
 
 

 

 

Abstract—This paper is based on the background of the 
development of aviation fault diagnosis expert system. To solve 
the engineering problems of the low interpretation efficiency 
encountered in the construction of expert system, a reasoning 
machine based on the combination of Fault Tree (FT) and 
Generalized Regression Neural Network (GRNN) is brought 
forward. First, the FT model is built and simplified. Second, the 
FT model is transferred to Fault Dictionary (FD). And third, the 
GRNN model is built to learn the FD samples to achieve the 
rapid diagnostic reasoning of the complex FT logical criterion. 
Simulation shows that the GRNN model is better than the BP 
neural network model in the FD samples learning and has 
higher diagnosis accuracy. The reasoning machine is applied to 
the design of the aviation fault diagnosis expert system and 
improves the speed of reasoning. 

I. INTRODUCTION 
viation fault diagnosis expert system mainly uses the 
computer automation to achieve the thought process of 
human experts which includes the observation and 

analysis of symptoms, the fault deduction and the disposal 
indication [1]-[2]. It can further improve the efficiency and 
accuracy of fault diagnosis, and reduce the false alarm rate, so 
that the technical staff can be liberated from the tedious work 
of data interpretation and rule inference, meanwhile, the 
experts can have more time to concentrate on the professional 
problems which really need their high level knowledge in the 
solving process. Aviation fault diagnosis expert system has 
high value of engineering application. This is also the 
inevitable trend of the development from manual work to half 
automation, and then to the automation, and then to the 
intelligence of the aviation fault diagnosis technology. 

Reasoning machine is the core issue of aviation fault 
diagnosis expert system design. Its main function is to infer 
according to some reasoning methods by using the database 
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of knowledge to achieve the requirements of fault diagnosis. 
The design of reasoning machine mainly considers two 
problems which include the reasoning control strategy and 
reasoning search strategy, which reflects the organization and 
control mechanism of aviation fault diagnosis expert system 
[3]. Generally, the scientificity and practicality of reasoning 
machine directly affect the feasibility and maturity of aviation 
fault diagnosis expert system. 

II. RELATED WORKS 
The common reasoning methods used in the aviation 

fault diagnosis engineering are the logical reasoning methods 
based on Fault Tree (FT). The artificial deductive method is 
commonly used to establish a FT model. The logic rules 
derived from the FT model provide the criterions for fault 
detection and diagnosis. There are mainly three reasoning 
strategies: the first one is based on the FT graph and makes 
directly logical reasoning, which generally uses the Depth 
First Searching Algorithm and does inconvenient traversal 
search of each node in the logic tree [4]; the second one uses 
the logical inference rules derived from the FT model and 
makes query reasoning based on database, however, the 
database is a sparse matrix when the fault tree is huge, which 
needs long time query [5]-[6]; The last one combines both 
Fault tree and Neural Network, but some Neural Network 
models need empirical initial settings and cause no 
convergence phenomenon in the samples training, which 
affects the reasoning accuracy[7]-[9]. 

Aiming at above problems, this paper puts forward an 
expert system reasoning machine combined with Fault Tree 
(FT) and Generalized Regression Neural Network (GRNN). 
The GRNN model improves the reasoning speed of the 
complex FT logical criterion, needs less empirical initial 
settings and gets higher accuracy than BP neural network. 

III. REASONING MECHANISM 

A. Fault Tree Modeling 
Fault tree is a special kind of inverted tree diagram 

which shows the logic relation of cause and effect, which is a 
logical, top-down, and step by step deductive analysis method 
in mathematics.  The logical relationship is represented by a 
series of specific logic gates or symbols, which shows the 
interaction between system failure event and other events and 
intuitively describes how the failure event happened. 

Artificial deductive method is commonly used to build a 
FT model. The general steps of fault tree modeling are shown 
in Figure 1. 
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Fig. 1.  Steps of FT modeling 

 
The FT modeling process is simply described in 

following example of an aircraft undercarriage abnormal 
retracted failure: 

(1) According to the fault phenomena and the state of the 
system, the "aircraft undercarriage abnormal retracted event" 
is determined as the top event. According to the working 
principle of aircraft undercarriage retracted mechanism, all 

the causes associated with the failure are investigated and 
listed. 

(2) Take the top event Top as the first level of the fault 
tree. The direct cause A and B of the Top event are taken as 
the second level of the fault tree. Logic gates are used to 
connect the top event and the direct causes, according to the 
logical relationship between them. 

(3) Gradually downward, the intermediate events C and 
D are taken as lower level events which cause event A, and 
the intermediate events E and F are taken as lower level 
events which cause event B. 

(4) Events G, H, I, J, K, L, M, N, O are taken as the 
causes of events C, D, E, F, which are the bottom events of 
the fault tree. 

Finally the FT model of aircraft undercarriage abnormal 
retracted event is established, which is shown in Figure 2. 
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Fig. 2. Fault tree modeling of aircraft undercarriage abnormal retracted failure 

 

B. Structure Function Simplification 
The top event state of the fault tree is completely 

determined by the state of the bottom event, which has the 
following logical relations: 

TopTHENN||O||L||M&&J||K||G&&H&&IIF     ))()(())()((   
The Structure Function of the fault tree can be 

established as follows: 
))()(())()(( ONMLKJIHGTop  

The above Structure Function is simplified: 

OKNKMKLKOJNJMJLJ

OIHGNIHGMIHGLIHGTop  

Accordingly, it can be concluded that the original logical 
relationship which has both "&&" and "||" can be split into the 
following multiple simple logic relationships which only has 
"&&". 

HEN TopIF  K&&O T

HEN TopIF  K&&N T

HEN TopIF  K&&M T

HEN TopIF  K&&L T

HEN TopIF  J&&O T

HEN TopIF  J&&N T

HEN TopIF  J&&M T

HEN TopIF  J&&L T

 TopI&&O THENIF  G&&H&&

TopI&&N THEN IF  G&&H&&

TopI&&M THEN IF  G&&H&&

 TopI&&L  THENIF  G&&H&&

 
 
 
 

 

C.  Generating Fault Dictionary 
According to these simple logic relationships, the Fault 

Dictionary of aircraft undercarriage abnormal retracted 
failure can build as table 1. 

TABLE I 
 FAULT DICTIONARY OF AIRCRAFT UNDERCARRIAGE ABNORMAL 

RETRACTED FAILURE 
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No. Top G H I J K L M N O 
1 1 1 1 1 0 0 1 0 0 0 
2 1 1 1 1 0 0 0 1 0 0 
3 1 1 1 1 0 0 0 0 1 0 
4 1 1 1 1 0 0 0 0 0 1 
5 1 0 0 0 1 0 1 0 0 0 
6 1 0 0 0 1 0 0 1 0 0 
7 1 0 0 0 1 0 0 0 1 0 
8 1 0 0 0 1 0 0 0 0 1 
9 1 0 0 0 0 1 1 0 0 0 
10 1 0 0 0 0 1 0 1 0 0 
11 1 0 0 0 0 1 0 0 1 0 
12 1 0 0 0 0 1 0 0 0 1 

 

D. Learning Samples of GRNN 
It is easy to see that the values of input event G, H, I, J, K, 

L, M, N, O and output event Top of Fault Dictionary can be 
either 0 or 1. The corresponding relationships between input 
event and output event in table 1 only constitute the 12 groups 
of learning samples whose outputs Top are all 1. These 12 
samples can be called as fault samples. The normal samples 
with output 0 are still lacked, which is difficult to completely 
cover the correspondence between the input and output. 
Therefore, it is necessary to list all the input combination of 
events G, H, I, J, K, L, M, N, O corresponding to the output 
Top. Since the number of input events is 9, the total number 
of all the input event combination is 29=512. The 512 samples 
construct all the learning samples of Neural Network. Among 
them, there are 12 kinds of input combination with output 1 
shown in table 1 as fault samples. The remaining 500 kinds of 
input combination correspond to output 0 or output 1 
according to the logic rules. 

According to the Fault Dictionary, the input events G, H, I, 
J, K, L, M, N, O can be taken as the 9 inputs of GRNN. The 
output event Top can be taken as the output of GRNN. Thus, 
the GRNN model is built. Then, the 512 learning samples are 
sent to GRNN for learning. 

 

IV. SIMULATIONS AND COMPARISON 
As we all know, different neural network models have 

different learning ability of the learning samples, which 
ultimately affects the ability of fault diagnosis. In the 
simulations, GRNN is compared with the BP neural network 
and the differences are analyzed. 

(1) The BP neural network model was used to learn the 
512 samples. The function in MATLAB is “newff”. In the BP 
model, we chose 5 hidden layers, “logsig” function for hidden 
layers and output layer, “trainlm” as the training function, 
learning rate as 0.05, training precision as 0.001. The network 
learning curve obtained is shown in Figure 3. At that time, the 
trained BP network can do 511 correct diagnoses with 1 error 
diagnosis, whose fault diagnosis accuracy was 99.8%. It 
cannot further improve the accuracy of fault diagnosis by 
repeatedly adjusting the number of hidden layers, learning 
functions and training accuracy. 

 
Fig. 3. The learning curve of BP neural network 

 
(2) The GRNN model was used to learn the 512 samples. 

The function in MATLAB is “newgrnn”. 
We set spread parameter as 0.5. The trained GRNN can 

do 512 correct diagnoses with 0 error diagnosis, whose fault 
diagnosis accuracy was 100%. 

Comparatively analyzing these two kinds of models, it 
can be concluded that, in the network samples learning of 
aircraft undercarriage abnormal retracted failure, GRNN 
shows better performance than BP neural network. The 
typical performances include: 

(1) The network structure of GRNN is relatively simple. 
In addition to the input and output layers, it generally has only 
two hidden layers, without the need to estimate the number of 
hidden layers or the number of units in hidden layers. But the 
BP neural network needs to select the right number of hidden 
layers, the learning functions and so on. 

(2) The network training of GRNN is very simple. When 
the training samples are transferred by the hidden layer, the 
network training is completed immediately at the same time. 
But the BP neural network often needs long time training and 
high computational cost. 

(3) The result of GRNN has global convergence. While 
the calculation of standard BP neural network often cannot 
reach the global convergence and stop at local convergence. 

Therefore, in the design of aviation fault diagnosis 
expert system, GRNN has better performance than BP neural 
network in learning the samples of Fault Dictionary. It has 
faster calculation process and higher diagnosis accuracy. 

 

V. CONCLUSIONS 
This paper presents an expert system reasoning machine 

based on the combination of Fault Tree (FT) and Generalized 
Regression Neural Network (GRNN). The complex fault tree 
logic reasoning is substituted by GRNN through the FT 
model simplification, transformation to Fault Dictionary, and 
the Fault Dictionary learning. In the implementation, the 
GRNN model can achieve better learning effect and higher 
diagnostic accuracy than BP neural network model, and 
needs less empirical initial settings. The reasoning machine 
has been applied to the design of aviation fault diagnosis 
expert system as the fault diagnosis module, which can be a 
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reference for other expert system design. In fact, the 
reasoning machine not only can serve as the independent 
inference algorithm in aviation fault diagnosis expert system, 
but also can be combined with the aforementioned reasoning 
strategies such as fault tree figure reasoning, logic rule 
reasoning, etc. to improve the reliability and accuracy of the 
expert system reasoning. 
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