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Abstract
In conventional neural networks (NN) based parametric text-to-
speech (TTS) synthesis frameworks, text analysis and acoustic
modeling are typically processed separately, leading to some
limitations. On one hand, much significant human expertise is
normally required in text analysis, which presents a laborious
task for researchers; on the other hand, training of the NN-based
acoustic models still relies on the hidden Markov model (HM-
M) to obtain frame-level alignments. This acquisition process
normally goes through multiple complicated stages. The com-
plex pipeline makes constructing a NN-based parametric TTS
system a challenging task. This paper attempts to bypass these
limitations using a novel end-to-end parametric TTS synthesis
framework, i.e. the text analysis and acoustic modeling are in-
tegrated together employing an attention-based recurrent neu-
ral network. Thus the alignments can be learned automatically.
Preliminary experimental results show that the proposed system
can generate moderately smooth spectral parameters and syn-
thesize fairly intelligible speech on short utterances (less than 8
Chinese characters).
Index Terms: parametric TTS synthesis, end-to-end, attention-
based recurrent neural network, acoustic modeling

1. Introduction
A conventional Text-to-speech (TTS) synthesis [1] system is
typically partitioned into two parts: text analysis and speech
synthesis, which are processed separately. The text analysis part
converts a text string to a sequence of linguistic features com-
prising whatever contextual factors that might affect the acous-
tic realization of the speech sounds. Figuring out which factors
matter normally requires much significant expertise, resulting
in a laborious task for researchers. The speech synthesis part,
of which statistical parametric speech synthesis (SPSS) [2–4]
is a typical representative, uses the converted linguistic features
to generate waveform. Recently, neural networks (NN) based
acoustic modeling in SPSS have achieved state-of-the-art per-
formance. Despite the advances, in these approaches, a prereq-
uisite is that a set of alignments between linguistic and acoustic
features are required. A Hidden Markov model (HMM) is nor-
mally used to achieve this. But the training procedure typical-
ly includes multiple awkward iterative stages such as context-
independent and context-dependent training, in which expert
knowledge is also indispensable. All these limitations could
result in a hard work to build a state-of-the-art TTS system.

In this paper, we propose a novel end-to-end TTS synthe-
sis framework that employs an attention-based recurrent neu-
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ral network architecture to integrate text analysis and acoustic
modeling together. This end-to-end framework simplifies the
existing pipeline to build a NN-based TTS system and models
complex sequential mapping directly from a text sequence (e.g.
phonemes, syllables or words) to its acoustic trajectory. The ter-
m “end-to-end” in this work means that text analysis and acous-
tic modeling are accomplished together by an attention-based
recurrent network, which has the capacity to learn the relevan-
t contextual factors embedded in the text sequence. Thus we
successfully bypass the trouble that a conventional TTS system
always encounters in text analysis. Another advantage is that
the model can learn alignments between the discrete text se-
quence and real-valued acoustic feature sequence automatically
during training. As a result, the frame-by-frame alignments re-
quired by almost all NN-based acoustic models are no more a
necessity. Preliminary experimental results show that the pro-
posed model can generate moderately smooth spectral parame-
ters and synthesize fairly intelligible speech on short utterances
(less than 8 Chinese characters).

1.1. Relation to prior work

The emerging neural networks (NN) have prevailed in SPSS and
have become a dominant acoustic model, thanks to their more
powerful capacities than HMMs. In [5–9], feedforward deep
neural networks (DNN) are used to directly model the com-
plex, nonlinear mapping from linguistic inputs to acoustic out-
puts. However, the sequential nature of speech is not explicitly
modeled in the DNN architecture. To include internal tempo-
ral dependencies across sequences, some novel training crite-
ria, such as minimum sequence error [10] and trajectory error
training [11], have been proposed to minimize sentence-level
error rather than frame-by-frame error on the DNN framework.
Recently, recurrent neural networks (RNNs) with long short
term memory (LSTM) [12, 13] units or gated recurrent units
(GRU) [14], which can capture long-span context information,
have been employed to acoustic modeling in SPSS [15–17]. A
further extension is to improve the accuracy of acoustic feature
distribution using mixture density networks (MDNs) [15, 18].
However, all the NN-based SPSS approaches listed above can
be classified into the conventional TTS framework, which has
some limitations. First, an explicit text analysis stage that re-
quires much effort and expertise is a prerequisite. Second, train-
ing of the neural networks demands a set of frame-by-frame
alignments, which are usually obtained through an awkward it-
erative procedure with an HMM. An end-to-end attention-based
recurrent neural architecture can circumvent these limitations.

Recently, attention-based recurrent networks [19], which
will be detailed in next section, have been successfully applied
to various sequence-to-sequence (seq2seq) tasks, such as ma-
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chine translation [19, 20], image caption generation [21], hand-
writing synthesis [22] and speech recognition [23–25]. Such
models iteratively process their input by selecting relevant con-
tent at every generation step. This basic idea makes them appli-
cable to TTS synthesis, which can be viewed as learning to gen-
erate a sequence (acoustic trajectory) given another sequence
(text). However, compared to machine translation, TTS synthe-
sis principally differs in generating much longer real-valued se-
quence (thousands of frames instead of tens of words), in which
the frames are less distinctive than words. It is also different
from handwriting synthesis, since the outputs contain multiple
streams and the dimension is much higher. For these reasons, it
is a challenge to apply attention-based architecture to TTS syn-
thesis. The attempts made in this paper are an important step
towards building fully end-to-end TTS synthesis system, which
is an exciting area of research.

2. Attention-based recurrent network for
parametric TTS synthesis

2.1. General framework

The architecture we introduce here is an attention-based recur-
rent sequence transducer (ARST) that iteratively generates an
output sequence y = (y1, · · · ,yT ) through an attentive se-
lection from the relevant content of the input sequence x =
(x1, · · · ,xL), where T � L. In practice, x is usually encod-
ed into an embedded representation h = (h1, . . . ,hL) that is
more suitable for the attention mechanism to work with. Here,
the input x is a sequence of phonemes representing the tex-
t string and the output y is a sequence of real-valued acoustic
frames. At each time-step t, an ARST generates an output yt

by focusing on the relevant elements of h, specifically,

st = RNN(st−1, ct−1,yt−1) (1)

ct = AttendContext(st,h) (2)

yt = Generate(st, ct) (3)

where st is the first-layer output state of the transducer which is
realized as a two-layer LSTM architecture here. At each time-
step t, the attention mechanism AttendContext makes an at-
tentive selection and produces a context vector ct through un-
derstanding the context of the current focused phoneme, specif-
ically,

et,i = vT tanh(Wst + V hi + b) (4)

wt,i = exp(et,i)

/
L∑

j=1

exp(et,j) (5)

ct =

L∑
i=1

wt,ihi (6)

where v, b are parameter vectors, W , V are parameter matri-
ces. wt,i is the normalized attention weight for hi, which is the
score1 measuring how closely the output state st is matched to
the content hi. So the attention is content-based. On conver-
gence, the distribution of wt ∈ R

L, often called the alignment,
is typically very sharp, with its focus sliding gradually from left
to right across h. Intuitively, the score can be interpreted as the
attention’s belief that it is generating hi’s acoustic trajectory.
wt is then used to produce ct by linearly blend each hi of h.

1This is the concat-attention using the terminology from [20]. We
also tried the dot-attention, but preliminary results are not desirable.
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Figure 1: Schematic diagram of the Attention-based Recurren-
t Sequence Transducer for TTS. Note that the encoder is not
illustrated. The AttendContext layer is nested in the trans-
ducer to offer attentive selection each time the ARST runs. The
red arrows form a feedback from the previous alignment to 1)
provide location-related information; 2) serve as a modulator
when computing attention weights.

The Generate function read st, ct indirectly as input and
generate an output frame aligned automatically with the focused
phoneme. The process is graphically illustrated in Figure 1.

Note that the output frame yt is actually a function of the
input sequence x and all the frames generated so far. In a se-
q2seq task, given a training pair (x,y), we aim at maximizing
the conditional probability p(y|x), which factorizes as

p(y|x) = p(y1 · · ·yT |x) =
T∏

t=1

p(yt|y<t,x) (7)

where p(yt|y<t,x) can be efficiently modeled by an ARST.

2.2. Additional techniques with TTS synthesis

The content-based attention mechanism described above has
demonstrated success on machine translation, where the input
and output sequences contain just tens of words and the se-
mantic distances between words in high-dimension space (em-
bedded representation) are relatively large compared to that be-
tween frames, making the attention mechanism more discrim-
inating. However, a direct application of this attention to TTS
synthesis is problematic. Some remedies are taken into account.

2.2.1. Feedback of alignment

In TTS, the given text and the speech to be synthesized are of
very different length. Typically, each phoneme spans around 25
frames. That means in a range of successive output timesteps,
the attention should focus on only one phoneme with its implicit
context. Thus the desired movement of alignment peak should
be first up then down in a slow way. A location modulator2 can
be beneficial. On the other hand, TTS is a strict left-to-right
seq2seq task. The attention focus should be ensured to move
forward all the way across the text sequence. We attempt to
address the two issues jointly through incorporating a location-
based attention mechanism into the content-based one, as done

2A similar modulator using LSTM was proposed to compute atten-
tion scores in [25].
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in [23]. The “location” simply means the alignment produced
at the previous step is taken into consideration when computing
attention weights, showed as the red arrows in Figure 1. Thus
Eq. (4) is extended as

F = Q ∗wt−1 (8)

et,i = vT tanh(W st + V hi +Ufi + b) (9)

where * denotes convolution and Q, U are additional parame-
ter matrices. The matrix F comprises all convolutional feature
vectors fi which are extracted for every position i of the previ-
ous alignment wt−1.

2.2.2. Windowing

Theoretically in TTS, the ARST can extract sentence-level lin-
guistic context that contains potential contextual factors affect-
ing prosody if the entire input text sequence is considered when
making attentive selection (Eq. 9 and 6). But it was found in-
effective in a preliminary experiment. We conjecture this might
be overkill since the context vector ct is likely to include noisy
information from irrelevant phonemes, especially when the text
is long. So we make a compromise by using a local context of
the text though it is a little harmful to the prosody. A simple
practice making the attention local is a windowing technique,
which has proved its effectiveness in speech recognition [26].
At each timestep t, the attention mechanism considers only a
subsequence ĥ = (hpt−d, · · · ,hpt+d) of the entire sequence
h, where pt is the window center and the window width is
2d + 1. The advantages of applying windowing technique are
twofold. First, it helps to align between text and acoustic trajec-
tory. Second, it can reduce the computational complexity [26].

2.2.3. Input quantification & Sampling

The ARST conditions the next step generation on the previous
outputs. During training, the ARST maximizes the probability
in Eq. (7), where y<t is the groundtruth of the previous output-
s. However during testing, the groundtruth is missing and the
generation process can suffer because the model was not trained
to be resilient to feeding in bad generations. Once mistakes oc-
cur, they can be quickly amplified in the subsequent generation.
This is the issue of error accumulation, which is very serious
in TTS synthesis. Unlike in speech recognition characters are
predicted, we predict real-valued frames here. That means at
every output step the errors almost always exist during train-
ing. To reduce these errors, we propose the input quantifica-
tion technique analogous to analog-to-digital (AD) conversion.
During both training and testing, the conditioned inputs (yt−1

at timestep t) are first quantified into a lattice-like space then
fed in the ARST. To alleviate the mismatch between training
and testing in seq2seq tasks, we employ the sampling technique
proposed in [27] that samples from previous generated distribu-
tion at a scheduled rate during training, making the model more
robust to correct its own mistakes at testing as it has learned to
do so during training.

3. Experiments
3.1. Experimental setups

A Mandarin speech database recorded by a female profession-
al speaker, both phonetically and prosodically rich, was used
in our experiments. The database consisted of 7266 training
utterances (around 7 hours, divided into three subsets: train-
ing, development and testing, with 6540, 686 and 40 utterances

respectively) and was consistent in terms of recording quality
and speaking style. The speech data was downsampled from
44.1 kHz to 16 kHz, then 41-dimensional line spectral pairs
(LSPs), 25 band aperiodicities (BAPs) and logarithmic funda-
mental frequency (log F0) were extracted every 5-ms using S-
TRAIGHT [28]. In our experiments, static LSPs3 were mod-
eled as our acoustic features because the ARST can smooth the
acoustic trajectory. We selected the untoned phonemes4 as ele-
ments of the text string to make sure each phoneme correspond-
ed to sufficient data. If the speech database is large, syllables or
Chinese characters may be an alternative. Before training, the
acoustic features were normalized to the range of [0.01, 0.99].

The ARST had 2 layers of LSTM; each layer contained
800 memory blocks with 512 recurrent projection units [13].
The dimension of context vector ct is equal to that of embed-
ded representation hi, which is the output of a unidirectional or
bidirectional encoder. But in this paper, we omitted the encoder
because there were no significant improvements found. Thus
the hi was just one-hot representation and the training speed
was accelerated consequently. The convolution in Eq. (8) had
10 filters with each size of 5. The convolutional step was 1.

3.2. Training procedure

We first sorted the training utterances by length in an ascending
order, as done in [29]. To start training, a zero vector was fed
in to predict the first frame. Then the ARST was trained with a
mini-batch stochastic gradient descent (SGD)-based algorithm
with an initial learning rate of 0.008, and momentum of 0.9.
For software implementation, the Kaldi toolkit [30] was used
and training was conducted on a Tesla K40 GPU.

From our experience, it was hard to train an ARST com-
pletely from scratch on long sequences (e.g. thousands of
frames). We found that providing an initial rough alignmen-
t at the early training stage was a very helpful way to quickly
bring the model parameters in a good range. Rough alignments
of speech units (phonemes or syllables) to segments of speech
can be obtained easily with orthogonal methods such as man-
ual labeling or performing forced alignments with an existing
model. In our experiments, a trained HMM was employed to
align between phonemes and their corresponding frames. The
initial alignments, along with windowing, helped the training
procedure. Specifically, at each output timestep t, we forced the
attention mechanism to care about just the phonemes within a
window centering on the roughly aligned phoneme. The win-
dow width was set to 5, with 2 phonemes on each side of the
center. The window ensured the currently generated frame yt

was uttered by the phonemes within the window. On the oth-
er hand, the window was somewhat similar to the quin-phone
in HMM-based SPSS. On convergence, the sampling method
mentioned in Section 2 with a constant rate was then applied to
refine the model.

The phoneme aligned automatically at t-th timestep was the
one with the maximum attention weight within the window. The
aligned phoneme was then treated as the new window center.
During testing, we moved the window center one step forward
whenever the weight of the right-hand phoneme adjacent to the
center became maximum. We must also decide when the ARST
has finished generating acoustic features. A heuristics is that as

3Initially the BAPs and log F0 were also incorporated, but the align-
ment was hard to learn possibly due to the interactions of multiple
streams, so they were excluded.

4If the acoustic features contain fundamental frequency, toned
phonemes might be a better choice.
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Figure 2: Alignments between the phonemes (y-axis) and the
corresponding acoustic frames (x-axis) produced by the ARST.
The stair-like trajectory formed by the dark dots represents the
alignments, which are monotonic in general. Notice that the
up-and-down light dots near the dark ones to some extent make
up the context affecting the prosodic trajectory. The blurs at the
boundaries between phonemes represent transitions.

soon as the last phoneme (silence) of the text became the atten-
tive focus (i.e. window center), the generation process stopped.

3.3. Experimental results

The attention mechanism can learn an explicit alignment be-
tween phoneme text and the corresponding acoustic trajectory.
An example of alignments is visualized in Figure 2.

We evaluated the issue of error accumulation existing in
the ARST objectively. Three systems with different training
strategies were trained respectively:

• w/o IQ & w/o Samp: The system trained without input
quantification and sampling techniques.

• w/ IQ & w/o Samp: The system trained with input quan-
tification but without sampling techniques.

• w/ IQ & w/ Samp: The system trained with input quan-
tification and sampling techniques.

In order to reduce the influence of the data itself, the whole
training set was involved in the assessment. Each of the utter-
ances was generated respectively by the three systems. Then
each generated acoustic sequence was split into two parts of
equal length: the former part and the latter part, of which a
comparison was made using the criterion of mean Euclidean
distance (MED). The sequence of which the former part’s MED
was greater than the latter’s was denoted as “F-gt-L” sequence,
otherwise as “L-gt-F” one. For each system, we calculated the
respective percentages of the “F-gt-L” and “L-gt-F” sequences,
which are presented in Table 1. It is statistically significant that
there were more “L-gt-F” sequences regardless of the systems.
As we expected, the generation errors were gradually accumu-
lated as the generation proceeded. It also can be seen that the
percentages in “L-gt-F” column move downwards, indicating
that the issue of error accumulation can be alleviated by the
progressive training with the input quantification and sampling
techniques, whereas it still remains. So it is not surprising that
the best system (w/ IQ & w/ Samp) struggled to synthesize in-
telligible speech on long utterances in our experiments.

For comparison, our previous DNN-based system built in
[15] was used as a baseline. The DNN had 5 hidden layers with
each layer of 1024 hidden units. Figure 3 plots the trajectories
of 3rd LSP coefficients of natural speech and generated by the
ARST and DNN-based system. It can be seen from the figure
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Figure 3: Trajectories of 3rd LSP coefficients of natural speech
and generated by the ARST and DNN-based system.

Table 1: The respective percentages of “F-gt-L” and “L-gt-F”
sequences for three different systems. A t-test with confidence
level of 0.95 was conducted.

System F-gt-L L-gt-F p-value

w/o IQ & w/o Samp 10.6% 89.4% < 10−6

w/ IQ & w/o Samp 20.2% 79.8% < 10−6

w/ IQ & w/ Samp 28.4% 71.6% < 10−6

that the ARST could generate moderately smooth speech pa-
rameter trajectory for a given text. But compared to DNN, the
predictive accuracy is still inferior in general. To subjectively e-
valuate the performance of the best system, mean opinion score
(MOS) test was also conducted. 20 short utterances with length
less than 8 Chinese characters from the testing set, were select-
ed for evaluation5. To synthesize speech, speech parameters of
BAPs and log F0 generated by the DNN baseline, along with
the total durations of the original speech were used. 10 native
listeners participated in the evaluation using headphones. After
listening to each synthesized speech, the subjects were asked to
rate the intelligibility of the speech in a 5-scale score (1: Bad,
2: Poor, 3: Fair, 4: Good, 5: Excellent). On average, our best
system achieved an intelligibility score of 3.125 on short utter-
ances, showing that our first attempts on the proposed system
can synthesize fairly intelligible short speech. Nevertheless, the
AB preference test results, which are not listed due to limited
space, indicate that the best system is still not comparable with
the DNN-based baseline system.

4. Conclusions
This paper proposes a novel end-to-end parametric TTS synthe-
sis framework that maps sequences directly from a text string
to acoustic trajectory employing the attention-based recurrent
sequence transducer (ARST). The “end-to-end” means the text
analysis and acoustic modeling are integrated together into a u-
nified model. Thus the trouble a conventional TTS synthesis en-
counters is avoided. Preliminary experimental results show that
the ARST can generate moderately smooth spectral parameter-
s and synthesize fairly intelligible speech on short utterances,
whereas it still struggles on long speech possibly due to the is-
sue of error accumulation. Although the proposed end-to-end
system performs still not competitive with the DNN baseline,
our first attempts made in this paper indicate an exciting re-
search area of investigating fully end-to-end TTS synthesis.

More research will be conducted in the future, including ex-
plorations of incorporating fundamental frequency into acous-
tic features, investigating attention mechanism more suitable for
TTS synthesis and experimenting on a larger dataset.

5Long utterances were not rated because most of the synthesized
long speech in the back section sounds unintelligible.
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