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Abstract—Recognizing scene character is extremely chal-
lenging due to various interference factors such as character
translation, blur and uneven illumination, etc. Considering
that characters are composed of a series of parts and dif-
ferent parts attract diverse attentions when people observe
a character, we should assign different importance to each
part to recognize scene character. In this paper, we propose
a discriminative character representation by aggregating the
responses of the spatially embedded salient part detectors.
Specifically, we first extract the convolution activations from
the pre-trained convolutional neural network (CNN). These
convolutional activations are considered as the local descriptors
of the character parts. Then we learn a set of part detectors and
pick the distinctive convolutional activations which respond to
the salient parts. Moreover, to alleviate the effect of character
translation, rotation and deformation, etc, we assign a response
region for each part detector and search the maximal response
in this region. Finally, we aggregate the maximal outputs
of all the salient part detectors to represent character. The
experiments on three datasets show the effectiveness of the
proposed method for scene character recognition.

Keywords-scene character recognition; part detectors; re-
sponse region

I. INTRODUCTION

With the popularity of mobile phones and surveillance

cameras, scene text recognition becomes an important re-

quirement for better understanding rich visual information

in many real-life systems such as license plate recognition,

image understanding and event retrieving, etc. Characters

are the basic units of the text, and scene characters recog-

nition has attracted increasing attentions in the computer

vision community in recent years. However, scene character

recognition is a challenging task since the characters always

suffer from uneven illumination, background interferences,

character translation, rotation and deformation, etc.
To tackle the existing challenges, a powerful represen-

tation is critical to scene character recognition. In this

paper, we focus on scene character representation. There

are two widely used feature representations for scene char-

acter recognition including hand-crafted features and neural

network based features.
Most of hand-crafted feature based methods [1], [2], [3],

[4], [5], [6], [7] used off-the-shelf HOG [8] like features
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for character recognition. They represented character image

from two aspects including global-based representation and

part-based representation. Generally, in order to obtain a

global HOG feature, the input image is divided into sev-

eral equally spaced square grids, then oriented gradient

information is extracted from those predefined sub-regions.

However, not all the sub-regions contain useful information.

Some non-text regions may exist large gradient change and

generate strong feature histogram values, which disturb the

representation of scene character images. Moreover, these

features are extracted from the pixel unites which do not

contain more semantic information. In view of these draw-

backs, existing character recognition systems using global

hand-crafted features are considered unsatisfied and limit the

overall system performance in unconstrained natural scene

images.

Thus, some researchers [4], [9], [2], [10], [6] utilized part-

based information instead of global information for scene

character recognition. They aimed to learn useful character

part representation to avoid the undesirable influence of

background and obtained more semantic content. Shi et

al. [4] introduced a part-based tree-structured model and

Gao et al. [9] proposed a character representation named

stroke bank. However, these two methods both need man-

ually labeled character parts. Yao et al. [10] proposed the

“strokelet” which was a multi-scale representation for char-

acter recognition. Li et al. [6] learned shareable character

part features using filter banks. Compared with global-based

representation, these part-based representations attain signif-

icant performances with intrinsic character part information.

However, these methods need to predefine the parts with

human annotation or obtain the parts by scanning the images

with the sliding windows, then extract the hand-crafted

features (e.g., HOG) to represent parts. They separate parts

generation and feature extraction steps. Moreover, due to

the insufficient discrimination ability of these hand-crafted

features, the recognition accuracy is still not satisfactory.

Recently, a trend in the computer vision community

has emerged towards deriving a global representation from

neural network. Several work [11], [12], [13] utilized deep

neural network model such as convolutional neural network

(CNN) to recognize characters. These methods obtained a
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Figure 1. Flowchart of the proposed method for scene character recogni-
tion.

global representation from CNN model and achieved appeal-

ing improvement over hand-crafted feature based methods.

However, the feature was extracted from the fully connected

layers instead of the convolutional layers which conveyed

more spatial structure information than fully connected

layers.

Motivated by these analyses, considering that characters

consist of a series of parts and different parts attract diverse

attentions when people identify a character, we should assign

different importance to each part to recognize a scene

character. In this paper, we focus on learning discriminative

part detectors for scene character recognition, which can

endow the parts with different weights. Specifically, we first

regard the convolutional kernels of CNN as a set of filters to

extract the discriminative local descriptors for all the scene

character classes, which is capable of representing the parts

and learning the part features simultaneously. Further, we

automatically learn the part detectors with different weights

and pick the salient parts for each character class, which

capture the important information of characters and decrease

the effect of interference factors. Besides, in order to alle-

viate the influence of translation, rotation and deformation,

etc, we embed the spatial location information into the part

detectors. Finally, we generate a character representation by

assembling all salient part confidences and use an SVM

classifier for scene character recognition. We have conduct-

ed experiments on three datasets including three standard

benchmarks ICDAR03 dataset [14], Chars74K dataset [15]

and IIIT5K dataset [16]. The experimental results demon-

strate the effectiveness of the proposed method for scene

character recognition.

II. PROPOSED METHOD

In this section, we present the proposed method for

scene character recognition. Our method mainly contains

five steps: (1) generating the representation of character parts

via CNN model; (2) learning the part detectors; (3) selecting

the salient parts and corresponding detectors; (4) obtaining

the feature representation; (5) getting the recognition result.

The overall framework is given in Figure. 1.
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Figure 2. The architecture of our CNN model for scene character
recognition. “Conv” represents the convolutional layer and “FC” represents
the fully connected layer. The maxout operation is introduced in [17].

A. Generating Part Representation

A large number of work [4], [2], [10], [6] have verified

that using part information can improve scene character

recognition performance. Besides, CNN has shown the pow-

erful classification performance in many visual fields, which

motivates us to obtain the character part feature with CNN.

CNN generates convolutional maps by a set of convolu-

tional kernels, in which each spatial position is computed

from a receptive field in the input image. Intuitively, each

position of convolutional maps corresponds to a character

part (i.e., a subregion of a character) and the layout of

convolutional map reflects the spatial structure of these parts.

To make full use of the spatial structure information of parts,

in this paper, we use the features of convolutional layers

rather than the fully connected layers.

Assume the output T from a convolutional layer is

H × W × D dimension, which includes a set of feature

maps {Mn, n = 1, ..., D}. Mn with size H ×W is the n-th

feature map. The same position of the different convolutional

maps reflects the identical part of the original character

image. To enhance the part information, we extract the

activation responses from all the convolutional maps at the

same position to represent the corresponding part. As a

result, each part is represented as a D-dimensional feature

descriptor.

We train CNN for scene character recognition and the

network architecture is shown in Figure. 2. We extract the

activations of conv 2 (after applying the ReLU) in our

method. Assuming that the size of the input image is 24×24,

the size of activation maps of conv 2 is 8× 8× 128.

B. Part Detectors

For the part descriptors obtained with CNN, we learn

the part detectors. A good part detector has the capacity of

distinguishing the special class from others. In this paper,

for the input image, we first generate an initial global repre-

sentation by concatenating all the convolutional descriptors.

Then we learn the part detectors with SVM. The procedure

is presented as follows:

(1) The p-th convolutional descriptor xp of an input image

is represented as:

xp = [ri,j1 , ri,j2 , ..., ri,jD−1, r
i,j
D ] (1)

where ri,jn denotes the convolutional response at the

spatial position (i, j) of the n-th convolutional map.
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Figure 3. Visualization of the spatial weight map of the convolutional
layer.

(2) We represent the input image I by concatenating all

convolutional descriptors in a fixed order:

f = [x1, x2, ..., xN−1, xN ]T (2)

where N denotes the number of convolutional descriptors

of an image and f is a D ×N -dimension vector. Then we

employ L2 normalization for the feature f .

(3) We conduct one-to-all strategy to learn a linear SVM

classifier for each character class, which has the weights:

ω = (ω1, ω2, ..., ωN−1, ωN ) (3)

where ωi is a C × D matrix and C is the number of

character categories. We regard the weights of SVM as the

part detectors. Specifically, each row of ω is N = H ×W
part detectors belonging to the same class and each detector

has D dimension. Moreover, each part detector corresponds

to a special part position of character, and all the N detectors

are assembled to distinguish certain class against others.

Thus our detector not only has the local discriminative ca-

pacity against the corresponding position of other character

classes, but also learns the global inter-class information.

The parameters of SVM are learned on the training datasets.

C. Salient Part Detector Selection

Among all the parts, some come from background, which

are invalid for character recognition. In Figure. 3, we exhibit

the spatial weight map of the convolutional layer. The spatial

weight map is generated by summing all the maps for each

spatial position (i, j), i.e.,
D∑

n=1
M ij

n . Obviously, not all the

convolutional responses reflect the character information.

Moreover, each part exhibits different attention when recog-

nizing character. People can identify the character by only

using a portion of character parts. Besides, it will introduce

the noise by using all the parts. Thus, we need to select the

salient parts for each character class. Our main idea is to

automatically mine the useful parts for each character class

from the training datasets. The detailed process is described

as follows.

(1) When we use SVM to classify with feature f , for

the linear kernel case, the decision function is sgn(ωf + b)
and the final decision value is a linear combination ω f + b.
Inspired by this point, in order to obtain the parts which

play greater roles for classifying the character image, for a

(a) Detectors of  “A”

(b) Detectors of  “B”

Figure 4. Two examples of salient part detectors operating on the
corresponding class against other classes.

positive training image and its label l(l = 1, 2, ..., C), we

calculate the score for each descriptor:

slm = |ωl
m ∗ xm| (m = 1, 2, ..., N) (4)

where m denotes the index of part detector. We can see

that the bigger value of slm is, the more the corresponding

descriptor contributes more to the final decision.

(2) We select the salient parts for characters. For each

training image, we rank these scores slm (m = 1, 2, ..., N).
We first select K salient parts with the top K highest scores

for each image and record the positions in the convolutional

map corresponding to the salient parts.

(3) We statistically learn the significant part information

for the intra class. We compute the number of occurrences

of salient parts within a class and select the top K most

frequently appearing parts as the final salient parts. These

positions of K salient parts are also recorded. This operation

globally generates a histogram representation from the train-

ing dataset and alleviates the unreliable effect of individual

character sample, which provides extra discriminative power

to select the parts.

(4) Finally, we obtain the salient parts for each

class and retain the SVM weights as the salient part

detectors. The learned part set can be expressed as

Ω = {(Partk, Posk,Weightk)}Kk=1, where Part, Pos and

Weight are the discovered parts, corresponding positions

and corresponding weights of SVM classifiers respectively.

We present two examples in Figure. 4 to show the

response maps which are obtained by using salient part

detectors to weight the corresponding convolutional descrip-

tors on the special class against other classes. We use the

salient part detectors of class “A” to detect characters “A”,

“0”, “1” and “b” in the corresponding detector positions

(see Figure. 4(a)). Obviously, the responses of “A” are

significantly larger than other three characters. Similarly,

the detectors of “B” operate on character “B” to obtain the

response map which is much larger than those of “2”, “C”

and “W” (see Figure. 4(b)). The two examples show the

discriminative capacity of the salient part detectors.
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D. Spatially Embedded Character Representation

Although we learn the salient parts for each class, it can

not always precisely be adapted to each character due to

character image translation, rotation and deformation, etc.

Considering that characters are not the same as generic ob-

jects which randomly appear in the image, the location of the

characters in the image changes within a certain range. Thus

we propose a spatially embedded character representation

by searching the maximal response around each salient part

position with the corresponding part detector.

Specifically, for the character class ci, at the j-th salient

part position (rowci
j , colcij ), we extract the convolutional de-

scriptors from the surrounding coordinates (rowci
j −Radius

∼ rowci
j + Radius, colcij − Radius ∼ colcij + Radius),

where Radius defines the search neighborhood size. Then

we use the SVM weight corresponding to the part position

(rowci
j , colcij ), i.e., wrow

ci
j ,col

ci
j

to score these extracted

convolutional descriptors and conduct max-pooling to obtain

the maximum response Oci
j , that is:

Oci
j = max

p,q
rp,q · wrow

ci
j ,col

ci
j

s.t. 1 ≤ j ≤ K, 1 ≤ Radius ≤ min(H,W )

rowci
j −Radius ≤ p ≤ rowci

j +Radius

colcij −Radius ≤ q ≤ colcij +Radius

(5)

where rp,q = [rp,q1 , ..., rp,qD ]. We illustrate the process to

obtain the maximum response Oci
j in Figure. 5. We repeat

the above step for each part in all the character classes and

obtain the final feature F which has K × C dimensions as

follows:

F = [Oc1
1 , Oc1

2 , ..., Oc1
K , ..., OcC

1 , OcC
2 , ..., OcC

K ] (6)

E. Character Recognition

We treat scene character recognition problem as a multi-

class classification problem, e.g., English character recog-

nition is a classification task of 62 classes. The character

feature F is L2-normalized, and the final features of all

training images are used to train multi-class SVM. For each

character, the class label with the highest probability is

assigned as the recognition result.

III. EXPERIMENT RESULTS

A. Datasets

We first evaluate the proposed method on three standard

English datasets including ICDAR03 [14] Chars74K [15]

and IIIT5K [16]. They all contain 10 classes Arabic numbers

and 52 classes English letters. ICDAR03 dataset contains

5897 training samples and 5337 test samples. For Chars74K

dataset, similar to [18], we randomly select 30 images per

class from which to generate 15 images for training and

the rest for testing. IIIT5K dataset contains 9678 training

samples and 15,269 test samples.

B. Implementation Details

The convolutional layers are initialized by the pre-trained

CNN [13], and all the fully connected layers are initialized

by using random weights with Gaussian distribution of

0 mean and 0.01 standard deviation. We adopt stochastic

gradient descent (SGD) to fine-tune the CNN models for the

four datasets using the gray images with the size of 24×24,

respectively. An image is resized to 24×24 to pick the salient

parts. We use MatConvNet to extract the convolutional maps

and LIBLINEAR SVM to classify characters. Our method

takes about 0.24s for each image on average with Inter i5

3.1GHz CPU.

C. Evaluation of the Numbers of Salient Detectors

We first evaluate the influence of the numbers (percent)

of salient detectors, namely K for character recognition

accuracy on ICDAR03 dataset by cross validation in the

training process.

Figure. 6 shows the recognition accuracies when the

percent of selected detectors per class ranges from 0.1 to 1

(i.e., the number of selected detectors varies from 6 to 64).

As we can see, at the beginning the recognition accuracies

improve with the increasing percent. When only selecting

50% detectors, the recognition accuracy has achieved about

82.1% which outperforms many existing methods. We obtain

the best accuracy with the percent of 0.8. However, when

the percent exceeds 0.8, the performances exhibit a weak

drop which may due to introduced background parts. Thus in

consideration of the computational time and the recognition

accuracy, in this paper we choose the percent of salient

detectors to be 0.8 for each class. The feature dimension

is depend on the percent, for example, for English scene

character the feature dimension is 0.8× 64× 62 = 3162.

We also observe that the performances of our method

vary slightly with the change of the percent parameters.

When just using 10% detectors (i.e., 6 detectors), we obtain

the acceptable performance of 80.3%. This phenomenon

demonstrates that our salient part detector selection strategy

further suppresses the background noise while retains the

salient parts.
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Figure 6. Character recognition results with different percents of detectors
per class on ICDAR03 dataset.
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Figure 7. Character recognition results with different search neighborhood
sizes on ICDAR03 dataset.

D. Evaluation of Search Neighborhood Size

We evaluate the influence of search neighborhood size

for character recognition on ICDAR03 dataset by cross

validation in the training process. We set the percent of

salient detectors to be 0.8. Figure. 7 shows the recognition

accuracies as the neighborhood size ranges from 0 to 8. We

observe that with the increasing of neighborhood size, the

recognition accuracies first improve. The best recognition

accuracy is 84.0% when neighborhood size equals to 4.

When the neighborhood size equals to 0, the proposed

method achieves 82.7%. Compared with the best accuracy,

the low recognition performance of size equaling to 0 lies

in that the characters always have translation, rotation and

deformation, and thus the learned part positions cannot

accurately match with the test samples. The comparison

shows that the proposed spatially embedded character rep-

resentation can boost the recognition performance.

It is worth noting that when the neighborhood sizes are

bigger than 4, the performance gradually decreases. This

may due to the fact that large neighborhood can introduce

noise. The experimental result demonstrates that searching

the maximum response within a suitable neighborhood size

can further avoid the undesirable effects of interference fac-

tors. We recommend the suitable neighborhood size roughly

equaling to the half of the side length of convolutional map.

E. Comparison with Other Methods

We first compare the proposed method and the existing

methods on English datasets, and the results are reported in

Table I. Note that we directly use the suitable parameters

(the percent of detectors equals to 0.8 and the neighborhood

Table I
CHARACTER RECOGNITION RESULTS OF DIFFERENT METHODS ON

ICDAR03, CHARS74K AND IIIT5K DATASETS (%).

Method ICDAR03 Chars74K IIIT5K
Multiple Kernel Learning [6] - 55.3 -

HOG+SVM [8] 77.0 62.0 70.0
Sheshadri and Divvala [19] 70.5 69.7 -

Zhang et al. [7] 79.0 67.0 76.0
Co-HOG [5] 80.5 - 77.8

Coates et al. [20] 81.7 - -
ConvCoHOG [5] 81.7 - 78.8

TSM [4] (49 Classes) 77.9 - -
Lee et al. [21] 79.0 64.0 -

Stroke Bank [9] 79.8 65.9 -
SED [22] 82.7 67.5 -

DSEDR [23] 82.6 71.8 -
Liu and Lu [24] (49 Classes) 84.1 81.2 -

CNN Softmax 81.5 74.4 78.8
Proposed method (62 Classes) 84.0 75.9 80.3
Proposed method (49 Classes) 87.6 85.1 87.3

size equals to 4) of ICDAR03 dataset for Chars74K and

IIIT5K dataset. As we can see, the proposed method shows

better results than the existing methods on the three char-

acter datasets. The comparison shows that our method has

stronger parameter adaptation for different datasets.

Specifically, our method significantly outperforms global

hand-crafted feature based methods [8], [5], [7] which use

global HOG to represent the character image. The reason

lies in that HOG captures the gradient information of the

whole character image, which does not contain sufficient

structure information and global feature tends to bring more

noise. Besides, our method achieves superior performance

over other part-based methods [4], [9], [21], [23], [22] which

also use the hand-crafted feature to represent character. We

automatically extract the parts from the images while [4],

[9] require human to predefine character parts of each

class. Moreover, the existing part-based methods extract

part features from the original images, while we regard

convolutional descriptors as part feature, which is more

discriminative. We can obtain the part and learn feature at the

same time. The comparison shows that the effectiveness of

the proposed part generation strategy via CNN for character

recognition.

Furthermore, the performance of the proposed method

exceeds that of fully connected layer features (i.e., the CN-

N Softmax) 2.5%, 1.5% and 1.5% on ICDAR03, Chars74K

and IIIT5K datasets, respectively. We can conclude that our

feature is more powerful than fully connected layer feature.

Note that [4] and [24] both merge the character classes

that have similar structures, like ‘C’ and ‘c’, ‘W’ and ‘w’

into a new class, and finally have 49 classes to recognize. We

also use 49 classes to recognize characters and the proposed

method significantly outperforms [4] and [24].

IV. CONCLUSION

The proposed method automatically selects the salient

part detectors for scene characters via the discriminative



descriptors of parts derived from CNN. Moreover, we embed

the spatial region information into the character represen-

tation to boost the recognition. The proposed method is

effective and computationally efficient. Experiments show

that the proposed method achieves the superior performances

on three datasets. Finally, there are several future study

directions, for example, combining the multi-scale parts to

generate a more powerful feature and learning more effective

part detectors.
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