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Abstract—In this paper, we present a novel face spoofing
detection method based on 3D lighting environment analysis of an
image pair collected before and after the lighting environment
change. Our idea is inspired from the unimpressive fact that
the illumination distributions of the internal spoof face stays
stable under the protection of the photo and screen plane, while
that of a exposed genuine face changes accordingly to different
lighting environment due to a natural response of 3D structure.
After estimating two sets of lighting environment coefficients of
client’s face image pair with the hand of 3D Morphable Model
(3DMM) and Sphere Harmonic Illumination Model (SHIM),
robust liveness judgement is conducted by hypothesis tests.
Experimental results show the effectiveness of proposed method
on multiple kinds of face attacks including printed photo, screen
photo, and video replay attack, and other advantages such as
user cooperation free, loose using conditions, simple equipment
demand, easy to camouflage and propitious to face recognition.

I. INTRODUCTION

With the development of face recognition system, face
spoofing detection becomes a major issue for urgent solution
in the security field. Photo and replay video are often used
as spoof face because of their easy access from the web site
or surveillance equipment. Based on the different facial clues,
the existing methods can be classified into three categories:
texture based, motion based, and 3D structure based methods.

Texture based methods [1], [2], [3] assume that texture
information on the fake face has been changed due to the
shadow, blur and highlight brought by print or screen. Thus
these methods distinguish the attack from the genuine ac-
cess by extracting texture feature representing micro-texture
arrangement. However, high resolution camera is needed when
capturing the micro-texture change.

Motion based methods assume that the movement of planar
faces differs greatly from genuine faces. The real face can
blink eyes [4], move lips [5] and change the gaze casually [6].
Furthermore, a real face can response to the system instructions
correctly [7]. The attacks can also be detected by analyzing the
relative movement between face region and background [8].
However, these motion based methods fail against refusal to
cooperate, tilt the papers or video replay attack.

As the essential difference between real and fake face,
3D information provides the most effective protection against
spoof attempts. According to the fact that a planar face photo
gives a flat structure whereas genuine yields a quite different
structure,3D structure based methods [9], [10] make use of
structure and depth information to classify real and fake faces.

Among existing face spoofing methods, [2], [11], [12] use
the light reflection clue. Tan [2] treats the reflection difference

between 2D spoof face and 3D genuine face, which caused
by geometry structure and the surface roughness, as one of
the features that create different image quality under the same
imaging condition. But not all spoof faces have high frequency
components, which is easily to be avoided by tilting the photo
with a tiny angle, to make the photo looks more like a genuine
face. Zhang [11] gives a distance robust and user friend-
ly method by utilizing the difference of surface reflectance
properties of skin and non-skin under multi-spectral light.
However, the heavy equipment demand restricts its application
in practice, especially on the consumer devices. Smith [12]
presents a noninvasive anti-spoofing method used on consumer
devices by computing the matching degree between the face
reflections and the sequence of colors that were displayed on
the screen, but it only works in a darkened environment.

It has to be said that in addition to properties mentioned
above, there is still an intrinsic but inconspicuous difference,
which has been overlooked and under-utilized: under the
umbrella of the plane of the photo or the screen, the internal
spoof face exists separately from the external environment; on
the contrary, the intensities of genuine face change with the
lighting environment because it’s just exposed to the camera
directly. The correlation of face image pair collected before
and after the lighting environment changes, is apparently
higher for spoof face than that for genuine face, especially
when the dominant light direction seriously deviate far from
original’s. Thus the change of lighting environment can be
used as a powerful weapon to distinguish whether the face is
genuine or not, and a novel face anti-spoofing method based
on 3D lighting environment analysis of image pair is proposed
in this paper with the hand of 3DMM and SHIM.

Compared with the existing face spoofing detection meth-
ods mentioned above, our work has the following advantages:

1) User cooperation free: the user aren’t required to
move head, blink eye, smile or keep still deliberately.

2) Loose use condition: it’s competent for different light
conditions, camera resolutions and skin colors.

3) Extensive application scope: it’s effective to tackle
variable photo attacks and replay video attacks.

4) Simple equipment demand: only a few extra light
sources are needed; change the screen brightness of
consumer device also works in relatively dim light.

5) Easy to camouflage: the additional light is easily
taken for granted to improve the light condition.

6) Propitious to face recognition: as illumination cones
from different subjects are distinctive, face recogni-
tion performance itself improved through the active
lighting used to change illumination [13].



II. FACE SPOOFING DETECTION BASED ON 3D LIGHTING
ENVIRONMENT ANALYSIS OF IMAGE PAIR

In this section, we first give a reasonable explanation for
the analysis foundation that the proposed method relies on in
section II-A. Then in section II-B, the adopted 3D lighting
environment model is briefly reviewed. At last we present the
proposed face spoof detection algorithm based on 3D lighting
environment analysis in section II-C.

A. Spoof Faces Have Strong Immunity to The Change of Light
A useful question to ask is: when the environment’s

lighting condition changes, what’s the difference of changes
of the illumination distribution between a genuine face and
a spoof face? In this part, we use the Phong’s illumination
model [14] to give the explanation that forms the foundation
of our analysis. The principle is illustrated in Fig. 1.

At first, considering a vertex v on the face model with
surface normal N lighted by monochromatic light from single
direction ω. The corresponding irradiance Ef (v) at the point
v under this light model is the sum of ambient term, diffuse
term, and specular term:

Ef (v) = ρafLa + ρdfLd(ω) 〈Nf , ω〉v + ρsfLs(ω) 〈Rf , V 〉µv
= ρafLa + ρdfLd(ω) cosφ(v) + ρsfLs(ω) cosµ θ(v)

(1)
where La, Ld, Ls are the intensity of ambient light, directed
light and specular light; ρaf , ρdf , ρsf are the ambient re-
flectance, the albedo and the specular reflectance of human
face; φ is the angle between surface normal vector Nf and
the incident light ω, and θ is the angle between the reflected
light Rf and the receiver’s viewpoint V ; and µ is the Phong’s
specular exponent. It can be extended to RGB trichromatic
light by calculating the irradiance of each channel respectively,
and when lights come from multi-direction, the total irradiance
is sum of each from specific direction.

Now a face F0 is appearing before the camera. For sim-
plicity, we suppose that the spoof face was taken in the same
lighting environment as the genuine face in advance, then the
monochromatic irradiance of a vertex v on F0 can be written
as the form of Eq.(1). One additional light source joins in to
change the lighting environment around F0, and we still take
light along direction ω1 into consideration. As the light shines
on the genuine face directly, the irradiance EG of v on the
relight face FG is:
EG(v) = Ef (v) + E1f (v)

= ρafLa + ρdfLd(ω) 〈Nf , ω〉v + ρsfLs(ω) 〈Rf , V 〉µv
+ ρafL1a + ρdfL1d(ω1) 〈Nf , ω1〉v + ρsfL1s(ω1) 〈Rf , V 〉µv

= ρaf (La + L1a)

+ ρdf (Ld(ω) 〈Nf , ω〉v + L1d(ω1) 〈Nf , ω1〉v)
+ ρsf (Ls(ω) 〈Rf , V 〉µv + L1s(ω1) 〈Rf , V 〉µv )

= ρafL
′

a + ρdfL
′

d(v) + ρsfL
′

s(v)
(2)

Here we can see that the change of one vertex’s intensity
depends largely on the surface normal vector N . Unless there
is a linear relation between former and latter lights from all
directions, that is to say LT = αL, the relight face FT won’t
have strong correlation with F0. Once the dominant direction
of the additional light has relatively large deviation with the
original, the correlation declines rapidly.
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Fig. 1. The principle of the proposed algorithm, with the faces simplified
into rendering balls. The first row denotes genuine face and second spoof:
(a,c) light balls of faces with irradiance Ef , rendered by the original light;
(d) light balls rendered by the additional light ω1 with huge deviation with
original light, for genuine face, the irradiance E1f differ in different points
as the directions of outgoing lights change with the different surface normals
on different dots. But for spoof face, the irradiance E1p is approximate to
a constant, as incoming lights are reflected by the smooth plane of photo
or screen (blue bar) with similar surface normals in different dots. (b): The
observed relighted balls with irradiance EG = Ef + E1f for genuine face,
and ES = Ef + E1p for spoof face. As E1f has the opposite direction to
Ef , the correlation between EG and Ef is low for genuine face, while ES

has high correlation with Ef for spoof face.

When the surveillance camera encounters the spoof face,
will there be some pleasant surprises happen? Different from
the genuine face, the spoof face has been implanted into photos
and screens. With the protection of the plane, the internal
lighting environment exists separately from the external en-
vironment. In fact, as every surface normal vector Np on the
plane is nearly parallel, the diffuse part tends to be a constant
with very small variation; the specular part can be divided
into two zones approximately: highlight zone where θn is very
small, and non-highlight zone where θn is not so small that
cosµ θn tends to be zero under the action of µ. The ambient
part can still regarded as a constant. Then the irradiance ES
of v on the relight spoof face FS can be expressed as follows:

ES(v) = Ef (v) + E1p(v)

= ρafLa + ρdfLd(ω) 〈Nf , ω〉v + ρsfLs(ω) 〈Rf , V 〉µv
+ ρapL1a + ρdpL1d(ω1) 〈Np, ω1〉v + ρspL1s(ω1) 〈Rp, V 〉µv

= Ef (v) +Kap +Kdp + δKsp

= Ef (v) +Kp + δKsp
(3)

where Kap, Kdp, and Ksp represent the constant ambient
and diffuse light irradiance, and the largest specular light
irradiance; δ equals to 1 if v falls within highlight zone and 0 in
non-highlight zone; ρap, ρdp, ρsp are the ambient reflectance,
the albedo and the specular reflectance of the plane.

Obviously, if there’s no large areas of highlight zone
within the scope of spoof face, the relight face FF has strong
correlation with F0 for the reason that the intensity of every
vertex is added only with a constant Kp. It’s easy to achieve
by tilting the plane of photos or screens with a tiny angle.
In practice, most attackers devote themselves to avoid the
specular reflection so that the spoof face looks like a genuine
face to the largest extent. Of course, the specular reflection
itself can be treated as a powerful clue to uncover spoof faces.

To summarize, the change of lighting environment can
affect the light distribution of genuine faces significantly,
while the relight spoof face will have strong correlation with
the original one. The fundamental cause lies in the different
geometric structure of genuine and spoof faces. This forms the
analysis’s foundation that the proposed system relies on.



B. Lighting Environment - Sphere Harmonic Illumination
Model

As any number of lights can be placed in any positions,
the lighting environment of a scene can be arbitrarily complex.
Sphere Harmonic Illumination Model (SHIM) [15], [16] is
competent to model such complex lighting (other expan-
sion methods such as frames [17] can also model lighting
environment, here we choose SHIM for simplicity), under
assumptions: (1) lights are distant; (2) surfaces are convex and
Lambertian; (3) the surface reflectance is constant; (4) camera
response is linear. Although there are some degree of specular
reflection exist on oily skins, experiment in [18] has shown that
the reflection characteristics of human face are nearly diffuse
in many common situations. Along with most parts of human
face are convex, especially the nose tip, these assumptions are
tenable enough when SHIM is used to analysis human face.

Neglecting the cast shadows and near lights, the lighting
environment L(ω) is a non-negative function on unit spherical
surface. Taking light coming from all directions into account,
the appearance of vertex v is the convolution of the reflectance
function of the surface R(N,ω), with the lighting environment
L(ω), specifying the intensity of the incident light along the
unit vector direction ω. The sum can be written in integral
over the surface of sphere:

E(v) =

∫
Ω

L(ω)R(N,ω)dΩ =

∫
Ω

L(ω) max(0, 〈N,ω〉)dΩ

(4)
where Ω represents the surface of the sphere. The clamped
reflectance fucntion effectively limits the integration to the
hemisphere about the surface normal N = (x, y, z)T .

Using Spherical Harmonics Transformation, the integration
can be expressed as a linear sum of spherical harmonics basis,
which can be further approximated by the first three orders as
the reflectance coefficients r̂m decay rapidly [15], [16]:

E(v) ≈
2∑

m=0

m∑
n=−m

r̂mlm,nYm,n(N) (5)

where lm,n are the coefficients corresponding to the nth
spherical harmonic of order m, Ym,n(·). The first three orders
Y are: Y0,0 =

√
1/4π; Y1,−1 =

√
3/4πy, Y1,0 =

√
3/4πz,

Y1,1 =
√

3/4πx; Y2,−2 =
√

15/4πxy, Y2,−1 =
√

15/4πyz,
Y2,0 =

√
5/16π(3z2 − 1), Y2,1 =

√
15/4πxz, Y2,2 =√

15/16π(x2 − y2). The first three orders r̂ are: π, 2π/3,
and π/4. Then the irradiance of a convex Lambertian surface
under arbitrary distant lighting can be well modeled by the
first nine lighting environment coefficients lm,n (0 ≤ m ≤
2,−m ≤ n ≤ m).

Assume that a linear relationship between image intensity
I(v) and irradiance E(N(v)) at vertex v [19], then I(v) can be
written in terms of spherical harmonics by expanding Eq.(5):

I(v) = r̂1l0,0Y0,0(N(v)) + r̂2l1,−1Y1,−1(N(v))

+ r̂2l1,0Y1,0(N(v)) + r̂2l1,1Y1,1(N(v))

+ r̂3l2,−2Y2,−2(N(v)) + r̂3l2,−1Y2,−1(N(v))

+ r̂3l2,0Y2,0(N(v)) + r̂3l2,1Y2,1(N(v))

+ r̂3l2,2Y2,2(N(v))

(6)

We can see Eq. (6) is linear in lm,n, so it can be converted
to linear equations for q vertices on the face model:

~a = M~e (7)

where ~e is the vector of lighting environment coefficients
(l0,0 l1,−1 ... l2,2)T , ~a is the vector of corresponding intensities
at the q vertices, (I(v1) I(v2) ... I(vq))

T , and M is the corre-
sponding matrix r̂mYm,n containing the spherical harmonics.

It’s expected that coefficients from faces in different light-
ing environments should be distinguishable, while similar to
the same lighting environment. Given two sets of illumination
environment coefficients, denoted as ~e1 and ~e2, we can syn-
thesize two corresponding hemisphere images ~aH1 and ~aH2

by Eq. (7), with the matrix MH according to surface normal
vectors of hemisphere,

~aH1 = MH~e1 ~aH2 = MH~e2 (8)

Correlation between two rendered hemispheres is given by:

corr =
~aTH1~aH2

‖~aH1‖‖~aH2‖
=

~eT1 Q~e2√
~eT1 Q~e1

√
~eT2 Q~e2

(9)

where the matrix Q is equal to MT
HMH . The correlation

value calculated from ~ex and ~ey is denoted with Cexy . As
the first coefficient has no contribute to the direction of
lighting environment, it can be set to zero when calculate the
correlation to maximize the impact of light direction.

C. The Proposed Face Spoof Detection System
The general framework of the proposed method is illustrat-

ed in Fig. 2, which consists of four main steps: (1) estimate
the original lighting environment coefficients, shown with blue
dotted line; (2) decide how to change the lighting environment
with purple dotted line; (3) estimate the changed lighting
environment coefficients with orange solid line; (4) conduct
the liveness judgement with pink solid line. As the first and
third steps share the same process of lighting environment
coefficients estimation, shown with dark green solid boxes,
we will unfold the introduction of our system from the three
aspects below:

Step(1) Step(2) Step(3) Step(4)

Fig. 2. The general framework of the proposed method, which consists
of four steps: (1) estimate the original lighting environment coefficients; (2)
change lighting environment; (3) estimate the changed coefficients; (4) conduct
liveness judgement by using two hypothesis tests mentioned in Section II-C-3.



1) Estimate Lighting Environment Coefficients of Human
Face: In section II-B, we introduce 3D lighting environment
model and convert it to linear equations shown as Eq. (7). Now
the vector of lighting environment coefficients ~e is unknown.
Once given intensities and surface normals of at least nine
points on the face model, the lighting environment coefficients
can be estimated as the least-squares solution to Eq. (7):

~e = (MTM)−1MT~a (10)

Geometry of one arbitrarily object is not always readily
obtainable, however, as to human face, it can be comparatively
easy to satisfy. Precise measurements of facial shape can
be acquired using 3D scanning devices. We can also get
approximate face models from 2D images via 3D reconstruc-
tion technologies such as 3D Morphable Model (3DMM).
In this paper, the lighting robust fitting approach of 3DMM
using SHIM [20] are used to reconstruct face models as the
preparatory work of our system.

When a client appears in front of the security cameras, he
or she will be captured and first processed by algorithms of
face detection and recognition to obtain his or her identity.
Using the detected feature point coordinates, we can compute
the face pose parameters in terms of three rotation angles
of yaw, pitch and roll. Then the specific face model of the
client is loaded and rotated by the parameters, as a result,
surface normal N0 of vertex v in model coordinate system is
transformed into surface normal N with respect to the camera
coordinate system. With the corresponding intensities of face
skin after aligned, the lighting environment coefficients of the
captured face image are estimated immediately.

In practice, the surface normals of human face cheeks
change as expression changes, meanwhile the forehead, jaw
and eyes are often covered by hair, beard and glasses respec-
tively. Both of these two factors had a significant impact on
the estimation accuracy of lighting environment. The human
nose, especially the nose tip, by contrast, has a very similar
shape which is little affected by expression [21], and exposes
in the air without any occlusion in most cases. What’s more,
the overall shape of noses is relatively stable among different
persons, sexes and races. Thus we can use the average nose
model to estimate the lighting environment coefficients if
the specific face model of one person is not available. The
reconstructed faces and rendering balls based on estimated
lighting environment coefficients are shown in Fig. 3.

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. The reconstructed face and rendering ball of different persons. (a)
Faces of three persons with different sex and race [22]; (b) reconstructed faces
by FaceGen; (c) reconstructed faces by [20]; (d) aligned shapes of noses; (e)
aligned intensities of noses; (f) color balls rendered with the estimated 3-
channel lighting environment coefficients from color images; (g) gray balls
rendered with the first value of coefficients set to zero from gray images.

2) How To Change The Lighting Environment: We attempt
to change the lighting environment by adding additional light
sources in front of the client’s face, whose dominant direction
is prominently differ from the original’s. In the ideal situation,
a controllable ring light around the camera can adopted to
relight the face from the weakest direction of original lighting
environment. Of course, the less number of light sources used
the better in a practical application. If the dominant light of
the original lighting environment is not positive light, a single
frontal light can give the solution, like change the brightness
of consumer device screen, but not the opposite. So we use
two lamps on the left and right of the camera, which can
accommodate to most cases with the discriminative power
shown in the following experiments. Similar analysis can be
extended to other directions.

To judge the dominant light comes from left or right,
we give a vector of lighting environment coefficients ~eR
with values (0,0,0,1,0,0,0,0,0) as a reference, whose rendering
hemisphere is lighted by lights coming from right absolutely.
When original coefficients ~e0 has been estimated, we can make
the following decision based on the correlation value CeR0:

1) CeR0 > 0.2, it means the dominant light comes from
right with ~er = ~e0, then the left lamp is turned on to
estimate ~el;

2) CeR0 < −0.2, it means the dominant light comes
from left with ~el = ~e0, then the right lamp is turned
on to estimate ~er;

3) |CeR0| ≤ 0.2, it means the dominant light comes
from the front, then the right and left lamps are turned
on one by one to estimate ~er and ~el, respectively.

3) Conduct The Liveness Judgement: As analyzed before,
Cerl can be used as a powerful weapon to expose spoof faces
with a fixed lighting environment such as photos, and replay
face videos recorded in a relative stable lighting environment.

However, videos recorded in dramatically changed lighting
environment sometimes also have a very low Cerl to cloud our
judgment. To overcome the effect of this attack, the difference
DeRrRl = CeRr−CeRl is used as a meaningful feature based
on the fact that the designated right lighting environments ~er
should has much higher correlation with the reference ~eR as
to genuine faces, and the changes of the recorded lighting
environment will be particularly difficult to always match the
additional light, from the aspects of direction and time.

One method for detecting spoof face is to train two
threshes TC and TD: the face with Cerl below TC and
DeRrRl above TD is genuine while Cerl above TC or DeRrRl
below TD is fake. However reliable thresholds are difficult
to establish. In this paper, we chose a statistical approach
(a hypothesis test) for each of these two touchstones to
conduct the liveness judgement, as it can report the probability
of observing the results and provide more information than
approaches with thresholds. Assume that Cerl and DeRrRl
are normally distributed, and spoof faces have larger Cerl
meanwhile genuine faces have larger DeRrRl. Two hypothesis
tests will be conducted:

1) HC1: Ce′rl is equal to or smaller than µC0;
HC2: Ce′rl is greater than µC0.

2) HD1: De′RrRl is equal to or smaller than µD0;
HD2: De′RrRl is greater than µD0.



These two test statistics are:

zC =
Ce′rl − µC0

σC0/
√
N

zD =
De′RrRl − µD0

σD0/
√
N

(11)

where µC0 (µD0) and σC0 (σD0) are the expected mean
and standard deviation of Cerl (DeRrRl) and determined
empirically from real (spoof) faces. The significance of these
two statistic are given in terms of the standard error function:

p(zC(D)) = 1− erf(zC(D)/
√

2) (12)

If p(zC) is smaller than a level of αC , HC2 is accepted and the
face tends to be fake; if p(zD) is smaller than a level of αD,
HD2 is accepted and the face tends to be genuine. If HC1 and
HD2 are accepted at the same time, the client can be deemed
genuine. Here αC and αD is set to 0.05.

III. EXPERIMENTS

A. Database
Publicly available databases designed to detect liveness

such as CASIA-FASD [23] and REPLAY-ATTACK [24] are all
captured at a certain time in the past and don’t contain real-
time scene information such as lighting environment. They
are useful to texture based method for training classifier, but
unsuitable to our proposed method as there are no image pairs
needed in our algorithm. But all can be used as spoof samples
after being printed onto the paper or displayed on the screen
to validate our algorithm.

We first collect 500 image pairs each for genuine faces and
printed or screen photos under different lighting environments
(soft light without significant direction and hard light with
significant dominant light directions). Then the correspond-
ing designated ~eqr and ~eql , along with Ceqrl and DeqRrRl
are calculated. Finally, µC0 = 0.3401 and σC0 = 0.5833,
µD0 = 0.0612 and σD0 = 0.0442 are calculated and used for
the hypothesis test in Section II-C-3.

B. Experimental Results
We then validate our algorithm by collecting 50 subjects

with their corresponding real faces (still and moving), printed
photos (flat, warped and eyes-cut), screen photos (phone and
tablet), replay-attack videos (stable and variable lighting envi-
ronment) and some 3D head models under soft and hard light-
ing environment, captured by high and low resolution cameras,
together with spoof samples created from the public databases,
totally 2000 image pairs. 98.6% recognition accuracy indicates
the superior performances in face spoofing detection. Some
examples shown in Fig. 4-6 to further illustrate the excellent
results, and Fig. 7 gives some failure cases which might be
overcame by uniting some other algorithms. First row in each
figure is the corresponding image pair of different situations;
and seconde row are the corresponding rendering balls of the
image pair above; and values below are the corresponding Cerl
and DeRrRl respectively.

1) Still Is Not Always Spoof, And Moving Is Not Always
Genuine: Motion based methods couldn’t handle those clients
that do not cooperate, and it’s easy to be attacked by twisting
photos or replay videos. Things become simple as for our al-
gorithm, as shown in Fig. 4, with the genuine faces’ intensities
change with the change of lighting environment in Fig. 4(a).
but lighting environment is not affected by head movements.

Spoof faces, however, have strong immunity against light
change as shown in Fig. 4(b) and Fig. 4(c), even the photo
is warped or people blink in the video.

(a) 0.7993    0.2418 (c)0.9977   -0.0506(b) 0.9736    0.1104

Fig. 4. The illustration of different attacks and corresponding results: (a)
Still genuine face, (b) warped photo and (c) moving tablet video with eye
blink, all can be correctly detected by our algorithm.

2) Loose Use Conditions: Compared with reflections
method [12] which require a darkened environment as the
brightness of phone or tablet is poor, our method can com-
petent to a vast majority of lighting environment by adding
a few active light sources, as shown in Fig. 5(a) and Fig.
4(a). Of course, our algorithm also works in a not so bright
lighting environment compared with [12] by just changing
the screen brightness of photos or tablets as shown in Fig.
5(d). Another advantage of our algorithm is free of camera
resolution, which severely interfere with texture base methods:
high-resolution camera may infer clear photos as genuine
in Fig. 5(b), while genuine face may be inferred as spoof
for the inherent distortion of low-resolution cameras in Fig.
5(c). Further more, the proposed method is effective against
different skin colors (Fig. 5(a) and Fig. 4(a)).

(b) 0.9396    0.1148 (c)0.6840    0.3409 (a) 0.7221    0.6141 (d) 0.4116    0.1999

Fig. 5. The illustration of different attacks and corresponding results: (a)
Genuine face in soft lighting environment, (b) clear photos captured by high-
resolution camera and (c) genuine face captured by low-resolution camera, all
can be correctly detected by our algorithm. (d) Change of Screen brightness
also works in a not so bright environment.

3) Extensive Application Scope: In addition to handled
photos (Fig. 5(b)), screen photos (Fig. 6(a)) and warped photos
(Fig. 4(b)), our algorithm also valids for photos whose eyes
are cut. Considering videos taken in controlled stable lighting
environment (Fig. 4(c)) can’t pass HC , attackers may take
videos under change lighting environment, but HD builds
another solid defense when HC is breached(Fig. 6(c)).

(a) 0.9883   -0.0276 (c) 0.8652   -0.2313(b) 0 0.9689   -0.0573

Fig. 6. The illustration of different attacks and corresponding results: (a)
Screen photos, (b) photos with eye cut off and (c) video under variable lighting
environment, all can be correctly detected by our algorithm.

4) Failure Cases: A few failure cases appear in our test.
One reason is over saturated exposure caused by specular
reflection of photo and screen exactly right locates on the



nose and covers original nose completely, as shown in Fig.
7(a). This can be excluded by extracting exposure zone and
analysis the difference of area and shape between genuine
and spoof nose. Another reason is the original light is so
strong that the additional light sources contribute little for the
change of lighting environment in Fig. 7(b). Fortunately, an
overwhelming majority of applications of liveness detection
are indoor with soft or slightly hard light around the cameras,
and people tend to duck away from the specular reflection by
tilting the plane of photos or screens with a tiny angle to pursue
the greatest reality. 3D head model (Fig. 7(c)) or 3D face mask
of a specific client, however, can pass our system effortlessly
because of its 3D structure, and we need unite with other
methods to overcome this difficult question in further study.
Videos in [23] are all collected in a stable environment, but
when a replay attack has variable lighting environment, and the
change form exactly matches the form created by our system,
it collapses, as shown in Fig.7(d). Utilizing multi-frames of
video to validate whether the time and direction of lighting
environment changes are consistent with the additional light,
might be a possible solution for these kind of attack.

(a) 0.2772    0.0709 (b) 0.9436    0.0739 (c) -0.1072    0.8576 (d) -0.5428    1.7118

Fig. 7. (a) Photos over saturated exposure in nose zone, (b) genuine face
captured in environment with very strong light and (c) 3D head model, can’t
be correctly detected by our algorithm. (d) Sometimes video under variable
lighting environment is also a problem should be solved.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel effective face spoofing
method based on 3D lighting environment analysis of image
pair. Considering the different manifestations confronted the
change of lighting environment for real face versus spoof
face, which caused by the intrinsic property that spoof is
under the protection of the plane of photos and screens,
the correlations of image pair collected before and after the
lighting environment change are used to separate the attack
from the valid user. Compared with the existing methods,
our approach has the following advantages: user cooperation
free, loose use condition, extensive application scopes, simple
equipment demand, easy to camouflage and propitious to face
recognition. We will engage in further study of how to utilize
the time and direction information of multi-frames of video,
the stability of background and lighting environments of fixed
cameras, and combine needful clues such as exposure feature,
to improve the performance of our algorithm.
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