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Abstract

Background. Ensemble empirical mode decomposition (EEMD) was proposed for decomposing
electroencephalography (EEG) signals into intrinsic mode functions (IMFs), which obtain
instantaneous frequency data and work well with data that are nonstationary and nonlinear.
Hilbert-Huang Transformation (HHT) was used in this study to convert IMFs into spectrograms,
which are useful for observation. We recorded EEG signals through a bispectral index (BIS)
monitor for EEMD analysis, and calculated the energy change after HHT. Methods. A total of 19
patients who had received general anesthesia were included. The EEG signals were recorded by
physiological monitor with BIS electrode strip and saved in a portal computer. The frequency
changes of the IMF spectrograms were compared during the induction period, and the raw data
energy changes were quantified with moving window standard deviation every 10 s. Results. The
second IMF, with an initial spectrum of approximately 10-30 Hz, was focused between 10 and 15
Hz after the patient was anesthetized. All patients presented with decreased frequency and
bandwidth focusing in the second IMF and indicated energy gathering. Conclusions. We found
energy gathering in IMF2 after patient was anesthetized. The results suggest that examining IMFs
rather than EEG signals was more useful for determining the particular bandwidth changes in
which synchronization phenomena occur. With this method, it is easily to observe the separate

energy changes of IMFs within the EEG signals.

Introduction

In contemporary surgical procedures, accurate and
noninvasive monitoring of the depth of anesthesia
(DOA) [1] is indispensable. The bispectral index
(BIS) is one example of a system for monitoring the
DOA. When a patient arrives in an operating room,
anesthesiologists aim to prepare the patient for
surgery quickly and safely. However, whole brain
electroencephalography (EEG) is an invasive medical
technique for monitoring and recording the electri-
cal activity of brain; in addition, EEG probe place-
ment is time consuming and can delay the operation
start time. Moreover, EEG is complicated and
unfriendly interpreted, and the raw data cannot be

observed during anaesthetization of the patient. The
BIS is a practical alternative that provides real-time
clinical information during surgery with an special
self-prepping electrode strip that is easily attached to
patient’s forehead [2].

Many researchers have measured the physiological
signals that represent physical changes during anes-
thesia, especially EEG signals. Some studies have used
fast Fourier transform (FFT) which continues to be
applied, for spectral analysis of EEG signals in the fre-
quency domain [3, 4]. The disadvantage of FFT is that
it has difficulty managing physical signals, which are
modulated by the autonomic nervous system and
multiple other factors; furthermore, physical signals
are both nonlinear and nonstationary and produce

©2016 IOP Publishing Ltd
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broad frequencies. One study applied a bandpass filter
to decompose EEG signals and used wavelet analysis
and sample entropy to examine EEG messages [5].
Subsequently, D’Avanzoa and Sparacinoady similarly
applied a wavelet-based methodology to extract quan-
titative time-frequency parameters from EEG sig-
nals [6].

In 2005, Huang suggested that synchronization
was the primary mechanism for dynamic integration
of the neuronal activity necessary to produce coher-
ent cognitive acts [7]. Specifically, Huang proposed
decomposing nonstationary and nonlinear signals
into intrinsic mode functions (IMFs) through
ensemble empirical mode decomposition (EEMD)
[7]. An IMF is defined as a simple oscillatory func-
tion that has the same number of extrema and zero
crossings and whose local mean is zero [8]. Because
the empirical mode decomposition algorithm sub-
stantially depends on the extrema crossing of the
input signal, extracted IMFs can have mode mixing
problems because the input signals are noisy. There-
fore, Wu et al proposed a noise-reducing EMD algo-
rithm, which they called ensemble-EMD, a more
robust model for examining practical and real-time
signals [9]. EEMD is also a self-adaptive, data-driven
separation method that can decompose nonlinear
and nonstationary signals, including most biological
and physiological signals, into several IMFs with an
intrinsic time scale. Wu et al proposed that IMFs may
be used to detect the frequency changes during
which synchronization phenomena occur. There-
fore, Hilbert—-Huang Transform (HHT) was devel-
oped to convert IMFs into spectrograms that are
more useful for observation.

The increases in frontal EEG power and power
focusing to lower frequencies during anesthesia
induction have been defined as synchronization pro-
cesses [10]. For example, Brown noted that during the
induction of propofol, the median frequency
decreased from 23.1 to 12.0 Hz and the bandwidth
decreased from 17.4 to 9.1 Hz [11]. Furthermore, as
patients entered the loss of conscious stage, energy tra-
veled from the occipital lobe to the frontal lobe. He
used the term ‘traveling peak’ in order the explain the
symptom that energy gathering while patient loss of
consciousness. Spatially coherent frontal alpha oscilla-
tions during unconsciousness may explain how the
design of the BIS monitor can detect the DOA from
frontal EEG.

In the present study, we recorded frontal EEG sig-
nals during the induction period of patients under
general anesthesia. We then applied EEMD to decom-
pose the original signals into multiple IMFs, and com-
pared the HHT results with those of FFT. Finally, a
moving window of the instantaneous standard devia-
tion (SD) of the IMFs and the original EEG signals was
proposed as the partial ‘energy’ of a signal.

F-F Tsaietal

Method

Ethics statement

The Institutional Review Board of National Taiwan
University Hospital approved the present study. All
the participants provided informed consent for BIS
data analysis.

Clinical approach

In total, 19 patients between the ages of 20 and 40 years
who had alow anesthetic risk (i.e., American Society of
Anesthesiologists physical status classification I or II)
and required total intravenous general anesthesia were
recruited. Each patient was received in an operating
room, and all standard monitors, including a pulse
oximetry, electrocardiogram, BIS monitor, and blood
pressure monitor, were set up and began recording
physiological and physical signals prior to anesthesia
induction. After 1 min of monitoring, an anesthesiol-
ogist began target-controlled infusion induction with
10 mg ml~" of propofol. Once the patients were fully
anesthetized (indicated by loss of consciousness
[LOC], loss of verbal response, and loss of eyelid
response), anticholinergics and alfentanyl (0.272 mg)
were added. The demographic data of each patient
were collected, and the signals recordings from BIS
monitors were analyzed. EEG waveforms were col-
lected through the BIS monitor (Aspect Medical
System’s XP platform, a specific electrode strip which
mainly frontal electrodes).

Analysis approach

Ensemble empirical mode decomposition

For obtaining an input signal S(t), the EEMD
algorithm represents the summation of IMFs and a
residual signal r (¢) as follows:

S(1) = 3 imfi(t) + r (0.
k

First, a bandpass filter was used to remove the
major frequencies of instrument noises. However, we
could not assume that all the other noise (such as
observation noise) had been removed from the origi-
nal EEG signal; thus, the EEMD was used to decom-
pose and denoise the signal. There are two parameters
in the EEMD: One is the SD of the noise (also known
as the power of noise), the other is the ensemble num-
ber of noise. Because we did not have clean EEG sig-
nals, estimating the power of noise was difficult; thus,
variously powered white noise was added. For all the
experiments in this study, the SD of white noise was set
to 0.1 and the ensemble number was 500.

Hilbert—-Huang transform of IMFs

Because most IMFs have a time-varying frequency and
amplitude, Huang et al used the Hilbert spectrum to
analyze the frequency and amplitude properties of
each IMF. For the specific IMF component (which was
the focus of this study) the corresponding Hilbert




10P Publishing

Biomed. Phys. Eng. Express 2 (2016) 065004

transformation g (t) was computed as

+00
g(t) = p f @4

t— T
where p.v. denotes the Cauchy principal value. With

the Hilbert Transform g (¢), we can have an analytic
signal, z (t), as

z(t) = f(t) +ig(t) = a(t)e®,

where a(t) = Jf2(t) + ¢*(t) and 0(t) = arctan

(%) correspond to the amplitude and frequency

parts of the IMF f(t), respectively. Then, we can
analyze the properties of IMF f (¢) via analyzing its
amplitude part a (t) and frequency part 0 (¢).

Fast Fourier transform
An FFT algorithm converts a signal from its original
domain (often time or space) into a representation in
the frequency domain [12], according to the definition
of discrete Fourier transform (DFT), which is the most
crucial discrete transform and is used to perform
Fourier analysis in many practical applications [13].
According to the definition of DFT, a sequence of
N complex numbers (xg, x;, ...xy_1) is transformed
into an N-periodic sequence of complex numbers as
follows:

N-1
Xk dgf an - €
n=0

727rikn/N’ k e Z, (1)

where Zis the set of integer numbers.

Using Euler’s formula, the DFT formulae can be
converted to the trigonometric form used in engineer-
ing and computer science:

Fourier transform

N—1
= an . (COS(—Zﬂ'ki) + 1 sin(—Zwkﬁ)),
e0 N N

keZ
(2)

Because of periodicity, the customary domain of k is
computed as (0, N—1) when the DFT is implemented
through the FFT algorithm, and the left and right
halves of an FFT output sequence are swapped. Thus
far, the commonly used FFT of the Cooley—Tukey
algorithm is used to divide the transform into two
pieces of size N/2 at each step, and is therefore limited
to power-of-two sizes to reduce the steps of
calculation.

Computing standard deviation of original EEG
and IMFs

After computing the Hilbert spectrum of the IMFs, we
compared the instantaneous SD of the IMFs with the
original EEG signal. Notably, the SD can be used to
quantify the ‘energy’ of a signal partially. Here, to
examine the ‘energy’ change of the IMFs over time, a

F-F Tsaietal

sliding window technique, with a moving window size
of 10 and 3 s intervals, was applied to derive the time
variation SD(¢) of a signal S(¢), which can be defined
as

N/2 —
SD(t) = \/i, S St+1)—SN®)?  (3)

=—N/2

where Sy (f) denotes the mean of S(¢) in the
window [t — %, t+ %]

Finally, the baseline data (T1), loss of conscious-
ness (T2), postremifentanil injection (T3), and pre-
surgical incision (T4) were compared with repeated
measures of one-way ANOVA.

Raw EEG Signal

Cut-off Instrument

Noise
|
v v
Apply FFT to compare Apply EEMD to get
with HHT IMFs
1
v v
Compute continuous

Rpply HET %o [Me2 SDof all IMFs

! !

Compute IF change of Compute normalized
IMF2 SD changes of IMF2
[ |
v
Combine Analyze
Results

Flowchart: Processing steps of this experiment.
After a raw data was input, our overall analysis
processes consisted of the following steps:

(1) Remove the instrument noise by using a
bandpass filter (cut-off frequency = 42 Hz);

(2.1) Apply the standard FFT to the denoised EEG
signal used as a standard comparison index
with HHT;

(2.2) Apply EEMD to the denoised EEG signal and
acquire the IMFs;

(3.1) Apply HHT to IMF2;

(3.2) Compute the instantaneous frequency (IF)
change of IMF2;

(4.1) Compute the continuous SD of all the IMFs to
analyze their energy change;

(4.2) Use a normalized SD change (which is
computed as the SD percentage change of IMF2/
EEG) to quantize the energy change of IMF2;

(5) Combine the analysis results with those of the
FFT from step (2.1), the IF change in step (4.1), and
the energy change in step (4.2) to draw the final
conclusion.
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Figure 1. (a) Separate oscillations decomposed by EEMD from the original EEG waveform. The mean frequencies of IMF- 1, 2, 3,4, 5,
and 6 are 36,25, 12,5, 2, and 1 Hz, respectively. (b) Frequency bands of IMFs 1-6.
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Figure 1. (Continued.)

frequency (Hz)

Results

Using EEMD, we decomposed the raw BIS signals into
20 IMFs to separate the BIS data completely. The 10-s
signals of the first six IMFs are depicted in figure 1(a),
with mean frequencies of 36.5, 20.5, 11.4, 5.5, 2.3, and
1.0 Hz, respectively. Notably, the second IMF indicates
the frequency of the beta oscillations, with an average
of 16 Hz, whereas the third IMF indicates the
frequency of the alpha oscillations, with an average of
8 Hz (figure 1(b)).

We also compared the frequency width of the
change of the IMF spectrograms and determined that
the second IMF, with an initial spectrum of approxi-
mately 10-30 Hz, was centralized to 10—15 Hz after the

patient was anesthetized (i.e., reached LOC)
(figure 2(a)). Compared with the FFT results, the fre-
quency centralization was more easily observed from
the spectrogram after performing HHT on IMF-2
(figure 2, lower image).

Figure 3 illustrates the moving window SDs of the
raw data and other IMFs that represent the quantifi-
able energy changes. In particular, the energy of IMF2
increased after the patients were anesthetized. We
quantified the energy as a percentage of the original
data (IMF-2/EEG) and compared the percentage
before and after LOC. The average energy before
induction of IMF-2 was 15%, which substantially
increased to 50% after the patients were anesthetized
(Table 1). All cases indicated that the patients had

4
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8.2 8.3 8.4 8.5

Figure 2. Time-frequency spectrogram of the second IMF during the induction stage. By (a) FFT (b) HHT of IMF-2.

8.9

8.6 8.7 8.8 8.9

Table 1. Original data of the energy change percentage during the
anesthesia induction period.

After
IMF2 alfentanil Before
/EEG Baseline Loss of con- injection3  incision
(%) (T1) sciousness (T2) min (T3) (T4)
1 11.66 30.01 58.97 60.56
2 9.90 36.50 50.46 50.85
3 12.20 15.49 46.53 50.48
4 29.93 22.11 34.70 41.69
5 24.22 21.82 60.88 43.30
6 12.04 18.70 36.70 33.54
7 22.80 29.34 55.47 50.49
8 10.72 38.71 58.58 55.13
9 11.18 34.79 62.89 67.69
10 10.36 23.33 59.76 60.80
11 15.94 17.32 38.50 48.71
12 11.41 29.28 55.86 45.78
13 12.19 15.61 50.81 27.35
14 19.72 34.36 47.97 45.21
15 13.50 29.70 55.92 52.73
16 22.57 32.07 52.80 57.01
17 13.73 31.32 57.55 49.77
18 17.90 22.95 58.48 55.48
19 13.23 38.54 62.59 61.61
Average 15.54 27.47 52.92 50.43

bandwidth focusing and energy gathering within the
second IMF (P < 0.01) (Table 2).

Discussion

As anesthesiologists, we used several single electrode
monitors in the operating rooms instead of whole EEG
monitoring to determine the DOA, because they are
especially applicable for preventing perioperative
awareness in high-risk patients. Previously, we had
used these monitors during surgery; however, we now

know that frontal EEGs represent most of the con-
sciousness changes during anesthetization, because
alpha power is concentrated in the frontal channels
following patient LOC. It is thus appropriate to use
frontal EEG analysis for perioperative neurophysiol-
ogy research.

As we observed the raw EEG waveforms in this
study, the stage when patients became fully anesthe-
tized was indistinguishable. The multiple oscillations
with various amplitude and frequency changes during
induction obscured our observation. However, EEMD
enabled satisfactory decomposition that transformed
the frontal EEG waveforms to several IMFs while still
preserving the physiological and physical character-
istics (figure 1). Although it was clear that the total
energy observed in the EEGs had decreased after the
patients were anaesthetized, EEMD decomposed the
complexity of the information.

In particular, the second IMF revealed a nar-
rowed frequency bandwidth following LOC, indicat-
ing that the frontal EEG was similar to the median
frequency change noted by the whole EEG monitor
(figure 2). In short, our method decomposed frontal
EEG efficiently during the induction period, suggest-
ing that synchronization occurs in the second IMF
after anesthetization. Furthermore, our results
demonstrate that frontal EEGs also have distinct
characteristics that represent the most obvious chan-
ges during the induction period, even though EMD
disperses energies to other IMFs and thus limits the
significance of IMF-2.

We then calculated the time-window SD figure to
determine the energy change in IMFs (figure 3).
Because EEMD decomposed EEGs as multiple oscilla-
tions, the energy might have decomposed to various
modes, thus obscuring the power distribution. Obser-
ving the IMF-2 separately, we noted that the SD




10P Publishing

Biomed. Phys. Eng. Express 2 (2016) 065004

F-F Tsaietal

04

EEG and IMF std

0351 ﬂ

X: 236
¥:0.3248
" |

Tl A0

oz) ! ﬂ"‘

it
i

_WM/M -

0.1} V nl},JJ -t o, ,\H \ \ J‘/\ ’ A -1
//\4 Yy 2 J’Z’m »\,. Y \ ‘ E '\/‘/‘\ r\\/ v WY [ I\I I
N f | . d /\/\4
f \ \
A~V ""‘/
0.06 004475 V T \, / '\/A\/\//\/\[\’\/\/\. 'a) N
0 ] 1 1 1 1 | 1 | I
100 200 300 400 500 600 700 800 900 1000

Figure 3. Moving window SD of the raw data and other IMFs, representing energy change.

Table 2. Results of repeated ANOV A measurement.

Descriptive Statistics

Mean Std. Deviation N
VARO00001 15.537 5.7162 19
VAR00002 27.471 7.6303 19
VARO00003 52.917 8.5863 19
VAR00004 50.431 9.7947 19
Multivariate Tests’
Effect Value F Hypothesis df Errordf Sig.
Time Pillai’s Trace 943 88.748° 3.000 16.000 .000
Wilks’ Lambda .057 88.748° 3.000 16.000 .000
Hotelling’s Trace 16.640 88.748" 3.000 16.000 .000
Roy’s Largest Root 16.640 88.748° 3.000 16.000 .000

7 Design: Intercept, Within subjects design: time.
® Exact statistic.

changed promptly following the loss of verbal
response in the patients. Of all the IMFs, IMF-2 was
not the major component (comprising only 15%);
although the EEG does not focus on middle frequency
oscillation, it still changes the most after LOC. The SDs
elevated as the patients reached LOC, and energy was
concentrated to 50%. This phenomenon was sig-
nificantly consistent (P < 0.001) among the 12 cases
in this study (figure 4).

Notably, signal quality can be improved. The
initial data from this study remain inconclusive
because of interference from the patients’ blinking,
shaking, and moving their foreheads. We specifically
provided no anxiolytics or premedication before the
propofol induction because we wanted to record

baseline responses. For future research, we suggest
improving signal quality by decreasing signal noise
and limiting surrounding interferences.

Conclusion

The results suggest that IMFs may be used to
determine the particular frequency bandwidths in
which synchronization phenomena occur. In contrast
to other analysis methods, HHT is a more practical
approach to using clinical data because the instanta-
neous frequency analysis enables examining the non-
stationary characteristics of clinical data.

Because anesthesiologists continually use various tools
to analyze EEG data, we propose applying the HHT
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technique for decomposing EEG and quantifying the
real-time frequency chance and energy change. The
results suggest that examining IMFs rather than EEG
signals was more useful for determining the particular
bandwidth changes in which synchronization phe-
nomena occur. With this method, it is easily to observe
the separate energy changes of IMFs within the EEG
signals.

Acknowledgments

Feng-Fang Tsai received a grant from National Taiwan
University Hospital with Grant No.201509007RINB.
Xi-uian Hu received a grant from Natural Science
Foundation of China with Grant No.61571438.

References

[1] Kent C D and Domino K B 2009 Depth of anesthesia Curr.
Opin. Anaesthesiol. 227827

[2] Bard] W 2001 The BIS monitor: a review and technology
assessment American Association of Nurse Anesthetists Journal
69477-83

[3] Lemmen S and Scheithauer S 2014 Prevention of catheter-
related septicemia Dtsch. Med. Wochenschrift 139 693-5

[4] Piersigilli F et al 2014 Antifungal lock therapy with combined
70% ethanol and micafungin in a critically ill infant Pediatric
Infectious Dis. J. 33 419-20

F-F Tsaietal

[5] Bruce EN, Bruce M Cand Vennelaganti S 2009 Sample

entropy tracks changes in electroencephalogram power

spectrum with sleep state and aging J. Clin. Neurophysiol. 26

25766

Costanza D’Avanzoa V T, Bisiacchib P and Sparacinoa G

2009 A wavelet methodology for EEG time-frequency

analysis in a time discrimination task Int. J. Bioelectromagn.

11185-8

Yamamoto N et al 2014 Efficacy of 1.0% chlorhexidine-

gluconate ethanol compared with 10% povidone-iodine for

long-term central venous catheter care in hematology

departments: a prospective study Am. J. Infection Control 42

574-6

Huang N E, Shen Z, Long SR, WuM C, Shih HH, Zheng Q,

Yen N-C, Liu Hand Tung C C 1998 The empirical mode

decomposition and the Hilbert spectrum for nonlinear and

non-stationary time series analysis Proc. R. Soc. Lond. A 454

903-95

Huang N E and Wu Z 2009 Ensemble empirical mode

decomposition: a noise assisted data analysis method Adv.

Adapt. Data Anal. 1 1

[10] RhmpilI]and Matleo R S 1978 Changes in EEG spectral edge
frequency correlate with the hemodynamic response to
laryngoscopy and intubation Anesthesiology 67 139—42

[11] Patrick L etal 2013 Electroencephalogram signatures ofloss
and recovery of consciousness from propofol Proc. Natl Acad.
Sci. E1142-E1151

[12] VanLoan C 3. High-Performance Frameworks.
Computational Frameworks for the Fast Fourier Transform
Computational Frameworks for the Fast Fourier Transfrom
(Philidephia, PA: Society for Industrial and Applied
Mathematics)

[13] Strang GM]J 1992 Am. Sci. 82253

[6

=

[7

—

[8

—

[9

—



http://dx.doi.org/10.1097/ACO.0b013e3283326986
http://dx.doi.org/10.1097/ACO.0b013e3283326986
http://dx.doi.org/10.1097/ACO.0b013e3283326986
http://dx.doi.org/10.1097/INF.0000000000000116
http://dx.doi.org/10.1097/INF.0000000000000116
http://dx.doi.org/10.1097/INF.0000000000000116
http://dx.doi.org/10.1097/WNP.0b013e3181b2f1e3
http://dx.doi.org/10.1097/WNP.0b013e3181b2f1e3
http://dx.doi.org/10.1097/WNP.0b013e3181b2f1e3
http://dx.doi.org/10.1097/WNP.0b013e3181b2f1e3
http://dx.doi.org/10.1016/j.ajic.2013.12.023
http://dx.doi.org/10.1016/j.ajic.2013.12.023
http://dx.doi.org/10.1016/j.ajic.2013.12.023
http://dx.doi.org/10.1016/j.ajic.2013.12.023
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/doi: 10.1142/S1793536909000047
http://dx.doi.org/10.1097/00000542-198707000-00033
http://dx.doi.org/10.1097/00000542-198707000-00033
http://dx.doi.org/10.1097/00000542-198707000-00033

	Introduction
	Method
	Ethics statement
	Clinical approach
	Analysis approach
	Ensemble empirical mode decomposition
	Hilbert–Huang transform of IMFs
	Fast Fourier transform
	Fourier transform
	Computing standard deviation of original EEG and IMFs


	Results
	Discussion
	Conclusion
	Acknowledgments
	References



