efficiency.  

Another typical example is the ExoMars Rover [9], which 
is produced by the European Space Agency (ESA) and aims 
to characterize in detail the Mars biological environment in 
preparation for future missions, including human exploration. 
In its vision-based localization, the Scale Invariant Feature 
Transform (SIFT) features are chosen as the visual landmarks 
to compute relative movement of the camera. When the rover 
moves around the Mars surface, many visual landmarks are 
observed from different angles, distances or under different 
illumination, and are automatically identified and tracked 
through SIFT-based matching algorithm. However, for the 
rover that moves station by station with a large distance, it is 
very difficult to get a robust correspondence for key points in 
the two images that have large scale and rotation 
transformations and very different illumination conditions, 
which requires new exploration on feature matching. 
Traditional appearance matching algorithms, like SIFT and 
its derived methods, often fail in handling the above situations. 
Some improved appearance matching algorithms, which take 
the affine transformation of images into account, such as 
affine SIFT, perform better than traditional ones in handling 
large-scale transformation problem, but they are still not able 
to obtain satisfactory results in tackling the above situations. 

In this paper, we develop a novel matching method that 
first utilizes the imaging relation contained in the large-span 
moving of the rover to approximately compute the 
homography transformation between large-deformed images, 
and then takes transformed images as transitive ones to 
achieve precise matching. With this method, the inaccurate 
positioning information outputted by the internal navigation 
unit of rover can be utilized in the image matching, which 
reduces the probability of mistaken deletion when many 
outliers exist and improves the accuracy and stability of the 
rover positioning. 

The rest parts of this paper are arranged as follows. In 
Section II, the framework of lunar rover localization is 
introduced and the bundle adjustment model is reformulated 
briefly. In section III, an iterative algorithm an iterative 
algorithm that gradually reduces the error-matched points and 
simultaneously refines the positions of the rover is proposed 
and presented in detail. Experiments to validate the above 
methods are given in Section IV, and finally conclude this 
paper. 

II. LOCALIZATION FRAMEWORK OF LUNAR ROVER 
In our previous work [10-12], we presented a localization 

framework for the lunar rover in a large-span moving mode, 
which utilized homonymous point pairs extracted from 
images to build bundle adjustment model, and also gave the 
nonlinear squared least algorithm to solve the model. In this 
section, we first introduce the localization framework and 
reformulate the adjustment model briefly, and then analyze 
how the amount, spatial distribution and matching errors of 
the homonymous points affect the correctness and accuracy 

of the localization result. The localization framework is 
illustrated in Fig. 1. 

 
Fig. 1.  Rover localization framework based on bundle 

adjustment model and image correspondence 
The bundle adjustment model for rover localization is 

summarized as an optimization problem, which aims to 
minimizing the square of 2L -norm of the deviations between 
the homonymous points extracted from images and the points 
calculated by perspective projection equations, defined as 
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where T
ijijij vu )1,ˆ,ˆ(û  denotes the point projected to the i-th 

image plane by the j-th observation point, iju  denotes the 

point extracted from the i-th image, ),( iii θtΩ  denote the 
translation and rotation of the i-th camera with respect to the 
world frame, and M and N denote the amount of cameras and 
observation points. ijû  is calculated with the imaging model 
of  perspective projection as 
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respectively denote the homogenous coordinate of the j-th 
surface point in the camera frame and the world frame, 

33RM p
ij  is the perspective transform matrix from j-th 

surface point to i-th image plane, and 33RMij  is the 
distortion transform matrix with respect to the coordinate of 
the projection point, written as  
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where u
if  and v

if  denote the focal length in pixel resolution, 
and ),( 00 vu  is the coordinate of the image principle point, 
and iju  and ijv  are the offset of the projection point due to 
radial distortion, decentering distortion and thin prism 
distortion. 

The optimization problem of Equ. (1) can be linearized by 
Taylor series expansion of the nonlinear function 

),(ˆ w
jiij XΩu , convert to a linear least square problem as 
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where )36(2),( NMMNRXΩJ  is the Jacobi matrix, and 
12MNRb  is the error vector, and they are defined as 

]),(ˆ[],[ˆ),( jiij
TT XΩuXΩUXΩJ , 
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 Thus,  the optimization problem of Equ. (1) can be solved 
by iteratively solving Equ. (3) and updating Ω̂  and X̂  with 

)ˆ,ˆ(),()ˆ,ˆ( XΩXΩXΩ . 

III. INTRODUCING PROJECTIVE TRANSFORMATION TO 
LUNAR IMAGE CORRESPONDENCE 

A rover moving on the lunar surface always uses inertial 
navigation information to roughly estimate its position, which 
is completed before visual localization and usually 
considered an inaccurate input of visual localization. 
Furthermore, the position information is also capable of 
estimating an approximate projective transformation for 
images acquired by the rover in two different places, and the 
projective transformation can be utilized to determine the 
correctly matched points and reduce the probability of 
mistaken deletion when many outliers exist. In this section, 
we aim to find the homography transformation between the 
images acquired in different places based on the perspective 
projection transformation of Equ. (4) and evaluate the 
correctness of each matched point pair. Then, with correctly 
matched points, we refine the rover position and re-evaluate 
the point pairs until convergence. The calculation of 
approximate homography transformation and the interactive 
refinement of matched points and localization results are 
separately presented in two subsections. 

A. Homography Transformation Calculation 
Assume that the lunar rover stays at two different positions, 

and corresponding left-camera poses (in the world frame) are 
TTT ][ 111 θtΩ  and TTT ][ 222 θtΩ , respectively. From the 

Equ. (2) in subsection II, we have that 
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and transformation vector of the camera frame with respect to 
the world frame, w

ji
c
ijz Xr 3  is the z-coordinate of the lunar 

surface point in the camera frame. 
Denote by 1I  and 2I  the left images acquired in the 1st 

and the 2nd positions, and suppose that the overlapped region 
is nearer to the 1st position than the 2nd position, which 
means that the resolution of the overlapped region in the 
image 1I  is higher than that in 2I . We aim to find the 

homography transformation from the image 1I  to the image 

2I  based on the projection relations of Equ. (6). However, 
since the coordinates of observation points in the world frame 
could not be uniquely determined from the image points of 

1I , we are not able to deduce an explicit expression for the 
homography transformation. In order to establish the 
approximate projection relationship from the image 
coordinate ijû  to the world coordinate w

jX , we assume that 
the lunar surface is perpendicular to z-axis of the world frame 
and the lunar surface point w

jX  lies on the plane 0zz w . 
Thus, we can solve the linear matrix equation of Equ. (6), and 
obtain that  
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where ],,[ zyx aaaA , ],,[ zyx bbbB , and they are defined 
as 
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Thus, the coordinate of the point projected by w
jX  on the 

image 2I  is calculated as 
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According to Equ. (5) and (6), we can project the image 1I  

to the image plane of 2I , generating a new image pI1  that 

has a similar scale with the image 2I . Each point p
j1û  on the 

image pI1  is corresponded to one point j2û  on the image 2I , 

and can be mapped back to j1û  on the image 1I . Thus, the 
homography transformation matrix can be obtained by 
solving the following optimization problem  

n

j
j

p
j

p
jj

1

2
221

2
211 | |ˆˆ| || |ˆˆ| |minarg uuuuHH

H
,        (7) 

where j1û  is randomly picked around the whole image 1I , 

j2û  is calculated by Equ. (6), 4n , and ][ 321 hhhH  
can be estimated by minimizing algebraic distance [13, 14] as 
follows.  

Denote by TTTT ][ 321 hhhh the 9-vector of the entries of 
H , and the problem of Equ. (7) is formulated as  
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where )ˆ( 2 juG is a cross-product matrix, which has the 

property that jjjj 1212 ˆ)ˆ( uuuuG for any j2û  and j1û , 
and  is the Kronecker product between matrices, from 
which yields that jjj

T
j 1221 ˆ)ˆ()]ˆ(ˆ[ uHuGhuGu . Singular 

value decomposition (SVD) to the matrix )ˆ(ˆ 21 j
T

j uGu can 
approximately compute the vector h  as the column of right 
matrix associated with the smallest singular value.

 
B. Interactive Refinement of Match and Localization 
In this subsection, we will first introduce how to utilize the 

homography matrix to delete error-matches points (ourliers), 
where inaccurate positioning information of the rover is taken 
as initial constraints. Then, an iterative algorithm called 
IRML (interactive refinement of Match and Localization) is 
proposed, which gradually refines the localization results 
with preserved point pairs and simultaneously reduce the 
outliers until convergence. Outlier elimination and iterative 
algorithm are presented in detail.   

With the homography matrix H known, the distance 
constraints for correctly matched points (inliers) is defined as 

Njjjjj ,,1,| || | 212 Huu ,                  (9) 

where j1u  and j2u  denote the matched points of two left 

images 1I  and 2I , and j  is calculated as follows. 
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Matched points not satisfying the distance constraints of 
Equ. (9) will be taken as outliers and be eliminated. Thus, we 
design an iterative algorithm to gradually reduce the outliers 
and simultaneously refine the positions of the rover. First, 
delete outliers not satisfying Equ. (9) from the matched point 
set. Second, and take the remaining point pairs to compute the 
Jacobi matrix J  and the rover positions. Then, update the 
homography matrix H  with Equ. (7), associated with the 
new rover position. The above process is repeated until 
convergence. The algorithm is detailed as follows.  
Algorithm 

Inputs 
iI : Left image of the i-th position. 
r
iI : Right image of the i-th position. 

η : Accuracy of positioning results, denoted with 
percentage of moving distance. Initially, we set 
η=0.1. 

Immediate variables 
pI1 : Projection of I1 on I2. 
H : Homograpy transformation matrix from I1 to I2. 
ξ : Distance constraint to eliminate error matched 

points. 

iU : The set of matched feature points of iI . 
p
iU : The set of feature points projected by iU . 
r
iU : The set of matched feature points of r

iI . 

jδ : Distance between point of pU1  and that of 2U . 
Output 

it : Position of left camera at the i-th station. 
iR : Rotational matrix between the frame of left camera 

and the world frame at the i-th position. 
Repeat 

Step 1 
Project: )( 211 III p  with Equ. (5) and (6); 

Select }ˆ{ 11 Iu i and }ˆ{ 11
pp

i Iu , mi ,,1 , 4m , 

satisfying p
ii uu 11 ˆˆ , and calculate H and )(j  
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with Equ. (7) and (10). 
Step 2 

Get }{ 11
p
j

p uU  and }{ 22 juU , Nj ,,1  from 
pI1  and I2 by matching feature points; 

Project: 11 UU p  by p
jj uHu 1

1
1 . 

Step 3 
For j=1 

If,  
Delete ju1  and ju2  from 1U  and 2U . 

End If 
End For 
Update H , j  and  with Equ. (7), (9) and (11). 

Step 4 
Get rU1

rU 2  from rI1 and rI 2  by stereo matching. 
Step 5 

Calculate 2t  and 2R  by solving localization model 

of Equ. (1) with *
1U *

2U rU1  and rU 2  as inputs. 

Until 12 | || | t  or 2  or 3max j . 

IV. EXPERIMENTS 
In this section, we conduct experiments with lunar images 

that are acquired by “Yutu” rover in the Chang’E-3 mission. 
Totally two classes of experiments are presented, respectively 
show the improvement on selection of correctly matched 
points, and accuracy assurance of localization results in 
different calculations.  

We choose three groups of images acquired at different 
adjacent stations to conduct rover localization experiments. 
The station number and corresponding left-camera images are 
shown in Table I. 

 
Apply the IRML algorithm to the three groups of images, 

and iteratively calculate the localization results and reduce 

error-matched points (outliers). Take the S1-S2 stations for 
example, each step of the iterative process is illustrated in Fig. 
2, where jm max , jmean , Nos and Nis respectively 
denote the number of outliers and inliers. Note that in each 
step, the green lines connect matched points and white lines 
draw out the projection region of image I1 on image I2. 

 
Fig. 2 Procedure for IRML algorithm applied to S1-S2 stations 

 
From Fig. 2, we can see that the left images of S1-S2 

stations initially contain nearly 40% outliers. As the offset 
rate  decreases, the outliers are gradually reduced until all 
the outliers are eliminated. Meanwhile, the pose of the rover 
at station S2 is refined until 02.0  and 02.0| || | 2t . 
Similarly, the main results of the other two groups are briefly 
presented in Table II, where the iterative times (ITs), number 
of preserved feature points, images with matched points and 
final positioning accuracy are contained.  

 
From Fig. 2 and Table II, it follows that, although there are 

many outliers in the matched points, even more most of 
matched points are outliers, the IRML algorithm can 
effectively handle the cases, and successfully separate inliers 
from matched points. The IRML algorithm can converge 

TABLE I 
THREE GROUPS OF IMAGES FROM DIFFERENT STATIONS 

Group Stations and Images 

1 

Station: S1 Station: S2 

  
left             right 

  
left             right 

2 

Station: S3 Station: S4 

  
left               right 

  
left              right 

3 

Station: S5 Station: S6 

  
left                 right 

  
left                right 

TABLE II 
THE MAIN RESULTS OF IRML ALGORITHM FOR S3-S4 AND S5-S6 STATIONS 

stations ITs η ξm δ Nos Nis ||Δts|| 

S3-S4 4 0.0132 28.72 1.82 1267 458 0.0059 

S5-S6 2 0.0134 32.81 2.40 979 387 0.0048 
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within several steps, and the localization results are iteratively 
refined. In order to demonstrate the ability of IRML algorithm 
in assuring accuracy of localization results, we repeated four 
times of calculations for each pair of stations, and get the 
position results in Table III. 

 

V. CONCLUSION 
This paper presents a method of localizing the lunar rover 

within local coordinate system using lunar surface images 
acquired by rover at two adjacent positions. The method is 
comprised of two main parts. One is constructing pose 
determination model for the rover and solving the model by 
minimizing the errors between the image points and the 
points projected from lunar surface to the image plane. The 
other is an iterative algorithm on the interactive refinement of 
matched points and localization result. 

Since the pose determination model is the basis of rover 
localization, we first consider the specificity contained in the 
large-distance traverse of the rover, and derive a general 
model which integrates the rover transition, camera 
calibration, matched images points, and conversion between 
different frames together. From the deduction of the model, it 
is concluded that the accuracy of the rover pose is mainly 
influenced by the matching results of feature points extracted 
from the image pairs. Especially when the extracted feature 
points are very few, the pixel offset of feature matching will 
greatly influence the localization results. However, in the 
large-distance traverse of the rover, images acquired in two 
adjacent positions are very different in scale, rotation and 
illumination conditions, and this makes accurate matching 
very difficult. 

In order to tackle the above problem, an iterative 
localization algorithm is proposed, which gradually reduce 
the outliers and simultaneously refines the localization results 
with preserved point pairs until convergence. Based on this 
method, we conduct two classes of experiments. One is to 
validate the efficiency of the novel matched method in 
selecting correctly matched points from a point set with many 
outliers included, and the other is to demonstrate the accuracy 
assurance of localization results after emerging the new 
matching method. Although the method of this paper 
performs better than that shown in Chang’E-3 mission, there 
are still some unpleasant aspects needing consideration in our 
future works, such as how to use the structural information to 
improve the matching performance. Also, some very 
interesting problems, such as matching two images acquired 
in reflected views, need further investigation and more 
attentions in our future works.  

REFERENCES 
[1] Y. Huang, X.G. Hu, P.J. Li, J.F. Cao, D.R. Jiang, W.M. Zheng and M. 

Fan, Precise Positioning of Chang’E-3 Lunar Lander Using a 
Kinematic Statistical Method, Chinese Science Bulletin, 2012, 57(35): 
4545-4551. 

[2] K. Di, A Review of Spirit and Opportunity Rover Localization 
Methods, Spacecraft Engineering, 2009, 18(5): 1-5. 

[3] C.F. Olson, L.H. Matthies, M. Shoppers and M. Maimone, Robust 
Stereo Ego-motion for Long Distance Navigation, IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition, 
2000, 2: 453-458. 

[4] C.F. Olson, L.H. Matthies, M. Shoppers and M. Maimone, Rover 
navigation using stereo egomotion, Robotics and Autonomous 
Systems, 2003, 43(4): 215-229. 

[5] R. Li, S.W. Squyres, R.E. Arvidson, et a1, Initial results of r over 
localization and to pographic mapping for the 2003 Mar s exploration r 
over mission, Photogrammetric Engineering and Remote Sensing, 
Special issue on Mapping Mars, 2005, 71(10): 1129-1142. 

[6] K. Di, F. Xu, J. Wang et a1, Photogrammetric processing of rover 
imager y of the 2003 Mars Exploration rover mission, I SPRS Journal 
of Photogrammetry and Remote Sensing, 2008, 63: 181-201. 

[7] Mark Maimone, Yang Cheng, and Larry Matthies, Two Years of Visual 
Odometry on the Mars Exploration Rovers, Journal of Field Robotics, 
vol. 24, no. 3, pp. 169-186, 2007. 

[8] Yang Cheng, Mark Maimone, and Larry Matthies, Visual Odometry on 
the Mars Exploration Rovers, IEEE Conference on Systems, Man and 
Cybernetics, 2005. 

[9] S. Se, T. Barfoot and P. Jasiobedzki, Visual Motion Estimation and 
Terrain Modelling for Planetary Rovers, The 8th International 
Symposium on Artificial Intelligence, Robotics and Automation in 
Space, ESA SP-603, 2005. 

[10] C.K. Liu, B.F. Wang, J.S. Shen, G.S. Tang et al., A Positioning Method 
of Chang’E-3 Rover in Large-span States Based on Cylindrical 
Projection of Images, Proceeding of the 11th World Congress on 
Intelligent Control and Automation, 2014, 2475-2480. 

[11]  C.K. Liu, B.F. Wang, G.S. Tang, et al., Positioning Technology with 
Multi-source Information Integrated in the Chang’E-3 Lunar Landing 
and Exploration, International Astronautical Congress, 2014. 

[12] C.K. Liu, B.F. Wang, J.H. Su, et al., A Novel Matching Method of 
Large Deformed Images for Localizing Lunar Rovers with Large 
Distance, International Astronautical Congress, 2015. 

[13] R.I. Hartley and A.Ziserman, Mutiple View Geometry in Computer 
Vision, Cambridge University, Cambridge, 2nd edition, 2003. 

[14] M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis and 
Machine Vision, CL-Engineering, 3rd edition, 2008. 
 

TABLE III 
THE FINAL POSITION RESULTS OF IRML ALGORITHM REPEATING 4 TIMES 

Times Positioning Results 
S1-S2 S3-S4 S5-S6 

1 (8.147,1.449,1.942) (6.172,0.122,1.989) (0.663,-4.934,-0.377) 
2 (8.155,1.446,1.945) (6.190,0.129,1.992) (0.670,-4.937,-0.376) 
3 (8.136,1.452,2.007) (6.161,0.136,1.983) (0.668,-4.932,-0.375) 

4 (8.149,1.438,1.972) (6.159,0.121,1.935) (0.668,-4.936,-0.372) 

Δmax 0.0107 0.0418 0.0048 
Δmax/Δt 0.13% 0.65% 0.11% 

Δmax=maxi||(t1 + t2+ t3+ t4)/4-ti||2, Δt: distance between stations 
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