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Multi-Behavioral Sequential Prediction
with Recurrent Log-Bilinear Model
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Abstract—With the rapid growth of Internet applications, sequential prediction in collaborative filtering has become an emerging and
crucial task. Given the behavioral history of a specific user, predicting his or her next choice plays a key role in improving various online
services. Meanwhile, there are more and more scenarios with multiple types of behaviors, while existing works mainly study sequences
with a single type of behavior. As a widely used approach, Markov chain based models are based on a strong independence
assumption. As two classical neural network methods for modeling sequences, recurrent neural networks cannot well model short-term
contexts, and the log-bilinear model is not suitable for long-term contexts. In this paper, we propose a Recurrent Log-BiLinear (RLBL)
model. It can model multiple types of behaviors in historical sequences with behavior-specific transition matrices. RLBL applies a
recurrent structure for modeling long-term contexts. It models several items in each hidden layer and employs position-specific
transition matrices for modeling short-term contexts. Moreover, considering continuous time difference in behavioral history is a key
factor for dynamic prediction, we further extend RLBL and replace position-specific transition matrices with time-specific transition
matrices, and accordingly propose a Time-Aware Recurrent Log-BilLinear (TA-RLBL) model. Experimental results show that the
proposed RLBL model and TA-RLBL model yield significant improvements over the competitive compared methods on three datasets,
i.e., Movielens-1M dataset, Global Terrorism Database and Tmall dataset with different numbers of behavior types.

Index Terms—Collaborative filtering, sequential prediction, multi-behavior, recurrent log-bilinear

1 INTRODUCTION

NOWADAYS, Collaborative Filtering (CF) [14] plays an
important role in a large number of applications, e.g.,
recommender systems, information retrieval and social net-
work analysis. Conventional CF methods focus on model-
ing usersa preference based on their historical choices of
items and always ignore the sequential information. It is
reasonable to assume that user preferences change with his
or her behavioral sequence. Meanwhile, rather than with
merely one type of behaviors, e.g., purchasing in e-com-
merce and clicking on websites, there are many sequential
scenarios with multiple types of behaviors towards items,
e.g., clicking, purchasing, adding to favorites in e-commerce
and downloading, using, uninstalling in app usage. Accord-
ingly, it is necessary to model multi-behavioral sequences
and collaboratively predict what a user will prefer next
under a specific behavior. For instance, multiple types of
behaviors, i.e., posting, sharing and commenting, on social
media has been separately modeled and studied recently,
which makes great contribution to user interest detection
[47]. Besides e-commerce and other Internet applications,
multi-behavioral sequential prediction can be implemented

o The authors are with the Center for Research on Intelligent Perception and
Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of Sciences (CASIA), and the
University of Chinese Academy of Sciences (LICAS), Beijing 100000, China.
E-mail: {giang liu, shu.wu, wangliang)@nlpr.ia.ac.cn.

Manuscript received 13 July 2016; revised 7 Dec. 2016; accepted 24 Jan. 2017.
Date of publication 31 Jan. 2017; date of current version 27 Apr. 2017.
Recommended for acceptance by J. M. Phillips.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2017.2661760

for social good, such as predicting security events in a
specific area [21], [41] or predicting air quality [48].

Nowadays, some efforts have been put into developing
CF methods with sequential information [3], [21], [33], [40],
[46]. To the best of our knowledge, none of existing methods
are designed for modeling sequences with multiple types of
behaviors. And if we directly treat different behaviors
towards one item as different elements in sequences, or sim-
ply ignore the differences among behaviors, conventional
methods will have difficulty in revealing the correlations
among behaviors and items. As shown in the example of
app usage in Fig. 1, different behaviors reveal users’ differ-
ent attitudes towards apps. Downloading and using means
you may like the app, while uninstalling means you do not
like the app and similar ones should not be recommended.
So, it is essential to find a proper way to reveal the correla-
tions among behaviors and items.

Moreover, existing methods still have their own limitations
even for single-behavioral sequences. Markov Chain (MC)
based models [30], [33], [44] have become the most popular
methods for sequential prediction. MC based models aim to
predict the users’ next behavior based on the past behaviors.
A transition matrix is estimated, which can give the probabil-
ity of an action based on the previous ones. However, a major
problem of MC based models is that all the components are
independently combined, indicating that it makes strong
independence assumption among multiple factors [40].

Recently, Recurrent Neural Networks (RNN) have been
successfully employed to model temporal dependency for
different applications, such as sentence modeling tasks [23],
[24], [25], video modeling [8], sequential click prediction
[46] and location prediction [21]. When modeling the
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Fig. 1. Taking app usage prediction as an example of multi-behavioral
sequential prediction. This example shows a user’s behaviors towards
apps in an hour, including downloading, using and uninstalling. We can
predict what app the user is going to download or use next.

sequential data, RNN assumes that the temporal depen-
dency changes monotonously along with positions in a
sequence. This means that, one element, e.g., a word, a
frame and a product, in a sequence usually has more signifi-
cant effect than the previous one for prediction. Such rules
may well model words in a sentence or frames in a video,
since adjacent words or frames have significant correlation.
The larger the distance between two words or two frames,
the smaller the correlation. However, for behavior predic-
tion tasks, this assumption does not confirm to complex real
situations, especially for the most recent elements in histori-
cal sequences. Sometimes, several most recent elements
have similar effects on users’ next behavior. For instance, if
you went to a gym, a restaurant and a shopping market yes-
terday morning, afternoon and evening respectively, these
three behaviors may have similar effects on your behaviors
today. Sometimes, most recent elements have more complex
effects on the future. For instance, going to a gym yesterday
has dominant effects on how you exercise today, and what
you ate at a restaurant yesterday or what you bought at a
shopping market yesterday can affect what you want to eat
today a lot. There is no guarantee that one element has
more or less significant effect than the previous one. The
effects of most recent elements in modeling human behav-
iors are much more complicated than that in modeling sen-
tences or videos. But RNN can only tell us that behaviors in
yesterday morning have more significant effects than
behaviors in yesterday afternoon, and behaviors in yester-
day afternoon have more significant effects than behaviors
in yesterday evening. Accordingly, we can say that, RNN
cannot well model short-term contexts in a sequence.
Different from the recurrent architecture in RNN based
language models [23], [24], [25], the Log-BiLinear (LBL)
model [27] represents each word in a sentence, i.e., each
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position in a sequence, with a specific matrix. It can better
model the complex situations of local contexts in sequences.
But when the sequence is too long, a maximal length is usu-
ally set. And in real behavior prediction scenarios, length of
behavioral sequences is usually not fixed. So, LBL cannot
well model long-term contexts in a sequence.

Furthermore, time difference between input elements,
e.g., continuous time difference between apps that the user
has behaviors on in Fig. 1, is another key factor in sequential
modeling. However, to our best knowledge, none of exist-
ing models, including above MC based methods, RNN and
LBL, can jointly model sequential information and time dif-
ference information in one framework.

In this paper, to overcome above shortcomings of con-
ventional methods and model multi-behavioral sequences,
we propose two novel sequential prediction methods, i.e.,
Recurrent Log-BiLinear (RLBL) model and Time-Aware Recur-
rent Log-BiLinear (TA-RLBL) model. First, to capture the
properties of different types of behaviors in historical
sequences, we employ behavior-specific transition matrices
in our model. To the best of our knowledge, this is the first
work which is designed for predicting multi-behavioral
sequences Second, we design RLBL model as a recurrent
architecture to capture long-term contexts in sequences. It
models several elements in each hidden layer and uses posi-
tion-specific transition matrices to capture short-term con-
texts of the historical sequence. Our RLBL not only can
model the subtle characteristics of the most recent items
in a sequence, but also can deal with long-term contexts
with a recurrent structure. Third, we further extend the
RLBL model based on time difference information, and
propose the TA-RLBL model. Rather than specific matri-
ces for each position in RLBL, we use specific matrices,
i.e., time-specific transition matrices, for each time differ-
ence value between input elements in TA-RLBL. Since it
is difficult to estimate matrices for all the continuous time
difference values, we divide all the possible temporal val-
ues into discrete bins. For a specific time difference value
in one time bin, we can calculate the corresponding tran-
sition matrix via a linear interpolation of transition matri-
ces of the upper bound and lower bound. Incorporating
continuous time difference information, TA-RLBL can
further improve the performance of RLBL.

The main contributions of this work are listed as follows:

e We first address the problem of multi-behavioral
sequential prediction, which is a significant problem
in sequential prediction. And we use behavior-spe-
cific matrices to represent the effects of different
types of behaviors.

e The RLBL model incorporates position-specific
matrices and the recurrent structure, which can well
model both short- and long-term contexts in histori-
cal sequences.

e TA-RLBL uses time-specific matrices to jointly model
sequential information and time difference informa-
tion in one framework, which further improves the
performance of RLBL.

e Experiments conducted on three real-world datasets
show that RLBL and TA-RLBL are effective and
clearly outperform state-of-the-art methods.
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The rest of the paper is organized as follows. In Section 2,
we review some related work on sequential prediction. Then
we give the problem definition of multi-behavioral sequential
prediction in Section 3. Sections 4 and 5 detail our RLBL
model and TA-RLBL model respectively. In Section 6, we
introduce the learning methods of our proposed models. In
Section 7, we conduct experiments on three real-world data-
sets and compare with several state-of-the-art methods.
Section 8 concludes our work and discusses future research.

2 RELATED WORKS

In this section, we review several types of methods for
sequential prediction and time-aware prediction, i.e., time-
aware neighborhood based methods, time-aware factoriza-
tion methods, markov chain based methods and neural net-
work based methods.

2.1 Time-Aware Neighborhood

Time-aware neighborhood models [7], [17], [18] may be the
most natural methods for modeling sequential information.
These methods employ neighborhood based algorithms to
capture temporal effects via giving more relevance to recent
observations and less to past observations. However,
though these methods may confirm to our first instinct and
properties of sequential information, neighborhood based
methods are unable to reveal the underlying properties in
users’ historical sequences.

2.2 Time-Aware Factorization Methods

Matrix factorization (MF) based methods [14], [15], [29]
have become the state-of-the-art approach to collaborative
filtering. Nowadays, MF based methods have been
extended for more general and complex situations [31], [34].
Among them, time-aware factorization based models have
been extensively studied. Tensor Factorization (TF) [1], [42]
treats time slices as another dimension and generates latent
vectors of time slices via factorization to capture the under-
lying properties in the behavioral history. TimeSVD++ [13]
learns time-aware representations for users and items in dif-
ferent time slices. However, factorization based models
have difficulties in generating latent representations for
time slices which has never or seldom appeared in the train-
ing data. Thus, factorization based models are not able to
accurately predict item in the future time slices.

2.3 Markov Chain Based Methods

Based on the Markov assumption, MC based methods are
widely used models for sequential prediction tasks [44]. MC
based models predict users’ next behaviors via estimating a
transition matrix, which gives the probability of an action
based on the previous ones. Via factorization of the person-
alized probability transition matrices of users, Factorizing
Personalized Markov Chain (FPMC) [33] can provide more
accurate prediction for each sequence. FPMC is also
extended by using the user group [30] or incorporating the
location constraint [5]. Recently, some factors of human
brain have been added into MC based methods, including
interest-forgetting curve [4] and dynamics of boredom [11].
However, the main drawback of MC based models is the
independent combination of the past components, which
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lies in a strong independence assumption and confines the
prediction accuracy. Then MC based methods are extended
by using representation learning. Hierarchical Representa-
tion Model (HRM) [40] learns the hierarchical representa-
tion of behaviors in the last transaction and in the past
history of a user to predict behaviors in the next transaction.
And Personalized Ranking Metric Embedding (PRME) [10]
learns embeddings of users according to distances between
locations. These methods still face a problem that they only
model items in the most recent history and previous items
can only be modeled by constant user latent vectors. Thus,
except items in the most recent history, other items after
model training will be ignored. User representations cannot
change dynamically along with behavioral sequences.

2.4 Neural Network Based Methods

Recently, some prediction models, especially language
models [26], are proposed based on neural networks. The
most classical neural language model is proposed via a sin-
gle layer neural network [2]. Among variety language mod-
els, RNN has been the most successful one in modeling
sentences [23], [24], [25]. It has successfully applied in vari-
ety natural language processing tasks, such as machine
translation [6], [38], conversation machine [36], [37] and
image caption [22], [39]. Recently, RNN based models also
achieve successive results in other areas. For video analyz-
ing, RNN brings satisfying results for action recognition [8].
Incorporating users’ each clicking as an input element of
each layer, RNN has greatly improved the performance of
sequential click prediction [46]. Spatial-Temporal Recurrent
Neural Netwrks (ST-RNN) [21] learns geographical dis-
tance-specific transition matrices in RNN framework for
location prediction. And Dynamic REcurrent bAsket Model
(DREAM) [45] uses pooling methods in each layer of RNN
for aggregating items in one transaction and achieves state-
of-the-art performance in next basket recommendation [45].
Context-Aware Recurrent Neural Netwrks (CA-RNN) [20]
incorporates variety of contextual information in the
RNN structure for recommender systems. However, when
modeling sequential data, RNN assumes that temporal
dependency changes monotonously along with the posi-
tions in a sequence, which means one element in a sequence
usually has more significant effect than the previous one for
prediction. This is usually suitable for words in sentences or
frames in videos. But it does not confirm to practical situa-
tions for predicting behaviors, especially for the most recent
elements of a historical sequence. Several most recent ele-
ments may usually have similar or even more complex
effects on a user’s next choice. But RNN can only tell us that
the most recent item has more significant effect than the pre-
vious items. So, we can say that RNN cannot well model
short-term contexts in behavior modeling.

LBL [27] is another widely-used language model, which
represents elements at each position in a sequence with spe-
cific matrices. And a hierarchical softmax [28] is utilized to
accelerate LBL model. However, when sequences are too
long, a maximal length is usually set and long-term contexts
are discarded. So, LBL cannot well model long-term con-
texts in sequences, which often exist in real behavior predic-
tion situations.
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Fig. 2. lllustration of the Recurrent Neural Networks (RNN) model. RNN
is a recurrent architecture with multiple hidden layers. The hidden status
of RNN changes dynamically along with sequences, where the trend is
monotonous. RNN has difficulty in modeling short-term contexts in
behavioral sequences.

There also exist some studies on RNN based methods
taking insight in modeling short-term and long-term con-
texts, e.g., Multi-timescale RNN [19], [43] and Clockwork
RNN [16]. Based on a hierarchical RNN structure [9], these
methods model short-term dependencies and long-term
dependencies separately with multiple RNNs. These multi-
ple RNNs are at different timescales, where the fastest one
operates every input element, and relatively slower ones
take delays and skip some input elements according to cor-
responding timescales. However, these RNN structures aim
to better capture long-term dependencies in sequences via
incorporating larger timescales in some of the many RNNs.
Although they can indeed achieve better performance com-
paring with conventional structures in some applications
[16], [19], [43], they still model input elements according to
sequential orders in a RNN structure. Accordingly, they
cannot overcome the drawback of RNN that temporal
dependency changes monotonously. It is still hard for these
methods to well model short-term contexts in behavior
modeling scenarios.

3 PROBLEM DEFINITION

The multi-behavioral sequential prediction problem we
study in this work can be formulated as follows. We have a
set of users and a set of items denoted as U = {uy,us, ...}
and V = {vy, vs, ...} respectively. Multiple types of behav-
iors are denoted as B = {by, s, ...}. Each behavior of user u
is associated with a behavioral type and a timestamp. Then
the sequential behavioral history of user « consists of items
V= {uv},vy,...}, corresponding behavioral types B" =
{v}, by, ...} and timestamps T" = {t},t},...}. Given behav-
ioral history of users towards items, the task is to predict
what a specific user will choose next under a specific
behavior.

Here, taking the application in e-commerce as an exam-
ple, there will be four types of behaviors (i.e., clicking, pur-
chasing, adding to favorites and adding to shopping chart)
denoted as {b1, by, b3, by }. The task is to predict which item a
user would like to click, purchase, add to favorites or add to
shopping chart next. Similarly, in the app usage, there will
be three types of behaviors (i.e., downloading, using and
uninstalling) denoted as {b;, b2, b3}. Then the task becomes
predicting which app a user would like to download, use or
uninstall next.
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Fig. 3. lllustration of the Log-BiLinear (LBL) model. LBL is a feedforward
neural network with a single linear hidden layer. In LBL, each position in
sequences is modeled with a specific transition matrix. And a maximal
number of modeled elements is usually set. LBL has difficulty in model-
ing long-term contexts in behavioral sequences.

4 RECURRENT LOG-BILINEAR MODEL

In this section, we present the recurrent log-bilinear model.
We first introduce the RNN model and LBL model, then
detail the architecture of RLBL with a single type of behav-
iors and introduce how RLBL can be employed to model
multiple types of behaviors.

4.1 Recurrent Neural Networks

The architecture of RNN is shown in Fig. 2. It consists of an
input layer, an output unit, multiple hidden layers, as well
as inner weight matrices [46]. The activation values of the
hidden layers are computed as

{ = F(Whi, +Cry), M

where h} € R? denotes the hidden representation of user u
at position £ in a sequence, r,: € R? denotes the representa-
tion of the kth input item of user w. f(z) is the activation
function. C € R™? and W € R?”*? mean the transition matrix
for the current items and the previous status respectively. W
can propagate sequential signals, and C can capture users’
current behavior. This activation process can be repeated
iteratively and then the status at each position in a sequence
can be calculated.

4.2 Log-Bilinear Model

The Log-BiLinear model [27] is a deterministic model that
may be viewed as a feedforward neural network with a sin-
gle linear hidden layer [12]. Using LBL for the sequential
prediction problem, the final predicted representation of a
sequence is generated based on the input items and the
transition matrices at each position. As shown in Fig. 3, in
the LBL model, the representation at next position is a linear
prediction

n—1
hi=> Ciy . @
i=0

where C;, € R? denotes the transition matrix for the corre-
sponding position in a sequence, and n is the number of ele-
ments modeled in a sequence.

4.3 Modeling Single Type of Behaviors

As discussed in the previous sections, though both RNN
and LBL have achieved satisfying results, they still have
their own drawbacks. RNN cannot well handle short-term
contexts in a sequence, while LBL cannot well model long-
term contexts.
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(b) The TA-RLBL model.

Fig. 4. lllustration of the Recurrent Log-BiLinear (RLBL) model and the Time-Aware Recurrent Log-BiLinear (TA-RLBL) model. RLBL employs a
recurrent architecture to capture long-term contexts. It models several elements in each hidden layer and incorporates position-specific transition
matrices to capture short-term contexts in a historical sequence. TA-RLBL further extends the RLBL model. It replaces position-specific transition
matrices with time-specific transition matrices to model time difference information. Behavior-specific matrices can be incorporated in RLBL and TA-

RLBL to capture multiple types of behaviors in sequences.

To capture short-term and long-term contexts in historical
sequences simultaneously, instead of modeling only one ele-
ment in each hidden layer in RNN, we model several ele-
ments in each hidden layer and incorporate position-
specific matrices into the recurrent architecture. As illus-
trated in Fig. 4a, given a user v, the hidden representation of
the user at the position k in a sequence can be computed as

n—1

hZ = Whlifn, + Z Cirvz_iv (3)

=0

where n is the number of input items modeled in one layer
of RLBL, which is called the window width in this paper.
The position-specific transition matrices C; € R captures
the impact of short-term contexts, i.e., the ith item in one
layer of RLBL, on user behaviors. And the characteristics of
users’ long-term history are modeled via the recurrent
framework. Moreover, when we only consider one input
item in each layer and set the window width n = 1, the for-
mulation of RLBL will be as the same as that of RNN ignor-
ing the nonlinear activation function.

Notice that, when the sequence is shorter than the
window width or the predicted position is at the very
first part of a sequence, i.e.,, k¥ < n. Equation (3) should
be rewritten as

k—1
hj =Wh{ + ) Cir, , (4)

1=0

where h{j = uy, denoting the initial status of users. The ini-
tial status of all users should be the same because personal
information does not exist when a user has not selected an
item. This representation uj can be used to model cold start
users. The equation in this special situation can be viewed
as the same as that of a regular LBL model.

4.4 Modeling Multiple Types of Behaviors

Although there exist some scenarios with one type of behav-
ior, e.g., purchasing in e-commerce and clicking on websites,
there are much more applications with multiple types of
behaviors towards items. For instance, users will click items,
purchase items and add items to favorites in e-commerce.
And users may download apps, use apps and uninstall apps.
Thus, it is necessary to model multi-behavioral sequences

and collaboratively predict what a user will choose next
under a specific behavior.

We can simply ignore different types of behaviors, or
treat different behaviors towards one item as different ele-
ments in conventional models. However, it is hard to model
the correlation among different behaviors towards one
item. Here, we incorporate behavior-specific matrices to
capture properties of multiple types of behaviors. Then, the
representation of user u at position & can be calculated as

n—1

u u

k= W k—n + CiMbZ,,rvi‘,,,’ (5)
i=0

where My € R™? denotes a behavior-specific transition
matrix m(;deling the corresponding behavior on the ith
item of user u. Note that, behavior-specific matrices can be
omitted if there is only one type of behavior. Incorporating
behavior-specific matrices, RLBL is the first approach which
can be used to model the underlying properties of different
types of behaviors in historical sequences.

Now, via calculating inner product, the prediction of
whether user v would conduct behavior b on item v at the
sequential position k 4 1 can be made as

Yuk+1,p0 = (SZ)TMI)I"U = (hz + uu)TMbrva (6)

where s’ denotes the representation for the status of user u
at the sequential position &, containing dynamic representa-
tion hj; and static latent representation u,, € R,

5 TiMe-AWARE RLBL MODEL

Sequential models often ignore the continuous time differ-
ence between input elements. The time difference informa-
tion is important for prediction considering that shorter
time differences usually have more significant impact on
the future comparing with longer time differences. For
instance, suppose there are two items, v, and v, in a user’s
purchasing history. The user bought item v, last night and
item v, last month. It is probably that the user’s choice about
what to buy next is mainly influenced by item v,. In con-
trast, if item v, is bought last mourning, it is probably that
both item v, and v, have similar impact to the user’s choice
because of similar interests in a short period. Moreover, as
the purchasing behavior of some items is periodical such as
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buying tooth paste every month, the effect of time difference
becomes more significant in such situations.

Accordingly, in this section, we extend our RLBL model
with time difference information and introduce the time-
aware recurrent log-bilinear model.

5.1 Proposed Model

As discussed above, it will be reasonable if we incorporate
time difference information in our RLBL model. Here, we
replace position-specific transition matrices with time-spe-
cific transition matrices and propose a time-aware RLBL
model. As shown in Fig. 4b, given a user u, representation
at position k can be calculated as

n—1

B = Whi, +> Ty @
=0

i

where ¢} denotes the current timestamp, t} , means the
timestamp of each item in one layer of TA-RLBL, and
Tth—thi € R4 denotes the time-specific transition matrix
for the time difference t} — t}!_, between timestamp t}_; and
ti. The time-specific transition can capture the time-aware
impacts of the most recent behavioral history.

Moreover, similar to RLBL, when k& < n, Equation (7)
should be rewritten as

k=1

h}: = th + Z thft}éiirvlf ) (8)
i=0

k—i

where hj = uy, denoting the initial status of users. To model
multiple types of behavior, behavior-specific transition
matrices are also applied in TA-RLBL model

n—1

hi = Whi, +> Ty My 1y ©)
=0

k—i

Then, similar to RLBL, the prediction of whether user u
would conduct behavior b on item v at sequential position
k + 1 can be computed as

Yukrino = () Myr, = (hy + w,) My, (10)
5.2 Linear Interpolation for Learning Transition

Matrices

If we learn a distinct matrix for each possible continuous
time difference value, we have to estimate a great number
of time-specific transition matrices and the model tends to
overfit. Here, similar to the method in [21], we equally parti-
tion the range of all the possible time difference values into
discrete bins. Only the transition matrices of the upper and
lower bounds of time bins are needed to be estimated in our
model. For time difference values in a time bin, their transi-
tion matrices can be calculated via a linear interpolation.
Mathematically, the time-specific transition matrix T;, for
time difference value t; can be calculated as

[Try (U(ta) = ta) + Ty, (ta — L(ta))]
[(U(ta) — ta) + (ta — L(ta))] 7

where U(tq) and L(t,;) denote the upper bound and lower
bound of time difference t4, Ty, and Ty, denote the

1n

Ttd =
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time-specific transition matrices for U(t;) and L(t;) respec-
tively. Such a linear interpolation method can solve the
problem of learning time-specific transition matrices for
continuous time differences. To be noted, although the
change of time-specific matrices in each discrete time bin is
linear, the global change in the entire range of all the possi-
ble time difference values is nonlinear.

For instance, if the range of all the possible time differ-
ence values is partitioned into one-hour bins, and we want
to calculate the transition matrix for time difference value
1.6h, the upper bound and lower bound of 1.6~ will be 2k
and 1h respectively, and the corresponding time-specific
transition matrix T} g, can be calculated as

[T1n(2h — 1.6h) + Ta,(1.6h — 1h)]
[(2h — 1.6h) + (L.6h — 1h)]

= 0.4Tyy, 4 0.6Toy,.

Tien =

(12)

Until now, we have detailed the RLBL and TA-RLBL
model. Both models can well capture sequential informa-
tion. If there exists explicit time information, TA-RLBL
model is more suitable than that of RLBL model. And if the
dataset is not associated with detailed time information,
RLBL mode will be more suitable than TA-RLBL model.
Both models are constructed under the same framework
and can be applied according to actual situations.

6 PARAMETER LEARNING

In this section, we introduce the learning process of our pro-
posed RLBL and TA-RLBL model with Bayesian Personal-
ized Ranking (BPR) [32] and Back Propagation Through
Time (BPTT) [35].

6.1 Learning of RLBLa
BPR [32] is a state-of-the-art pairwise ranking framework
for the implicit feedback data. BPR has been used as objec-
tive function for learning of RNN based models in
behavioral prediction tasks [21], [45]. The basic assump-
tion of BPR is that a user prefers a selected element than
a negative one. Formally, we need to maximize the fol-
lowing probability:

p(u,k+1,0,v - U/) = 9(Yukt+1.b0 — yu,k’+1,b,v')7 (13)
where ¢ denotes a negative sample, and g(x) is a nonlinear
function which is selected as

1

= . 14
14+e™® (14)

9(x)

Incorporating the negative log likelihood, we can minimize
the following objective function equivalently

_ _ ) A
Jl — Z ln(l +e (ylhk‘*’l‘bﬂf Y k+1,b,0/ )) + 5 H®1||27 (15)
where 0, = {U,R,W,C,M} denotes all the parameters to
be estimated, A is a parameter to control the power of regu-
larization. And the derivations of J; with respect to the
parameters can be calculated as
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The derivations of the output layer have been calcu-
lated. Under each layer of the recurrent structure, similar
to the conventional RNN model, RLBL can be trained by
using the Back Propagation Through Time algorithm
[35], which has been used in practical sequential predic-
tion models [21], [46]. For user u, given the derivation
:T‘]i of the representation h; at sequential position k, the
cécrresponding gradient of parameters at the hidden layer
can be calculated as

o5 o dd;
W
0., . d0.J1 ( )T
awT - 3h}f k—n/ >
aJ1 T, 7 0J1
= (M;u C’i s
3t My )" (C) o7
k—i d
aJ;  0J;
= — (I M;u s
aC, oy i) (Mo )
oL ro ,
() g )

This process can be repeated iteratively, and the gradients
of all the parameters are obtained. Then, the model can
be learned via Stochastic Gradient Descent (SGD) until
converge.

6.2 Learning of TA-RLBL

For learning of TA-RLBL, using BPR [32], similar to Equa-
tions (14) and (15), we need to minimize the following objec-
tive function:

, A
=> In(l+ e~ WuktLbo VukiLba)) 4 5 10,1, (16)
where 0, = {U,R,W,T,M} denotes all the parameters to
be estimated in TA-RLBL. Similarly, the derivations of J;
with respect to the parameters can be computed as
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Wu,k+1,b,v =) = e~ Wukt 1o Yukr1,00)

Then, s1m11ar to RLBL, using BPTT [35], for user u, given
the derivation 2 w % of the representation h; at the sequential
position , the corresponding gradient of parameters at the
hidden layer can be calculated as
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The process above can be repeated iteratively, and we can
obtain all the gradients. After that, the model can be trained
via SGD until converge.

7 EXPERIMENTS

In this section, we empirically investigate the performance
of RLBL and TA-RLBL. As shown in Table 1, we conduct
our experiments on three scenarios with different numbers
of behavioral types. We first introduce our experimental set-
tings. Then we conduct experiments to compare RLBL and
TA-RLBL with different window width and experiments to
compare performances of single behavior and multiple
behaviors. We also give comparison of our models and
some state-of-the-art methods with varying dimensionality.
Then, we study the performance of models under different
length of behavioral history. Finally, we analyse the compu-
tational time and convergence of our proposed methods.

7.1 Experimental Settings

Our experiments are conducted on three real datasets with
different numbers of behavioral types. Details of these data-
sets are illustrated in Table 1.
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TABLE 1
Experimental Summarization

dataset scenario #behavioral types behaviors behavior to predict
Movielens watching movies 5 rating 5, 4, 3, 2, 1 stars rating 5 or 4 stars
Global Terrorism terrorist attack 7 armed, unarmed, assassination, bombing, attack (all types)
Database facility, hijacking, hostage

Tmall e-commerce 4 clicking, purchasing, adding to favorites, purchasing

adding to shopping cart

e  Movielens-IM" is a widely used dataset, associated
with timestamps, for the rating prediction in recom-
mender systems. It contains about 1,000,000 rating
records of 4,000 movies by 6,000 users. The ratings
are divided into five levels, indicating users’ differ-
ent levels of preference, which can be viewed as five
different types of behaviors. With this dataset, we
aim to predict which movie a user will rate 5 or 4
stars next, i.e., which movie a user will prefer next.

e  Global Terrorism Database? includes more than 125,000
terrorist incidents that have occurred all around the
world since 1970 conducted by about 3,000 terrorist
organizations. This dataset consists of seven behav-
ioral types, i.e., different attacking types, as indicated
in Table 1. For social good, we would like to predict
which province or state a terrorist organization will
attack. Thus, it is available for us to take action
before accidents happen and save people’s life.

o Tmall® is a dataset collected from Tmall*, one of the
biggest online shopping websites in China. It con-
tains about 200,000 shopping records belonging to
1,000 users on 10,000 items. The temporal informa-
tion of the dataset is extracted based on the day level.
It contains four different types of behaviors: clicking,
purchasing, adding to favorites and adding to shop-
ping cart. It suits for the task of collaborative predic-
tion on multi-behavioral sequences. On this dataset,
we aim to predict what users will purchase next.

For each behavioral sequence of these three datasets, we
use first 70 percent of the items in the sequence for training,
following 10 percent data as the validation set for tuning
parameters, e.g., the dimensionality of latent representa-
tions, and remaining 20 percent for testing. The regulariza-
tion parameter is set as A = 0.01. And we use line search to
select learning rates in each iteration.

We compare RLBL and TA-RLBL with both conventional
and state-of-the-art sequential methods.

e POP is a naive baseline method that recommends the
most popular items to users.

e MF [29] is one of the state-of-the-art methods for con-
ventional collaborative filtering. It factorizes a user-
item matrix into two low rank matrices, each of
which represents the latent factors of users or items.

e MC is a classical sequential model based on markov
assumption, and is used as a sequential baseline
method.

1. http:/ /grouplens.org/datasets/movielens/

2. http:/ /www.start.umd.edu/gtd/

3. https://102.alibaba.com/competition/addDiscovery/index.htm
4. https://www .tmall.com/

e TF [42] is an extension of MF method. It extends MF
from two dimensions to three dimensions, and the
temporal information is modeled as the additional
dimension.

e FPMC [33] extends conventional MC methods and
factorizes personalized probability transition matri-
ces of users. It is a widely-used method for sequen-
tial prediction and next basket recommendation.

e HRM [40] learns the representation of behaviors in
the previous transaction and predicts next behaviors.
It has become a state-of-the-art method for next bas-
ket recommendation.

e RNN [45] is a state-of-the-art method for the sequen-
tial prediction. It has been successfully applied in
some applications, such as sentence modeling, click
prediction, location prediction and next basket
recommendation.

Considering TF learns latent vectors for time slices, and
MC, FPMC and HRM predict future behaviors according to
behaviors in the last transaction, we need to split transactions
in different datasets according to corresponding application
scenarios. So, we set the length of transaction in the Movie-
lens dataset, the Global Terrorism Database and the Tmall
dataset as one week, one month and one day respectively.

As above methods cannot model multi-behavioral
sequences, when conducting compared methods on multi-
behavioral datasets, we ignore different types of behaviors
in behavioral histories. This means we treat different behav-
iors towards one item as the same.

Moreover, to investigate the performance of our pro-
posed methods and compared methods, we select several
widely-used evaluation metrics for our experiments.

e Recall@k and FI-score@k are two important metrics
for ranking tasks. The evaluation score for our
experiments is computed according to where the
next selected item appears in the predicted list. We
report recall@k and Fl-score@k with k=1, 2, 5 and
10 in our experiments. The larger the value, the bet-
ter the performance.

e  Mean Average Precision (MAP) is another widely used
global evaluation in ranking tasks, which measure
the quality of the whole ranking list. Top-bias prop-
erty of MAP is particularly significant in evaluating
ranking tasks such as top-n recommendation. The
larger the value, the better the performance.

7.2 RLBL versus TA-RLBL

To compare the performances of our proposed RLBL and TA-
RLBL, and investigate their performances with different win-
dow size, we conduct experiments on the three datasets with



1262

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.29, NO.6, JUNE 2017

TABLE 2
Comparison of RLBL and TA-RLBL with Varying Window Width »n and Dimensionality d = 8

(a) Performance on the Movielens dataset.

method n  recall@l recall@ recall@5 recall@l0 Fl-score@l Fl-score@2 Fl-score@5 Fl-score@10 MAP
2 0.0067 0.0103 0.0333 0.0508 0.0067 0.0069 0.0111 0.0093 0.0377
3 0.0070 0.0104 0.0334 0.0510 0.0070 0.0070 0.0111 0.0093 0.0381
4 0.0070 0.0107 0.0338 0.0520 0.0070 0.0072 0.0113 0.0095 0.0385
RLBL 5 0.0070 0.0108 0.0343 0.0527 0.0070 0.0072 0.0114 0.0096 0.0386
6 0.0071 0.0112 0.0354 0.0538 0.0071 0.0074 0.0118 0.0098 0.0395
7 0.0070 0.0111 0.0354 0.0543 0.0070 0.0074 0.0118 0.0099 0.0393
8 0.0070 0.0108 0.0351 0.0535 0.0070 0.0072 0.0117 0.0097 0.0390
2 0.0070 0.0106 0.0343 0.0529 0.0070 0.0071 0.0114 0.0096 0.0388
3 0.0071 0.0105 0.0338 0.0523 0.0071 0.0071 0.0113 0.0094 0.0385
4 0.0071 0.0108 0.0337 0.0522 0.0071 0.0073 0.0113 0.0095 0.0388
TA-RLBL 5 0.0070 0.0110 0.0366 0.0553 0.0068 0.0074 0.0123 0.0101 0.0396
6 0.0072 0.0115 0.0372 0.0554 0.0072 0.0076 0.0124 0.0101 0.0404
7 0.0070 0.0115 0.0362 0.0549 0.0070 0.0076 0.0121 0.0100 0.0398
8 0.0070 0.0110 0.0348 0.0539 0.0070 0.0073 0.0118 0.0100 0.0392
(b) Performance on the Global Terrorism Database.
method n  recall@l recall@2 recall@> recall@l0 Fl-score@l Fl-score@2 Fl-score@5 Fl-score@10 MAP
2 0.1577 0.2448 0.4378 0.6104 0.1577 0.1632 0.1459 0.1110 0.2930
4 0.1642 0.2691 0.4676 0.6395 0.1642 0.1794 0.1559 0.1163 0.3082
6 0.1624 0.2686 0.4768 0.6468 0.1624 0.1791 0.1589 0.1176 0.3090
RLBL 9 0.1580 0.2848 0.4865 0.6748 0.1580 0.1899 0.1622 0.1227 0.3153
10 0.1569 0.2806 0.4846 0.6659 0.1569 0.1871 0.1615 0.1211 0.3130
15 0.1567 0.2660 0.4682 0.6470 0.1567 0.1773 0.1561 0.1176 0.3053
20 0.1690 0.2775 0.4872 0.6572 0.1690 0.1850 0.1624 0.1195 0.3165
2 0.1642 0.2763 0.4740 0.6451 0.1697 0.1842 0.1580 0.1173 0.3117
4 0.1681 0.2758 0.4719 0.6411 0.1686 0.1839 0.1573 0.1166 0.3187
6 0.1678 0.2758 0.4833 0.6524 0.1678 0.1839 0.1611 0.1186 0.3146
TA-RLBL 9 0.1634 0.2895 0.4926 0.6730 0.1634 0.1930 0.1642 0.1224 0.3199
10 0.1622 0.2864 0.4910 0.6672 0.1622 0.1909 0.1637 0.1213 0.3180
15 0.1618 0.2731 0.4746 0.6527 0.1618 0.1821 0.1582 0.1187 0.3107
20  0.1697 0.2849 0.4839 0.6629 0.1697 0.1899 0.1613 0.1205 0.3197
(c) Performance on the Tmall dataset.
method n  recall@l recall@2 recall@5 recall@l0 Fl-score@l Fl-score@2 Fl-score@5 Fl-score@10 MAP
2 0.1507 0.2170 0.3712 0.4690 0.1507 0.1447 0.1237 0.0853 0.2704
3 0.1480 0.2515 0.4118 0.5176 0.1480 0.1677 0.1373 0.0941 0.2781
4 0.1467 0.2311 0.3646 0.4953 0.1467 0.1541 0.1215 0.0901 0.2689
RLBL 5 0.1600 0.2158 0.3975 0.5519 0.1600 0.1439 0.1325 0.1003 0.2836
6 0.1502 0.2272 0.3822 0.5596 0.1502 0.1515 0.1274 0.1017 0.2806
7 0.1493 0.2553 0.4074 0.5272 0.1493 0.1702 0.1358 0.0959 0.2819
8 0.1387 0.2324 0.4019 0.5395 0.1387 0.1549 0.1340 0.0981 0.2770
2 0.1351 0.2302 0.3669 0.4493 0.1351 0.1535 0.1223 0.0817 0.2608
3 0.1268 0.1931 0.3497 0.4541 0.1268 0.1287 0.1166 0.0826 0.2579
4 0.1441 0.2450 0.4084 0.4780 0.1441 0.1633 0.1361 0.0869 0.2820
TA-RLBL 5 0.1413 0.2366 0.3871 0.5461 0.1413 0.1577 0.1290 0.0993 0.2804
6 0.1253 0.2039 0.4081 0.4454 0.1253 0.1359 0.1360 0.0810 0.2521
7 0.1234 0.2213 0.3556 0.4412 0.1234 0.1475 0.1185 0.0802 0.2523
8 0.1198 0.2063 0.3472 0.4247 0.1198 0.1375 0.1157 0.0772 0.2454

varying window size n. The results evaluated by recall, F1-
score and MAP are illustrated in Table 2. We can clearly
observe that, TA-RLBL performs better that RLBL in most
cases. On the Movielens dataset, TA-RLBL clearly achieves a
better performance evaluated by all the metrics with all the
window width and the performance difference between the
two models are stable. On the Global Terrorism Database,
TA-RLBL performs better than RLBL mostly, especially eval-
uated by the global metrics MAP. But under window width

n =9, the RLBL model achieves a slightly better recall@10
and F1-score@10 scores. These observations clearly indicate
that replacing position-specific transition with time-specific
transition can achieve better performance when there exists
explicit time information. However, on the Tmall dataset,
RLBL performs better than TA-RLBL in most cases. The rea-
son may be that time information in the Tmall dataset is
detailed to the day level. In the Tmall dataset, there are aver-
agely 5.56 times of clicking, 1.65 times of purchasing, 1.42
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TABLE 3
Comparison of Multiple Behaviors and Single Behavior

(a) Performance on the Movielens dataset with dimensional-
ity d = 8 and window width n = 6.

behaviors method recall@l recall@5 recall@10 MAP
RNN 0.0063 0.0318 0.0484  0.0362

single RLBL 0.0068 0.0343 0.0519  0.0384
TA-RLBL  0.0068 0.0360 0.0535  0.0392

multiole RLBL 0.0071 0.0354 0.0538  0.0395
p TA-RLBL 0.0072 0.0372 0.0554 0.0404

(b) Performance on the Global Terrorism Database with
dimensionality d = 8 and window width n = 9.

behaviors method recall@l recall@5 recall@10 MAP
RNN 0.1216 0.4168 0.5912  0.2600

single RLBL 0.1254 0.4723 0.6665 0.2853
TA-RLBL 0.1298 0.4783 0.6648 0.2896

multiple RLBL 0.1580 0.4865 0.6748 0.3153
p TA-RLBL 0.1634 0.4926 0.6730 0.3199

(c) Performance on the Tmall dataset with dimensionality
d = 8 and window width n = 5.

behaviors method recall@l recall@5 recall@10 MAP
RNN 0.1283 0.3410 0.4397  0.2432

single RLBL 0.1389 0.3581 0.5277  0.2666
TA-RLBL 0.1227 0.3824 0.5221  0.2636

multiple RLBL 0.1600 0.3822 0.5519 0.2836
p TA-RLBL 0.1413 0.4081 0.5461  0.2804

times of adding to favorites, and 1.25 times of adding to shop-
ping chart in one day conducted by one user. For these behav-
iors happening in the same day, there exists only sequential
information of behaviors on items, but no more detailed time
information. Accordingly, time-specific transition matrices
for behaviors in one day will become the same, and orders
among them will be discarded. Therefore, time-specific transi-
tion in TA-RLBL brings slight performance decrease on the
Tmall dataset. Accordingly, it is necessary to select a proper
model between RLBL and TA-RLBL according to whether
there exists enough detailed time information in the dataset.
For TA-RLBL incorporates time difference information, when
the dataset has detailed time information, TA-RLBL will per-
form better. Otherwise, RLBL will be a better choice.

The experimental results in Table 2 provide some hints in
selecting the best window width n for RLBL and TA-RLBL in
our experiments. Performances of our models on Movielens
are stable and the best performances are obviously achieved
atn = 6. On the Tmall dataset and the Global Terrorism Data-
base, the performances are not so stable evaluated by different
metrics. We can select the best parameters according to the
global metric MAP, which considers all the positions in
a ranking list. Then the best window width for the
Global Terrorism Database is n = 9, and the best window
width for the Tmall dataset is n = 5. For the rest of our
experiments, we report the performances of RLBL and
TA-RLBL under the best window width. Moreover, for
metrics recall@p and Fl-score@p, there seems existing a
rough pattern. For smaller p, better recall values and F1-
score values of RLBL and TA-RLBL are achieved with
smaller window width n. While for larger p, better recall
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Fig. 5. Performance comparison on the Movielens dataset with varying
dimensionality d and window width n = 6.

values and Fl-score values of RLBL and TA-RLBL are
achieved with larger window width n.

7.3 Multiple Behaviors versus Single Behavior

We have analyzed performances of RLBL and TA-RLBL
modeling multiple behaviors. To investigate the impact of
multiple behaviors and single behavior on prediction effec-
tiveness, we need to obtain performances of RLBL and TA-
RLBL modeling a single behavior. As we ignore different
types of behaviors when implementing compared methods,
we also ignore multiple types of behaviors conducted on items
in sequences when implementing RLBL and TA-RLBL in this
experiment. Thus, the data of a user becomes a sequence con-
sisting of items without behavioral types. Then, performances
of the proposed methods under a single type of behavior can
be obtained. To be noted, the partition of three datasets among
training, testing and validation stays the same.

The performance comparison of modeling multiple
behaviors and single behavior evaluated by recall, F1-score
and MAP on three datasets is shown in Table 3. We can
clearly observe the significant improvements brought by
modeling multiple behaviors. Comparing with modeling
single behavior, MAP improvements of RLBL modeling
multiple behaviors are 2.92, 10.52 and 6.41 percent on three
datasets respectively. And for TA-RLBL modeling multiple
behaviors, comparing with modeling single behavior, the
MAP improvements become 2.96, 10.46 and 6.42 percent,
which are close to previous ones. Moreover, we can also see
that, even ignoring multiple types of behaviors, RLBL and
TA-RLBL can still outperform RNN with a relatively signifi-
cant advantage, which indicates the effectiveness of posi-
tion-specific and time-specific transition. Meanwhile,
comparing results of RLBL and TA-RLBL in Table 2 with
results of RNN in Table 3, even not with the best window
width, most of the results of RLBL and TA-RLBL are still
better than the performance of RNN. This indicates the
effectiveness and stability of RLBL and TA-RLBL with vary-
ing window width.

7.4 Performance Comparison with Different
Methods

We compare RLBL, TA-RLBL and competitive methods

with varying dimensionality d evaluated by recall and MAP

on the three datasets. The results on the Movielens dataset,
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the Global Terrorism Database and the Tmall dataset are
illustrated in Figs. 5, 6, and 7 respectively. Compared to the
baseline performance of POP, the performances of MF, MC
and TF have very similar improvement on the three data-
sets. They all have their shortcomings. Since MF cannot
model sequential information, MC cannot model collabora-
tive information, and TF has difficulty in predicting future
behaviors, none of them achieves very satisfactory results.
Jointly modeling sequential information and collaborative
information, FPMC achieves great improvement comparing
with these three methods. Learning latent representations
of recent behaviors, HRM further improves the performance
of FPMC. Furthermore, RNN brings another large improve-
ment on the three datasets, and is clearly the best one
among all the compared methods. Moreover, we can
observe that, our proposed RLBL model and TA-RLBL
model achieve the best performance on all the three datasets
in terms of all the metrics. Using the performances with the
best dimensionality of each method, comparing with RNN,
the MAP improvements of RLBL are 9.18, 21.27 and 16.64
percent on the Movielens dataset, the Global Terrorism
Database and the Tmall dataset respectively. And the MAP
improvements of TA-RLBL are 11.62, 23.04 and 15.31 per-
cent on the three datasets respectively. These results show
the superiority of our methods brought by multi-behavior
modeling and incorporating position-specific in RLBL or
time-specific transition in TA-RLBL.
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TABLE 4
Performance Comparison with Different
Behavioral History Length

(a) Performance on the Movielens dataset with dimensional-
ity d = 8 and window width n = 6.

length method recall@l recall@5 recall@l0 MAP
FPMC 0.0052  0.0250 0.0433  0.0325

HRM 0.0057  0.0283 0.0456  0.0339

short RNN 0.0062  0.0313 0.0478  0.0357
RLBL 0.0070  0.0351 0.0535  0.0391

TA-RLBL  0.0071  0.0368 0.0550  0.0400

FPMC 0.0054  0.0257 0.0441  0.0333

HRM 0.0060  0.0290 0.0464  0.0346

medium  RNN 0.0063  0.0317 0.0483  0.0361
RLBL 0.0072  0.0356 0.0540  0.0397

TA-RLBL  0.0073 0.0373 0.0556  0.0405

FPMC 0.0053  0.0254 0.0438  0.0330

HRM 0.0059  0.0287 0.0460  0.0344

long RNN 0.0064  0.0320 0.0487  0.0364
RLBL 0.0073  0.0359 0.0544  0.0400

TA-RLBL  0.0074 0.0377 0.0561  0.0409

(b) Performance on the Global Terrorism Database with
dimensionality d = 8 and window width n = 9.

length method recall@l recall@5 recall@l0 MAP
FPMC 0.0935  0.3834 0.5658  0.2341

HRM 0.0966  0.3980 0.5725  0.2410

short RNN 0.1180  0.4066 0.5833  0.2544
RLBL 0.1507  0.4728 0.6639  0.3073

TA-RLBL 0.1557  0.4770 0.6621  0.3124

FPMC 0.0981 0.4006 0.5748  0.2422

HRM 0.1029 04124 0.5830  0.2503

medium RNN 0.1216  0.4168 0.5912  0.2600
RLBL 0.1567  0.4840 0.6734  0.3140

TA-RLBL 0.1620  0.4906 0.6710  0.3183

FPMC 0.0964  0.3944 0.5741  0.2385

HRM 0.1007  0.4068 0.5824  0.2468

long RNN 0.1239  0.4233 0.5918  0.2642
RLBL 0.1599  0.4916 0.6790  0.3178

TA-RLBL  0.1649 0.4985 0.6766 0.3227

(c) Performance on the Tmall dataset with dimensionality
d = 8 and window width n = 5.

6 8 10 12 14 2 4
dimensionality

recall@10

8 10 12 14 2 4

6 8 10 12 14
dimensionality

6
dimensionality

Fig. 7. Performance comparison on the Tmall dataset with varying
dimensionality d and window width n = 5.

length method recall@l recall@5 recall@l0 MAP
FPMC 0.0837 0.2330 0.3350  0.1807

HRM 0.0934 0.2588 0.3668  0.1990

short RNN 0.1251 0.3363 0.4350  0.2401
RLBL 0.1566 0.3786 0.5494  0.2811

TA-RLBL 0.1381 0.4041 0.5432  0.2780

FPMC 0.0872 0.2393 0.3412  0.1848

HRM 0.0971 0.2653 0.3734  0.2032

medium RNN 0.1282 0.3410 0.4396  0.2432
RLBL 0.1608 0.3841 0.5547 0.2850

TA-RLBL  0.1420 0.4102 0.5491 0.2818

* dimensionalty FPMC 0.0859 0.2369 0.3387  0.1831
HRM 0.0957 0.2627 0.3703  0.2016

long RNN 0.1303 0.3445 0.4433  0.2447
RLBL 0.1633 0.3879 0.5588 0.2876

TA-RLBL  0.1439 0.4143 0.5532  0.2842

In Figs. 5, 6, and 7, we can also observe the performance
curves of all the methods growing along with dimensional-
ity n. All the curves clearly show the great advantages
of RLBL and TA-RLBL comparing with other compared
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TABLE 5

The Computational Time of RNN, RLBL, and TA-RLBL
in Each lteration During Training on Three Datasets

method Movielens GTD Tmall
RNN 902 s 115s 335s
RLBL 1,628 s 19%s 638's
TA-RLBL 1,664 s 210s 668 s

methods with different dimensionality. The performance
difference between RLBL and TA-RLBL discussed above
can also be observed from the performance curves. More-
over, the curves show that the performances of our models
are stable in a large range on different datasets evaluated by
different metrics. And even not with the best dimensional-
ity, our methods can still outperform compared methods.
According to the curves, we select the dimensionality as
d =38, and we report corresponding performances in the
rest of our experiments.

7.5 Comparison with Different Length
of Behavioral History

Similar to the strategy in [40], we split behavior sequen-
ces into three different types according to their length:
short, medium and long. Thus, we can investigate the
performance of models under different situations. In our
experiments, for roughly equal splitting of behavioral
sequences, we set the thresholds for the Movielens data-
set as 50 and 200, the thresholds for the Global Terrorism
Database as 50 and 200, and the thresholds for the Tmall
dataset as 100 and 500.

The performance comparison of FPMC, HRM, RNN,
RLBL and TA-RLBL with different length of behavioral

1 1
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history evaluated by recall, F1-score and MAP is shown in
Table 4. From the results, we can see that RLBL and TA-
RLBL performs better than compared methods, i.e., FPMC,
HRM and RNN, in all the situations. This shows the flexibil-
ity of our methods with variety length of behavioral history.
Moreover, FPMC and HRM have the best performances on
medium-length sequences, followed by long-length sequen-
ces. This also confirms the results and consequences in [40],
where FPMC and HRM perform best on medium-length
sequences. For RNN, RLBL and TA-RLBL, the longer the
sequences, the better the performances. This may because
FPMC and HRM only model the most recent behaviors
when making prediction, and previous behaviors can
only be revealed by constant user latent vectors. Then,
except most recent behaviors, other behaviors after model
training will be ignored. So, with longer behavioral sequen-
ces, there will be more behaviors ignored, and poorer per-
formances will be achieved. While models with recurrent
structure, i.e., RNN, RLBL and TA-RLBL, can take the
whole sequence into consideration, and user representa-
tions can change dynamically along with behavioral
sequences. Thus, our RLBL and TA-RLBL can easily deal
with the situation when sequences are too long.

7.6 Analysis on Computational Time and
Convergence

To investigate the efficiency of our proposed methods, we
illustrate the computational time of RNN, RLBL and TA-
RLBL in each iteration during training on three datasets in
Table 5. The computation time is measured in seconds.
Here, according to previous experimental results, the
dimensionality is chosen to be d =8. And the window
width is n =6, n =9 and n =5 on Movielens, GTD and
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Fig. 8. Convergence curves of RLBL measured by normalized recall and MAP.
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Fig. 9. Convergence curves of TA-RLBL measured by normalized recall and MAP.
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Tmall respectively. Experiments are conducted on a com-
puter with an 8 core 3.0 GHz CPU, 16 GB RAM, and a NVI-
DIA TITAN X GPU. From results in Table 5, we can observe
that all three methods can be trained in an acceptable time.
RLBL is a little faster than TA-RLBL, indicating that time-
specific transition is a little more time consuming than posi-
tion-specific transition. Moreover, the computational time
of RLBL and TA-RLBL is less than twice of that of conven-
tional RNN. This means that, the significant performance
improvement brought by RLBL and TA-RLBL only requires
no more than double computational time.

Moreover, we illustrate the convergence curves of RLBL
and TA-RLBL in Figs. 8 and 9 respectively. To illustrate
curves measured by different evaluation metrics in one
figure, we calculate normalized recall and MAP of RLBL
and TA-RLBL on three datasets. We normalize the values of
recall and MAP into [0, 1], and illustrate the corresponding
convergence curves. From the convergence curves, we can
observe that, both RLBL and TA-RLBL can achieve conver-
gence in a relatively small number of iterations. Moreover,
recall@] values achieves convergence faster than recall@5
values, and recall@5 values achieve convergence faster than
recall@10 values. This may indicate that, the more items
generated in the ranking list, the more iterations are needed
during training.

8 CoONcCLUSION AND FUTURE WORK

In this paper, we have proposed two novel multi-behavioral
sequential prediction methods, i.e., recurrent log-bilinear
model and time-aware recurrent log-bilinear model. We
build our model under a recurrent structure. RLBL models
several elements in each hidden layer and incorporate posi-
tion-specific transition matrices. With such architecture,
RLBL can well model both short- and long-term contexts in
a historical sequence. Besides, to capture multiple types of
behavior in behavioral sequences, behavior-specific matri-
ces are designed and applied for each type of behavior.
Then, to incorporate time difference information in behav-
ioral sequences, we further extend the RLBL model and pro-
pose a time-aware recurrent log-bilinear model with time-
specific transition matrices. Modeling time difference infor-
mation, TA-RLBL can further improves the performance of
RLBL in sequential prediction. The experimental results on
three real datasets show that both RLBL and TA-RLBL out-
performs state-of-the-art sequential prediction models.

In the future, we can further investigate the following
direction. In RLBL and TA-RLBL, transition matrices are the
same for different users, which does not confirm to practical
situations. So, we need to find a method to determine differ-
ent transition matrices for different users or different user
groups. Moreover, we didn’t take items’ features, e.g., cate-
gories, descriptions and images of items, into consideration.
Thus, incorporating RLBL and TA-RLBL with features of
items may also be our next step.
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