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Adaptive Integral Operators for Signal Separation
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Abstract—The operator-based signal separation approach uses
an adaptive operator to separate a signal into a set of additive sub-
components. In this paper, we show that differential operators and
their initial and boundary values can be exploited to derive cor-
responding integral operators. Although the differential operators
and the integral operators have the same null space, the latter are
more robust to noisy signals. Moreover, after expanding the ker-
nels of Frequency Modulated (FM) signals via eigen-decomposi-
tion, the operator-based approach with the integral operator can
be regarded as the matched filter approach that uses eigen-func-
tions as the matched filters. We then incorporate the integral op-
erator into the Null Space Pursuit (NSP) algorithm to estimate the
kernel and extract the subcomponent of a signal. To demonstrate
the robustness and efficacy of the proposed algorithm, we com-
pare it with several state-of-the-art approaches in separating mul-
tiple-component synthesized signals and real-life signals.

Index Terms—Integral equation, narrow band signal, null space
pursuit (NSP), operator-based.

I. INTRODUCTION

I N RECENT years, several approaches [1]–[10] have
been proposed to separate a single-channel signal into

a mixture of several additive coherent subcomponents. The
method used to separate signals depends on the definition of the
subcomponents. For example, in the empirical mode decom-
position (EMD) approach [2], [10]–[12], the subcomponents
are Intrinsic Mode Functions (IMFs); in the Synchrosqueezed
Wavelet Transform (SWT) approach, the subcomponents are
Intrinsic Mode Type Functions (IMT) [7], [8], [13]; and in the
operator-based approach [5], [6], a subcomponent is defined as
being in the null space of an operator, which is characterized
by some parameters that are estimated from the input (residual)
signal.
To improve the robustness and efficacy of the operator-based

approach, the Null Space Pursuit (NSP) algorithmwas proposed
[6]. It separates a signal into and such that is
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in the null space of an operator by minimizing the following
problem:

(1)

The first and second terms of Eq. (1) are the same as in the
operator-based approach. The parameter in the third term of
Eq. (1) determines the amount of to be retained in the null
space of . The last term is the Lagrange term for the param-
eters of the operator . Based on some assumptions, the NSP
algorithm can adaptively estimate the parameters and and
derive the optimal solution of Eq. (1) [6].
An attractive feature of the operator-based approach is that

the operator design can be customized based on the characteris-
tics of the signal’s subcomponents. Let be a subcomponent.
Then, any operator with (i.e., is in the null
space of the operator) can be used in the proposed approach to
“annihilate” the subcomponent signal. For instance, to annihi-
late a frequency modulated (FM) signal , where is
a local linear function, we can use the operator
(as defined in [6]). Here, is the instanta-
neous frequency (IF) of the signal. In addition, the operator

described in [14] can be used to
annihilate an amplitude modulated and frequency modulated
(AM-FM) signal , with the parameters

( is the instantaneous bandwidth (IB))
and ( is the IF). In [5], the
general form of a differential operator is defined as

(2)

where is a square summable sequence. For a mixture
of narrow band signals, FM or AM-FM, the proposed differ-
ential operators can separate each subcomponent successfully;
however, in some instances, particularly low SNR scenarios, the
differential operators tend to amplify the noise component when
estimating the parameters of the operator.
Also, a kind of integral operator using a simple local meanas

has been proposed in [5]. However, this
kind of integral operator can only annihilate the type of narrow
band signals that has only one frequency or a narrow range of
frequencies varying as a function of time, as defined in [15].
Therefore, we propose the following general form for an integral
operator:

(3)

where is the parameterized integral kernel and is the
integral interval at time . A signal is in the null space of the
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integral operator if there exists an integral interval such that
. In this paper, we address two important questions

about integral operators: (1) How to design the kernel of an inte-
gral operator? (2) How to estimate the parameters of an integral
operator and utilize the latter to perform signal separation? For
the first problem, we show that the integral operators in Eq. (3)
can be derived by using a differential operator of the form in
Eq. (2). For the signal separation task in the second problem,
we show that the estimated kernel and the integral operator can
be successfully incorporated into the Null Space Pursuit (NSP)
algorithm, which was originally designed to operate with dif-
ferential operators. Numerically, we assess the performance of
the proposedmethod on several synthesized signals and real-life
signals. We also compare our results with those derived by a
number of other methods, and show that our algorithm is more
robust to noisy signals than the compared methods.

II. DIFFERENTIAL AND INTEGRAL OPERATORS

In this section, we first discuss how to find the integral kernel
in Eq. (3) from a differential operator. Then, after ana-

lyzing the properties of the derived integral operator, we derive
a matched filter interpretation for it, which cannot be derived by
analyzing the corresponding differential operator.

A. Deriving Integral Operators from Differential Operators
First, we claim that the differential equation in Eq. (2) can

be converted to the integral equation in Eq. (3). Without loss of
generality, we use the following second order differential equa-
tion as an example to demonstrate the conversion process in de-
tail. Assume the differential equation is expressed as follows:

(4)

where and the boundary conditions and
. First, by setting and integrating with

respect to on both sides twice, we have

(5)

Then, if we substitute
into Eq. (5), through some integral calculations, we can derive

(6)

By using and , we can compute the
value of

. Next, we substitute the value of
back into Eq. (6) and derive the following

integral form:

(7)

where and the kernel function

(8)

Now, it is clear that, under appropriate boundary conditions,
will be in the null space of the differential operator

if and only if satisfies
(as in Eq. (7)). Thus, for each , we choose

an integral interval and define the integral operator
as

(9)

with and defined
in Eq. (8). Although the proposed integral operator and the cor-
responding differential operator have the same null space, the
former is numerically more stable than the latter. One reason
is that integral operator can estimate the parameters more ro-
bust than the differential operator under noisy cases; the other
is that, unlike differential operator, we incorporate the estima-
tion of boundary values into our integral operator-based signal
separation algorithm as discussed in Section III.

B. Matched Filter Interpretation for Integral Operators of
Frequency-Modulated (FM) Signals

Recall that the differential operator for an FM signal is
. Then, if we substitute and
into Eq. (8), the corresponding integral

kernel can be derived as , where

is the Green function,
which can be used as the integral kernel in the following
integral equation:

(10)

The above integral equation is equal to the following differential
equation:

(11)

with boundaries . For the boundary value
problem in Eq. (11), the eigen value and its corresponding eigen
function are and respectively. Then, ac-
cording to theMercer Theorem [16], the kernel function
can be expanded as:

(12)

In the discrete case, the kernel function can be repre-
sented as a matrix . If we compute the Singular Value De-
composition (SVD) of as , we obtain

with ; and the
th eigenvalue in is the reciprocal of the square of the in-

stantaneous frequency of the th basis . Thus, the eigen func-
tion of the integral operator is similar to a matched filter that
matches and extracts the subcomponent with the desired fre-
quency. Moreover, for each point , if we choose an integral
interval as and compute , the function
of the matrix is similar to computing the short time frequency
transform (STFT) of with a rectangular window and sup-
port .
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III. ALGORITHM WITH INTEGRAL OPERATORS

Incorporating Eq. (9) into the NSP algorithmwould be greatly
simplified if we could choose a neighborhood
that satisfies . However, because the
input signal is a multiple component signal and is one of
its subcomponents, it is not possible to derive such interval from
the input signal. Therefore, in our implementation, we choose a
fixed neighborhood for all . Then, to eliminate the boundary
effects, we divide the boundary values from the optimization
process by modifying the integral operator defined in Eq. (9) as
follows:

(13)

where is defined in Eq. (8); and is represented
as ,
where is the Dirac function with if , and 0
otherwise; denotes the shift operator with

; and is the identity operator. Thus, for each of an
input signal, we extract the signal from its neighborhood

so that it satisfies .
In a discrete representation, for ease of presentation, we use

bold upper case (e.g. ) to represent matrices and bold lower
case (e.g. ) to represent vectors. We also use matrix to
denote a diagonal matrix in which the diagonal elements are
equal to the vector . Then, for an input signal , we combine all
the , and use the NSP algorithm (as shown in Eq. (1)) to search
for the residual signal and the parameter by minimizing the
equation

(14)
where denotes the operator matrix in the support interval

with parameter vector equaling to ; the parameters is
defined as with and

in Eq. (8); the parameters and play the same role
as in the NSP algorithm and can be estimated adaptively; the
parameter is used to regulate the parameters in the integral
operator by applying a second order differential matrix to
ensure that is smooth.
By taking the partial derivative of with respect to and

setting the result to zero, we can derive

(15)
where the prime denotes the transposition of the matrix and
vector; and denotes the identity matrix. To compute the par-
tial derivative of with respect to , we rewrite the first term
in Eq. (14) as follows:

(16)
where . The kernel func-
tions and , which correspond to the
matrices and in the interval , are

defined as and

respectively.
By taking the partial derivative of with respect to and
setting the result to zero, we can derive

(17)
where the prime denotes the transposition of the matrix and
vector. Since the parameter is less sensitive to the separa-
tion result, we choose a fixed value for it manually. According
to [6], the parameters and can be calculated as follows:

(18)

where with
; and

(19)

Based on Eqs. (15, 17–19), we propose an adaptive integral
operator signal separation algorithm called NSP-I (Algorithm
1), which enables us to separate a mono-component signal
from signal and obtain the residual . By repeating the
NSP-I algorithm times, the input signal can be decomposed
into the sum of mono-component signals.

Algorithm 1 NSP Algorithm using an Integral Operator

1: Input signal and parameter . Choose a stopping
threshold and the values of and .
2: Set , , and .
3: repeat
4: Estimate the parameters based on Eq. (17).
5: Compute based on Eq. (18).
6: Compute base on Eq. (15).
7: Compute using Eq. (19) and set .
8: until
9: return Extract the mono-component
and the residual signal .

IV. EXPERIMENT RESULTS
In this section, we compare the results of applying different

signal separation algorithms to both simulated and real-life sig-
nals. In the Simulated Signal experiment, we assess the accu-
racy and robustness of NSP-I in separating a noisy two-com-
ponent AM-FM signal. The clean signal is

with
and .
We added white Gaussian noise to and acquired twelve
noisy signals, whose signal-to-noise ratio (SNRs) ranged from
25 dB down to dB. The noisy signals are generated by the
MATLAB function awgn(x,snr). In this example, the IFs of the
two sub-component signals are very close and, in some time in-
tervals, the energy of signal is much greater than that of
signal . As a result, the EMD algorithm is affected by the
mode mixing problem when separating the clean signal [17].
Also, since the integral operator defined in [5] depends on the
extrema to determine the integral interval, it cannot separate
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TABLE I
PERFORMANCE COMPARISON OF VARIOUS SEPARATION METHODS APPLIED TO NOISY SIGNALS

Fig. 1. (a) and (b) the input noisy signal and its Time-Frequency spectrum,
respectively; (c) and (d) the original clean signal and , respectively;
(e), (g), and (i) the first subcomponents extracted by NSP-I, NSP-D and SWT
respectively; (f), (h), and (j) the second subcomponents extracted by NSP-I,
NSP-D and SWT respectively.

such kind of noisy data. Thus, we compare the performance
of the proposed NSP-I algorithm, the original NSP algorithm
(NSP-D) [6], and the SWT algorithm [18] in Table I, where

specifies the SNR of the extracted subcomponent signal
with and “Time” denotes the total computational

time for extracting two subcomponents of each method. The re-
sults show that NSP-I yields higher SNRs than NSP-D and SWT
on all the noisy signals. We show the separation results of the
fifth noisy signal (SNR = 3.0) in Fig. 1. We observe that the
amplitude of the signals extracted by NSP-I is better than that
derived by SWT.
In the Real-life Signal experiment, we consider the signal of

Poland’s daily electricity consumption from 1990 to 1994 [19].
Figs. 2(a) and 2(g) show the input signal and its Fourier spec-
trum respectively. The Fourier spectrum shows that the input
signal is comprised of three major oscillatory subcomponents
plus a trend subcomponent. Fig. 2(b) to 2(f) show, respectively,
the separation results derived by the NSP-I algorithm. In the
extracted subcomponents, each oscillatory subcomponent con-
tains an individual main frequency, which is consistent with the

Fig. 2. (a) the input signal; (b) to (f) the first four extracted subcomponent
signals and the residue derived by the NSP-I algorithm respectively; (g) and
(h) the Fourier spectrum of the input signal and the residual signal respectively.

peaks in the Fourier spectrum of the input signal. In addition, the
first and third extracted subcomponents relate, respectively, to
a one-week cycle and a half-week cycle, which might correlate
with the work patterns of people over a week. The separation re-
sults of the EMD andNSP-D can be found in [6], [20]. As shown
in [6], the NSP-D cannot extract the oscillatory subcomponent
with the highest frequency. For the separation results of EMD
shown in [20], we can find that there exist some mode mixing
and splitting phenomenons in different extracted IMFs. Because
different methods usually yield diverse results on real-life sig-
nals, finding a way to combine the results that are consistent
across all the methods is an important issue that warrants fur-
ther study.

V. CONCLUSION

An attractive feature of the operator-based signal separation
approach is that the operator can be customized according to the
subcomponent of the signal. We propose a new integral operator
and show that it can be derived by the corresponding differen-
tial operator.We incorporate the proposed operator in the frame-
work of the Null Space Pursuit algorithm to separate multi-com-
ponent signals. The results of experiments demonstrate that the
proposed operator can robustly separate multi-component local
narrow band signals, even in a low SNR environment.
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