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Abstract—Face recognition has made great progress with
the development of deep learning. However, video face
recognition (VFR) is still an ongoing task due to various
illumination, low-resolution, pose variations and motion blur.
In this paper, we propose a novel Attention-Set based Metric
Learning (ASML) method for VFR. It is a promising and
generalized extension of Maximum Mean Discrepancy with
Memory Attention Weighting inspired by Neural Turing
Machine. ASML can be naturally integrated into Convolu-
tional Neural Networks, resulting in an end-to-end learning
scheme. Our method achieves state-of-the-art performance
for the task of video face recognition on three widely used
benchmarks including YouTubeFace, YouTube Celebrities
and Celebrity-1000.

Keywords-video face recognition; metric learning; memory
attention weighting;

I. INTRODUCTION

Video face recognition (VFR) has attracted a significant
attention in computer vision community in recent years
[15], [35], [33], [19], [22], [5], [2], [9], [10], [29], [7].
In contrast to conventional face recognition where each
gallery or probe instance refers to a single image, video
face recognition aims to identify and verify face videos.
Moreover, each video can be treated as an image set of
faces without taking temporal information into account.
Generally, there three core issues in VFR: how to alleviate
sample biases and noise within a video or an image set,
how to construct appropriate face representations, and how
to define a suitable distance metric for calculating the
similarity between these representations.

Recently, with the prominent success of Convolutional
Neural Network (CNN) in various vision applications,
some works [21], [33], [30], [19], [27], [24], [25] employ
CNNs to automatically learn the mapping from the input
face images to a discriminative embedding with supervised
signals. The superiority of CNN is that the network
can learn the face representations and the discriminative
embeddings jointly in an end-to-end manner. Current CNN
based face recognition approaches [21], [30], [19], [27],
[24], [25] are originally designed for single face images
rather than videos. On the one hand, due to the low-
resolution and motion blur in videos, the performance
of these approaches for VFR will decrease. On the other
hand, these methods extract features for each image in a
video and then simply aggregate them as a representation
or fuse the matching results across all pairs of images
between two videos. However, in this way, it doesn’t
consider the correlations of images in videos. Yang et

al. [33] design a novel attention-based feature aggregation
strategy named Neural Aggregation Network (NAN). It
adaptively aggregates the face features in a video by
advocating high-quality face images and suppressing low-
quality ones. The existing CNN based methods for VFR
either take shuffled single images or randomly selected
pairs or hard sampled triplets as training instances, which
can not make full use of rich information of face videos
(or face image sets) in the CNN training stage.

In this paper, we propose an Attention-Set based Metric
Learning (ASML) approach for video face recognition.
It addresses the above challenges and can be integrated
into general CNN frameworks seamlessly with end-to-end
trainable parameters. ASML is a promising and general-
ized extension of Maximum Mean Discrepancy [20] with
memory attention weighting. Each training instance is con-
sisted of three parts: an anchor image set, a positive image
set and a negative image set. Based on these triple-set
instances, a siamese CNN with three branches is trained
by supervision of ASML. ASML has powerful abilities
to drive the CNN to learn more discriminative and set-
aware face representations. Memory attention weighting
is employed to correct sample biases in the triple-set
instances. This policy can effectively maintain and focus
on beneficial information while suppress and discard noisy
information in network training. The proposed method
is evaluated on three widely used datasets including Y-
ouTubeFace [31], YouTube Celebrities [11] and Celebrity-
1000 [14] and achieves the best performance compared
to state-of-the-art methods. The basic framework of our
approach is illustrated in Figure 1.

Note that, the proposed ASML has huge distinctions
with NAN. NAN focuses on attentively aggregating face
features over a face video to obtain a single feature.
But ASML concentrates on learning representative and
discriminative features based on attention mechanism and
just uses average aggregation to fuse these features. From
this perspective, ASML and NAN are complementary and
can be combined with each other seamlessly, because they
are two independent parts.

II. OUR APPROACH

In this section, we first introduce ASML, and then
embed it into a general CNN framework via a simplified
Neural Turing Machine [6]. Finally, we depict the whole
network architecture.
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Figure 1. An illustration of our proposed approach. Different colors in attention blocks indicate different significance of the corresponding face
features.

A. Attention-Set based Metric Learning

Generally, the key component in video face recognition
is image set representations, more specifically is the image
features [15], [8], [35]. Since the images from the same
sets are generally similar, we expect they have similar
(or same) feature distributions. On the other hand, the
images from the different sets are always divergent and
should have disparate feature distributions. ASML has the
ability to learn such kind of features. It is a promising
and generalized extension of Maximum Mean Discrepancy
with memory attention weighting.

Maximum Mean Discrepancy (MMD) [20] was prim-
itively proposed to measure the distance between two
distributions based on the mean features of data sets in a
Reproducing Kernel Hilbert Space (RKHS). Let p and q be
distributions defined on a domain X . Assuming two data
sets X= {x1, ..., xn} and Y = {y1, ..., ym} are drawn i.i.d.
from p and q respectively, the MMD criterion determines
whether p = q or p 6= q in RKHS.

Definition 1: (from [20]) Let F be a class of functions
f : X → R and let p, q,X, Y be defined as above. The
MMD and its empirical estimate as:

MMD[F , p, q] := sup
f∈F

(Ex∼p [f (x)]− Ey∼q [f (y)]) (1)

MMD[F , X, Y ] := sup
f∈F

( 1n

n∑
i=1

f(xi)− 1
m

m∑
i=1

f(yi)) (2)

When F is a unit ball in RKHS which is defined on
compact metric space X , the equation MMD[F , X, Y ] =
0 satisfies if and only if p = q [20]. Intuitively, the
smaller MMD the more correlative between distributions
of X and Y , thus the features of the two sets are similar.
Accordingly, the larger MMD the more discrepant between

the distributions, and the features are disparate. Taken
in this sense, we propose the following Mean-Set based
Metric Learning (MSML),

MSML(X,Y, Z) = ‖Ex∼p[f(x)]− Ey∼p[f(y)]‖2
+[α− ‖Ex∼p[f(x)]− Ez∼q[f(z)]‖2]+

(3)
where [ · ]+ indicates max(·, 0) and α is a constant
margin. X,Y, Z represent image sets. Among them, X
and Y are drawn from the same class, but different from
Z. Minishing the quantity of MSML, one can increase
the correlation and discrepancy between the similar and
dissimilar sets respectively.

Although MMD can be applied to arbitrary dimensions
and domains, it doesn’t take into consideration the sample
biases and outliers (or noise) in the sets, which is ubiqui-
tous in real world applications. Consequently, it is inferior
to VFR. To address it, from the proposition 1 in [4], we
obtain that the following optimization problem is convex
and has the unique solution ω(x) = p(x)/p̂(x):

minimize
ω(x)≥0

‖Ep[f(x)]− Ep̂[ω(x)f(x)]‖2

s.t. Ep̂[ω(x)] = 1
(4)

where p̂ is a distribution whose support corresponds with
p. Obviously, it is reasonable to believe that ω(x) can cor-
rect sample biases and remove outliers (or reduce noise),
if it is well selected. Introducing ω(x) as a correction
term of sample biases into MMD, we have Rectified Mean



Discrepancy (RMD) as follows:

RMD(X,Y ) =
∥∥Eω(x)[f(x)]− Eω(y)[f(y)]

∥∥
2

= ‖
n∑

i=1

ω(xi)f(xi)−
m∑
j=1

ω(yj)f(yj)‖2

s.t.
n∑

i=1

ω(xi) = 1,
m∑
j=1

ω(yj) = 1

(5)

Combining Eq.(3) and Eq.(5), we couple Mean-Set
based Metric Learning with the rectified term and obtain
a superior metric learning method named Attention-Set
based Metric Learning (ASML) for video face recognition,

ASML(X,Y, Z) =
∥∥Eω(x)[f(x)]− Eω(y)[f(y)]

∥∥
2

+[ α−
∥∥Eω(x)[f(x)]− Eω(z)[f(z)]

∥∥
2
]
+

s.t.
∑
ω(x) = 1,

∑
ω(y) = 1,

∑
ω(z) = 1

(6)
Obviously, it has the same characteristics with MSML,

pushing the distributions of same sets closely and pulling
the distributions of different sets far apart simultaneously.
Additionally, the rectified term is equipped in it to correct
biases and reduce noise.

B. Memory Attention Weighting

Weights in ASML indicate the significance of images
in a set. If a face image is frontal, well-illuminated and
legible, a high weight should be assigned. Otherwise, if
it is lateral, bad-illuminated and blurred, a low weight
is applied. From this perspective, two primary principles
must be considered for weighting: First, the weighting
method is easily integrated in basic CNN frameworks
and its parameters are end-to-end trainable by means of
supervised manner. Second, the weights should be global-
content-based and set-aware, since we construct a training
instance as a special image set to make better use of set
information.

The memory attention mechanism [33], [23], [1], [6] is
suitable for the above requirements. The core concept is
to couple neural models with external memory and to be
interacted by attentional addressing processes. In ASML,
we regard the weighting as a Neural Turing Machine
(NTM) [6], where the face feature sets are treated as
memory and the weights are deemed to address to read
from and write to memory attentively.

A NTM involves two basic components: a read head and
a write head. They emit normalised outputs over memory
locations to define the degree to which the head reads or
writes. Therefore, a head can attend sharply at a single
location or weakly ate multiple locations. In our memory
attention weighting method, we set all the elements emit-
ted by write head are equal to 0 to omit writing operation,
and adaptively learn the read head in reading operation
as the final weights. Different from the approaches in
[33], [23], [1], [6], we don’t implicitly obtain weights
by dot-producting the feature vectors with a key vector.
Conversely, we explicitly learn the weights from the whole
feature vectors in the feature sets. As a consequence,

our weighting is global-content-based and set-aware. Let
{fi} be a face feature set and {si} be the corresponding
significance, which will be learnt adaptively. A softmax
operation is applied on si to form normalized weights ωi.
The operation and the reformulated Eω [f(x)] in Eq.(6)
are as follows.

ωi =
exp(si)∑
j exp(sj)

(7)

Eω [f(x)] =
∑
i

[
exp(si)∑
j exp(sj)

· fi] (8)

Obviously, the weights {ωi} and the {si} are differen-
tiable, allowing them to be learnt end-to-end.

C. Network Architecture

We introduce the lightened CNN [32] as our primary
network. It contains 29 convolution layers with residual
blocks and Max-Feature-Map (MFM) operations. Based
on the primary network, ASML and Memory Attention
Weighting are coupled for video face recognition. More-
over, we find Softmax is an important supervised signal for
our method. Thus we obtain the following object function:

L = λ1Softmax+ λ2ASML (9)

where λ1 and λ2 are trade-offs between these two terms.
The softmax function is used for standard face recognition
tasks, and ASML penalizes to increase the correlations and
the discrepancies between the probability distributions of
similar and dissimilar face sets respectively.

III. EXPERIMENTS

A. Datasets

YouTubeFace (YTF) [31] contains 3,425 unconstrained
videos varying from 48 to 6070 frames of 1,595 different
subjects download from YouTube. This dataset is con-
structed for video face verification task with the standard
testing protocol to perform ten-fold cross validation tests.

YouTube Celebrities (YTC) [11] is composed of 1,910
video clips of 47 subjects, which is also collected from
YouTube website. It is a quite challenging dataset for video
face identification task due to the high compression rate
and large appearance variations. Following the standard
evaluation protocol, five-fold cross validation is conducted
on it.

Celebrity-1000 (C-1000) [14] is a large-scale unre-
stricted video dataset downloaded from YouTube and
Youku. It is designed for video face identification task and
consisted of 159,726 video sequences of 1000 subjects.
There are two types of protocols on this dataset: close-set
and open-set. In the close-set protocol, four overlapping
subsets are created with an incremental number of sub-
jects: 100, 200, 500 and 1000. In the open-set protocol,
200 subjects are used for training, the rest 800 subjects
are used as gallery and probe with four settings: 100, 200,
400 and 800 subjects.



Table I
COMPARISON OF VERIFICATION ACCURACY RATE (±STANDARD

VARIATION) (VAR±SD) WITH OTHER STATE-OF-THE-ART METHODS
ON THE YOUTUBEFACE DATASET.

Method VAR±SD (%)
DeepFace[27] 91.40±1.10
DeepID2+[24] 93.20±0.20

Sparse ConvNet[25] 93.50
VGG-CRF-SME[22] 93.80±1.30

Wen et al.[30] 94.90
TBE-CNN[5] 94.96±0.31
FaceNet[21] 95.12±0.39

NAN[33] 95.72±0.64
VGG-Face[19] 97.30
Our(Baseline) 95.54±1.12
Our(Softmax) 96.74±0.78

Our(Softmax+ASML) 97.58±0.79

B. Training Schema

The network training includes three stages. First, the
primary CNN is trained on the MS-Celeb-1M dataset fol-
lowed by the instructions in [32]. Then we remove the last
fully connected layer and append a dataset-specific fully
connected layer with randomly initialized. Fixing all the
other network parameters and training parameters, we fine-
tune this layer with 1e-3 learning rate under the softmax
supervised signal. At the third stage, the whole network
framework is fine-tuned on the above three datasets. In
this stage, for all experiments, we set the learning rate to
1e-4 with fixed policy and initialize the memory attention
weights to be equal with the summation to be 1. The
coefficients of momentum and weight decay are set to
0.9 and 5e-4 respectively. The trade-off parameters λ1
(for Softmax term) and λ2 (for ASML term) are assigned
to 1 and 0.01, the margin α is set to 25. Note that the
face images in YTC are poor quality and low-resolution
(20 × 20). Accordingly, they may lead to over-fitting if
the large network parameters are leant. To address this
problem, we enlarge the weight decay to 5e-3 and the
margin to 60 while shrink λ2 to 0.004 for experiments on
YTC. All the colored face images are transformed to gray-
scale and normalized to 144×144. Then they are randomly
cropped into 128×128 and mirrored with 50% probability
to augment the training data. The batch size is set to 72,
and each batch contains three equal-sized subsets of face
images to form a triple-set, including an anchor subset X ,
a positive subset Y and a negative subset Z. We use the
hard sampling approach to construct these triple-sets.

C. Results on YouTubeFace

We evaluate the video face verification performance of
our method on the YTF dataset. Following the standard
verification protocol (described in Sec.III-A), we report
the average Verification Accuracy Rate (VAR) under 10-
fold cross validation.

As shown in Table I, we compare our method with
DeepFace [27], VGG-Face [19], DeepID2+ [24], Sparse
ConvNet [25], VGG-CRF-SME [22], Wen et al. [30],
TBE-CNN [5], FaceNet [21], GoogleNet [26] and NAN
[33]. Our proposed method obtains 97.58% VAR, which

Table II
AVERAGE RANK-1 ACCURACY (%) ON THE YOUTUBE CELEBRITIES

DATASET WITH STANDARD 5-FOLD CROSS VALIDATION.

Method Rank-1 (%)
LMKML[17] 78.20
MMDML[16] 78.50
MSSRC[18] 80.75

SFSR[35] 85.74
RRNN[13] 86.60

CRG[3] 86.70
VGG-Face[19] 93.62
Our(Baseline) 94.18
Our(Softmax) 95.39

Our(Softmax+ASML) 97.52

beats the recently popular approaches with large margins,
such as DeepFace, DeepID2+ and FaceNet. It outperforms
the previous best method VGG-Face (97.3%) and the fea-
ture aggregation method NAN (95.72%). It worth nothing
that VGG-Face extracts each face feature by averaging 30
cropped patches (three scales, five random positions, and
horizontal mirror), whereas our method only uses 1 patch.

D. Results on YouTube Celebrities

In this subsection, we report the results of our proposed
method on YTC, following the standard 5-fold cross
validation for identification task.

Table II reports the comparisons of our method with
Localized Multi-Kernel Metric Learning (LMKML) [17],
Multi-Manifold Deep Metric Learning (MMDML) [16],
Mean Sequence Sparse Representation-based Classifica-
tion (MSSRC) [18], Simultaneous Feature and Sample
Reduction (SFSR) [35], Recurrent Regression Neural Net-
work (RRNN) [13], Covariate-Relation Graph (CRG) [3]
and VGG-Face [19]. It is obvious that Softmax+ASML ob-
tains the best performance compared with other methods.
What is more, It improves the accuracy of non CNN-based
methods by more than 11% and reduces the error rate
of CNN-based methods by about 60%. This significant
improvement indicates Softmax+ASML can drive CNNs
to generate more robust and discriminative features for
VFR.

E. Results on Celebrity-1000

We compare the performance of our method with other
state-of-the-art methods, including Multi-task Joint Sparse
Representation (MTJSR) [34], Eigen Probabilistic Elastic
Part (Eigen-PEP) [12], Deep Extreme Learning Machines
(DELM) [28], GoogleNet [26] and Neural Aggregation
Network (NAN) [33] on the close-set and open-set proto-
cols of C-1000.

close-set protocol: The evaluation results on the close-
set setting are shown in the left of Table III. The proposed
Softmax+ASML outperforms the state-of-the-art methods
on Subject-100 (90.84% vs 90.44%), Subject-200 (86.71%
vs 83.33%), Subject-500 (84.09% vs 82.27%) and Subject-
1000 (81.92% vs 77.17%). It improves the performance of
the baseline network by large margins, because ASML ex-
ploits the typical information in videos based on memory
attention mechanism.



Table III
COMPARISON OF RANK-1 ACCURACY (%) WITH OTHER STATE-OF-THE-ART METHODS AND DIFFERENT SUPERVISED SIGNALS ON THE

CELEBRITY-1000 DATASET.

Method Close-Set Open-Set
100 200 500 1000 100 200 400 800

MTJSR[34] 50.60 40.80 35.46 30.04 46.12 39.84 37.51 33.50
DELM[28] 49.80 45.21 38.88 28.83 - - - -

Eigen-PEP[12] 50.60 45.02 39.97 31.94 51.55 46.15 42.33 35.90
NAN[33] 90.44 83.33 82.27 77.17 88.76 85.21 82.74 79.87

Our(Baseline) 87.25 81.70 78.37 74.76 86.77 82.38 81.12 76.87
Our(Softmax) 88.45 84.01 80.80 79.12 87.94 83.17 82.28 78.00

Our(Softmax+MMD) 89.24 84.97 82.99 80.48 88.33 84.15 82.87 78.64
Our(Softmax+RMD) 89.64 85.36 83.07 80.87 88.72 84.55 83.25 78.94

Our(Softmax+MSML) 90.04 86.13 83.78 81.37 89.11 85.35 83.54 79.43
Our(Softmax+ASML) 90.84 86.71 84.09 81.92 89.88 85.94 83.83 80.02

open-set protocol: The right side of Table III displays
the results on the open-set protocol. DELM is not evalu-
ated on this protocol in the published paper [28], thus we
remove it from this table. As expected, Softmax+ASML
achieves the best results, performing 89.88%, 85.94%,
83.83% and 80.02% for the settings of 100, 200, 400 and
800 subjects respectively. It indicates that our method has
superior generalization capability and can better recognize
the subjects that are not seen in training.

F. Ablation Study

In this subsection, we analysis the effect of different su-
pervised signals (see Sec.II-A) on Celebrity-1000 dataset.
The results are presented in the lower part of Table III.
As shown in this Table, RMD has better performance than
MMD, and ASML is superior to MSML on both the close-
set and open-set protocols. It indicates that the memory at-
tention weighting for sample biases correction is effective
for video face recognition. Then, comparing with ASML
and RMD, the former has an improvement of Rank-1
accuracy by average 0.96%, which is consistent with the
results between MSML and MMD. It means that pulling
the feature distributions of different subjects (MSML and
ASML) is effective for video face recognition.

IV. CONCLUSION

In this paper, we have introduced an Attention-Set
based Metric Learning (ASML) method for video face
recognition. By exploiting memory attention weighting,
our proposed method corrects the sample biases in the
training face videos, and can be embedded into CNNs
seamlessly with end-to-end training. Specifically, ASML
drives CNNs to generate more discriminative face repre-
sentations containing small intra-set and large inter-set dis-
tance. Extensive experiments on three popular benchmarks
have demonstrated that our proposed method is superior
to the other state-of-the-art approaches.
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