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Abstract. In reinforcement learning (RL), the guided policy search
(GPS), a variant of policy search method, can encode the policy directly
as well as search for optimal solutions in the policy space. Even though
this algorithm is provided with asymptotic local convergence guarantees,
it can not work in a online way for conducting tasks in complex envi-
ronments since it is trained with a batch manner which requires that
all of the training samples should be given at the same time. In this
paper, we propose an online version for GPS algorithm, which can learn
policies incrementally without complete knowledge of initial positions for
training. The experiments witness its efficacy on handling sequentially
arriving training samples in a peg insertion task.
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1 Introduction

Reinforcement learning (RL) provides robotics a framework with a set of tools
for the design of sophisticated and hard-to-engineer behaviors to interact with
realistic world. It enables a robot to autonomously discover an optimal behavior
through trial-and-error interactions with its environment. As an important field
in reinforcement learning, policy search methods have been used in robotics for
a wide range of tasks, such as manipulation [1], grasping [2], and locomotion [3],
which scale RL into high dimensional continuous action spaces by using parame-
terized policies to avoid bootstrapping introduced by traditional value-function
approximation. However, direct policy search usually requiring numerous sam-
ples to find optimal policy which is impractical for robot learning [4].

Guided policy search (GPS) tackles the issue of sample efficiency by intro-
ducing trajectory optimization to guide the policy search away from poor local
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optima [5]. This approach commonly uses trajectory-centric method to generate
suitable samples at all training conditions to guide the learning process and train
complex, high-dimensional policies [6–8]. Nevertheless, GPS method cannot cope
with incremental data processing due to its framework.

The GPS algorithm would cause a problem that it cannot learn continuously
based on previous policies when the environment changes. In order to learn a
new condition, for example, a task of peg insertion with a new initial posi-
tion in our experiment, the procedure for optimizing new condition should be
added to all steps. As discussed in the next section, new condition’s learning
process will directly affect global policy optimization in the outer loop, which
could obviously have an influence on other local policies indirectly through lin-
ear global policy π

′
θ. These mutual impacts could be considered as the intrinsic

characteristics of GPS from the view of initial conditions for training policies.
Therefore, traditional GPS needs to learn all conditions from scratch, which is
however hard-to-satisfied in some real applications. To alleviate this drawback,
there is a great need to learn policies in an incremental way instead of the strict
requirements with acquiring all initial conditions together.

The issue of online learning in GPS with multiple initial conditions can be
taken as a part of lifelong learning since its learning never ends as new condi-
tion appears continuously. Lifelong learning has been explored for reinforcement
learning [9]. Recently, an efficient policy gradient method for lifelong learning
has been proposed [10]. In this paper, we aim to optimize GPS with an online
learning form.

The main contributions of this paper are twofold, with the first to propose a
novel framework for online GPS, and the second to give an effective algorithm
to implement the idea. The proposed algorithm can utilize incremental infor-
mation to search in policy parameter space in the process of interacting with
the environment, which makes robot able to adjust to the changed conditions
especially in industrial environments. Section 2 gives a brief review on related
works, and Sect. 3 proposes the detailed algorithm. Following some preliminary
experimental illustrations in Sects. 4, and 5 concludes this paper.

2 Background and Related Works

Reinforcement learning seeks to find a policy π to control an agent in a stochastic
environment to finish some specific tasks. Instead to maximize the total rewards,
RL often solves a optimal policy by minimizing the total costs under the policy
trajectory distribution, given by

J(θ) =
T∑

t=1

Eπθ
[ �(xt, ut)]. (1)

where πθ stands for the policy distribution and �(xt, ut) is the cost in step t.
The principle of the GPS is to use a series of special controllers to optimize πθ.

Since the special controllers generate guiding samples that guide policy search to
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the regions of high rewards, the GPS can efficiently train a deep neural network
with fewer samples than direct policy search [2]. The expected cost minimizations
can be rewritten as the following constrained problem,

min
p,πθ

Ep[�(τ)] s.t. p(ut|xt) = πθ(ut|xt) ∀xt, ut, t. (2)

This optimization can be decomposed into two loops: the inner loop to opti-
mize local policies and the outer loop to minimize the distance between global
policy and each local policy. The algorithm is summarized in Algorithm1. The
inner loop optimizes the local policies respectively as follows:

pi ← argmin
pi

Epi(τ)[
T∑

t=1

�(xt, ut)] s.t. DKL(pi(τ)||π′
θ(τ)) ≤ ε. (3)

This subproblem can be solve by using local RL methods such as iterative
linear-Gaussian regulator (iLQG) or path integral method [11].

The outer loop optimizes global policy to mimic each local policy by mini-
mizing the KL divergence between them, which is given by

min
θ

M∑

m=1

T∑

t=1

Epm(xt,m)[DKL(πθ(ut|xt,m)||pm(ut|xt,m))]. (4)

where the number of local policy is M and each trajectory has T steps.

Algorithm 1. GPS contains two loops
1: for optimizing iteration to make pegging successfully do
2: for position i ∈ {0, ..., M} do
3: c-step:pi ← argminpi

Epi(τ)[
∑T

t=1 �(xt, ut)]

4: s.t. DKL(pi(τ)||π′
θ(τ)) ≤ ε

5: end for
6: s-step:πθ ← argminθ

∑
t,i,j DKL(πθ(ut|xt,i,j)||pi(ut|xt,i,j))

7: (via supervised learning)
8: end for

In general, the optimization of each local policy pi depends on the last opti-
mized global policy π

′
θ as shown in the inner loop, which is a time-varying linear

Gaussian function generated by the global policy πθ. In addition, the optimiza-
tion for global policy πθ depends on the samples generated by all local polices
as shown in the outer loop. The global policy will be guided to find optimum
along with the local policies optimized to optimal values.

3 The Proposed Method

3.1 Linear Online Framework for Guided Policy Search

In this section, we propose an online framework for GPS. The basic idea is that
learning at a new condition should separate the interaction effects of the global
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policy and local policies optimization, because that it would influence both the
inner and outer loops. Thus the global policy should be asynchronously learned
from each single local policy. Specifically, in the inner loop we optimize a single
local policy directly as follows:

p ← argmin
p

Epτ

T∑

t=1

�(xt, ut). (5)

And in the outer loop, we optimize the global policy with samples generated
by each local polices. In order to learn continuously, the global policy should keep
remembering the previously learned policy. Therefore, the previously learned
policy should be considered to join into optimization.

The framework works like Fig. 1. The global policy learns by combining the
policies learned at current condition, we denote this policy as pcur and the pre-
viously learned policy as ppre. The previous policies would have an influence in
the learning process of the global policy all the time. Hence, the global policy
could always remember previous policies regardless of how many new conditions
it learns continuously.

Fig. 1. The framework of online GPS.

However, the main problem is that it is hard to directly combine the global
policy and the local policies, because the form of global policy would be enough
complicated to represent numerous different local policies, such as neural network
with multiple layers. In general, the local policy would be designed like a linear
form as simple as possible to complete tasks easily and quickly.

3.2 Online Linear Guided Policy Search

In this subsection, a linear online guided policy search (LOLGPS) is proposed
based on the online GPS framework shown in the Fig. 1.

Algorithm 2 summarizes our method. The inner loop, which represents learn-
ing to complete task at one condition, is the optimization for the local policies.
The outer loop, which represents learning at the conditions one by one, is the
optimization of the global policy. In the inner loop, we construct sample dataset
Di by running acting policy, notes as pact. It is a joint controller combining the
previous learnt policy into current condition, and the form is given as follows,

pact = αppre + βpcur, (6)
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Algorithm 2. Linear online guided policy search (LOLGPS)
1: Initialize: ppre ← 0
2: (outer loop)
3: for position m = 0 to M do
4: pcur ← arbitrary policy
5: (inner loop)
6: repeat
7: if first iteration then
8: Generate samples Di by running controller pact = pcur

9: else
10: Generate samples Di by running jointly controller pact = αppre + βpcur

11: end if
12: Fit linear-Gaussian dynamics pi(xt+1|xt, ut)
13: pcur ← argminp Ep(τ)

∑τ
i=i l(xt, ut) s.t. Dkl(pact||ppre)

14: ppre ← use GMM to fit previous πθ

15: until get enough successful samples for specific task as Dg

16: πθ ← argminθ Dkl(πθ||pact) by using Dg

17: end for

where α and β are parameters that can be constant or dynamic and control how
much information of previous learned policies will be merge into the current
policy. we constrain that α + β = 1. For dynamic manner, we increase α with
0.005 and decrease β with 0.005 in each iteration. The previous policy ppre is
a linear Gaussian representation of the learned global policy π

′
θ. This loop uses

iterative Linear-Quadratic Regulator (iLQR) method [8] to optimize gradually
to complete task at the current condition. When using the samples affected by
ppre, the optimization of pcur is constrained to be close to the previous policies.
In this context, the equation 5 can be rewritten in step 10 as follows

pcur ← argmin
p

Ep(τ)

τ∑

i=i

l(xt, ut) s.t. Dkl(pcur||ppre) ≤ ε. (7)

In the outer loop, we optimize global policy to mimic the local policies in
current condition. To train the global policy, the samples would be collected
only from the successful trajectories (line 12), as those samples that are not in
successful trajectories tend to direct the global policy to a bad local optimum.
Since samples are generated from the successful trajectories, the global policy
would extract the representation of current policy whose form may be quite dif-
ferent from optimized local current policy. Using samples generated jointly by
local policies and previous policy, the global policy optimization is constrained
to be close to pact. It is already known that pact = αppre + βpcur and the opti-
mization of pcur is constrained close to ppre. Therefore, the global optimization
also depends on ppre. In this case, the step 13 can be rewritten as

πθ ← argmin
θ

DKL(πθ||pcur) + DKL(πθ||ppre). (8)
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Thus, the proposed method could remember historic policies while learning
at new conditions continuously.

4 Experimental Illustration

4.1 Experiment Setting

Fig. 2. Peg insertion.

A series of experiments are conducted to evaluate
the proposed algorithm. The task involves a peg
insertion manipulation which requires controlling a
7 DoF 3D arm to insert a tight-fitting peg into a
hole. The environment simulator uses the same one
in [8].

In order to generate sufficient trajectories with
100 steps, we execute the linear Gaussian controller
5 times at each initial position. For the proposed
method, samples are generated from 9 optimized
phases once the local policy is capable to finish peg-
ging insertion (Fig. 2).

Moreover, the policies are represented by a fully connected neural network
with 5 layers and 42 units in each hidden layer.

The cost function is given by [2]

�(xt, ut) =
1
2
wu ||ut||2 + wp�12(pxt

− p∗), (9)

where ut is the action of robot, pxt
is the position of end effector for state xt, and

the norm �12(z) is calculated by 1
2 ||z||2+

√
γ + z2. This cost function consists of

two parts, with the first one weighted by wu to encourage the less acting energy,
and the other weighted by wp to encourage the peg to reach the hole precisely.

In addition to the cost-function values, the performances of the algorithms
are also evaluated by the resulted distance between end-effector positions and
target positions. In the following experiments, if the distance is smaller than a
base line which is around 0.06, the task is considered to be successful.

4.2 Experimental Results and Discussion

We have carried out a set of experiments to evaluate the efficacy of the proposed
method. The experiment is carried out to evaluate the performance of LOLGPS.

Experiment on LOLGPS. The proposed LOLGPS method is evaluated with
different number of initial information in an incremental way. In the training
phase, we first set 4 initial positions as illustrated by the blue points in Fig. 3, and
randomly select two positions from the first and second training areas, respec-
tively. In the testing phase, we randomly select 50 positions in each testing area
to construct out testing sets.
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Fig. 3. Illustration of the training and testing positions, where all circles represent
testing area. The green and red circles indicate the first and second extra training
area, respectively.

Figure 4 illustrates the experimental results. Both the cost values and resulted
distances are presented to evaluate the algorithm. The horizontal axis represents
the distance between the origin and the center of each testing area. The vertical
axis on the left shows the average distance between the bottom of the peg and
the hole. The vertical axis on the right represents the total costs corresponding
to the cost-function we used. Notes that distance train0, distance train1 and
distance train2 stand for the distance to target with different training areas, i.e.,
initial area, the first and second training area, respectively, while cost train0,
cost train1 and cost train2 denote corresponding cost-function values. First, it is
observed that both of the resulted distance to target and the cost values increase
along with the increment of testing distance. It implies that the performance
becomes worse when the testing position deviates from the originally learned
one. Second, it shows that once the agent has incrementally learned at new
training positions, it can not only finish the tasks around the new positions, but
also can still remember learned policies around the previously positions (see for
instance distance train2 and cost train2 in Fig. 4). In other words, the proposed
LOLGPS algorithm shows an ability of learning incrementally in its working
environment.

Fig. 4. Results for LOLGPS algorithm with different amounts training positions.
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5 Conclusions and Future Works

In this paper, we have proposed a novel framework of GPS from the view of online
learning, which enables the agent to learn policies continuously. Particularly, a
LOLGPS method with linear representation has been evaluated to finish peg
insertion task on simulated environment. It has been shown that the agent with
proposed LOLGPS method has a potential ability of resistance to forget as given
conditions appear sequentially along with interacting with environment.

Since we have separated the learning process of different condition, it is nat-
ural to think that whether the policy learning in current conditions can benefit
from the learning results in other conditions. In the future work, we will pay more
attention to analyze the relationship between conditions and hope to transfer
the previously learned policies into current learning process so that can reduce
the number of roll-out.

Acknowledgments. This work is partly supported by NSFC grants 61375005,
U1613213, 61702516, 61210009, MOST grants 2015BAK35B00, 2015BAK35B01,
Guangdong Science and Technology Department grant 2016B090910001.

References

1. Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.: Learning force control poli-
cies for compliant robotic manipulation. In: Proceedings of the 29th International
Conference on Machine Learning (2012)

2. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17(39), 1–40 (2016)

3. Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPG-
based biped locomotion with a policy gradient method: application to a humanoid
robot. Int. J. Robot. Res. 27(2), 213–228 (2008)

4. Deisenroth, M.P., Neumann, G., Peters, J., et al.: A survey on policy search for
robotics. Found. Trends Robot. 2(1–2), 1–142 (2013)

5. Levine, S., Koltun, V.: Guided policy search. In: Proceedings of the 30th Interna-
tional Conference on Machine Learning, pp. 1–9 (2013)

6. Levine, S., Abbeel, P.: Learning neural network policies with guided policy search
under unknown dynamics. In: Advances in Neural Information Processing Systems,
pp. 1071–1079 (2014)

7. Levine, S., Koltun, V.: Variational policy search via trajectory optimization. In:
Advances in Neural Information Processing Systems, pp. 207–215 (2013)

8. Montgomery, W.H., Levine, S.: Guided policy search via approximate mirror
descent. In: Advances in Neural Information Processing Systems, pp. 4008–4016
(2016)

9. Sutton, R.S., Koop, A., Silver, D.: On the role of tracking in stationary environ-
ments. In: Proceedings of the 24th international conference on Machine learning,
pp. 871–878 (2007)

10. Ruvolo, P., Eaton, E.: ELLA: An efficient lifelong learning algorithm. In: Pro-
ceedings of the 30th International Conference on Machine Learning, pp. 507–515
(2013)

11. Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., Levine, S.: Path inte-
gral guided policy search. In: International Conference on Robotics and Automa-
tion, pp. 3381–3388 (2017)


	A Linear Online Guided Policy Search Algorithm
	1 Introduction
	2 Background and Related Works
	3 The Proposed Method
	3.1 Linear Online Framework for Guided Policy Search
	3.2 Online Linear Guided Policy Search

	4 Experimental Illustration
	4.1 Experiment Setting
	4.2 Experimental Results and Discussion

	5 Conclusions and Future Works
	References


