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Abstract

Face alignment is an important problem in computer vi-
sion. It is still an open problem due to the variations of
facial attributes ( e.g., head pose, facial expression, illu-
mination variation). Many studies have shown that face
alignment and facial attribute analysis are often correlated.
This paper develops a two-stage multi-task Auto-encoders
framework for fast face alignment by incorporating head
pose information to handle large view variations. In the
first and second stages, multi-task Auto-encoders are used
to roughly locate and further refine facial landmark loca-
tions with related pose information, respectively. Besides,
the shape constraint is naturally encoded into our two-stage
face alignment framework to preserve facial structures. A
coarse-to-fine strategy is adopted to refine the facial land-
mark results with the shape constraint. Furthermore, the
computational cost of our method is much lower than its
deep learning competitors. Experimental results on various
challenging datasets show the effectiveness of the proposed
method.

1. Introduction

Face alignment (or facial landmark detection) is a funda-

mental problem in computer vision. It refers to locating the

semantic structural facial landmarks such as eyes, nose and

mouth. It plays an important role in many applications, e.g.,

face detection and recognition, face clustering, facial ex-

pression analysis[6, 12]. Although tremendous efforts have

been devoted to the development of accurate and robust face

alignment algorithms, it is still one of the most challenging

problems due to facial variations of expressions, illumina-

tion and head poses. Face alignment has received an in-

creasing attention in recent years. It can be roughly divided

into three categories: Parameterized Appearance Models,

Constrained Local Models and Regression based Models.

The first type is Parameterized Appearance Models. Ac-

tive Appearance Model (AAM) [3] is the representative one.

It uses Principle Component Analysis (PCA) to generate a

statistical model of shape and texture variations, respective-

ly. Specifically, face images are first warped to a common

coordinate frame. Then the shape basis and appearance ba-

sis can be learned by performing PCA on the warped im-

ages. Consequently, the face shape can be estimated by u-

tilizing the shape basis and appearance basis. One of the

key problems of AAM based models is how to optimize a

non-linear objective function. The first is to learn it via re-

gression [3, 17]. Another way of AAM fitting is through

non-linear least squares, which can be solved iteratively us-

ing Gaussian-Newton optimization [14]. One limitation of

Parameterized Appearance Models is the limited expressive

ability to capture complex and subtle face variations. Re-

cently, some works try to provide more efficient solutions

so that they are applicable in the wild [7, 20, 21].

Another type of face alignment is Part-based Deformable

Models. Usually, a holistic appearance model is not e-

nough for finding exact landmark locations. So Part-based

Deformable Models have been proposed. Constrained Lo-

cal Model (CLM) [4] is one of them for face alignment.

It first samples some regions and extracts some local fea-

tures from the image around the current facial landmark lo-

cations. Then some “patch experts” are trained based on

the extracted local features. The landmark locations can

be obtained by optimizing the local likelihood of each part

times a global prior for a testing image. One advantage of

Part-based Deformable Models is that it is discriminative,

and well generalized to unseen appearance variations, glob-

al illumination variations and occlusions. Different “patch

experts” and optimization methods have been proposed in

recent years [18, 31, 24].

Regression Based Models learn a mapping from image

features to landmark locations directly. The representa-

tive approaches are Explicit Shape Regression (ESR) [2],

Supervised Descend Method (SDM) [23]. Different from



AAM that only learns a linear representation between the

increment of model parameters and appearance differences,

ESR learns a vertical regression function to infer the w-

hole face shape, and minimizes alignment errors explicit-

ly. The shape constraint is incorporated into the regressor

in a cascaded learning framework. The above properties

enable ESR to learn a flexible model with strong expres-

sive power from large-scale training data. Compared with

ESR, SDM tries to learn gradient descend directions to ap-

proximate the Jacobian and Hessian for alignment with a

sequence of linear models. Random forests and Gaussian

Process have also been widely used for face alignment in

recent years [5, 16, 11].

In many real world applications, misaligned face im-

ages are often non-frontal. Zhou et al. used a Bayesian

mixture model for multi-view face alignment [29]. Zhu et
al. proposed a deformable part model for multi-view facial

landmark detection, which achieves state-of-the-art perfor-

mance on various datasets [31]. Dantone et al. proposed the

conditional random forests for real-time face alignment [5].

Furthermore, Zhao et al. presented an iterative multi-output

random forests method to jointly estimate head pose, facial

expressions and facial landmarks [28]. To further improve

multi-view face alignment accuracy in the wild, this paper

integrates several useful techniques into a two-stage multi-

task Auto-encoders framework. First, head pose estimation

is served as an auxiliary task to improve the generalization

performance of the main alignment task. Then we develop

a two stage framework with the coarse-to-fine strategy for

accurate multi-view face alignment. What’s more, the com-

putational cost of our method is much lower than other deep

learning based methods. Experimental results have shown

that our method achieves state-of-the-art performance on

various challenging datasets.

2. Related work
Deep learning based face alignment methods have been

well studied in recent years [9, 19, 26, 25, 30]. Sun et al.
have proposed a three-level Convolutional Neural Networks

for face alignment [19]. It has achieved an impressive per-

formance. First, a global network is trained over the entire

face to locate each facial landmark. The networks at the fol-

lowing level are trained over the local small regions to re-

fine initial prediction results. The cascade global and local

face alignment method has achieved accurate and reliable

results. Face alignment is not a stand-alone problem. It is

influenced by many other factors, e.g., head pose variations,

facial expression variations. Zhang et al. have further boost-

ed the performance using only one Convolutional Neural

Network through multi-task learning [26]. The motivation

behind their approach is simple. They jointly estimates the

facial landmark locations together with the correlated facial

attributes. However, only the low-resolution face images

are used for training their algorithm. The detailed facial

information has been lost. Besides, the shape constraint

has not been fully explored in their models. Zhang et al.
have cascaded coarse-to-fine Auto-encoders for face align-

ment [25]. One drawback of their method is that they have

not considered other facial attributes which may affect the

alignment performance. 3D information is also exploited

for face alignment in recent works. A dense 3D face model

is fitted to the face image via Convolutional Neural Net-

work for face alignment [30]. Jourabloo and Liu formulate

the face alignment as a 3D Morphable Model fitting pro-

cess [9]. 3D Morphable Model and cascade Convolutional

Neural Network regressors are combined to achieve a better

localization results.

3. The proposed method
In this section, the traditional cascade regression method

for face alignment is reviewed firstly. Then the technical de-

tails are presented. Finally, we demonstrate the relationship

between previous face alignment methods and our method.

3.1. Cascade regression for face alignment

Face alignment is usually formulated as a classical re-

gression problem. Given a face image, its facial landmarks

are often represented as a vector of 2D coordinates, i.e.,
S = (u1, v1, u2, v2, ..., ul, vl, ..., uL, vL), where (ul, vl) is

the coordinate of the l − th landmark location, L is the

number of total landmarks. Given N training face im-

ages {x1, x2, ..., xN}, the initial face shape is formulated as{
S0
1 , S

0
2 , ..., S

0
N

}
, and the ground-truth face shape is rep-

resented as {Sg
0 , S

g
1 , ..., S

g
N}. Regression based face align-

ment methods aim to learn a regressor f to minimize the

following objective function:

N∑
i=1

∥∥f (
xi, S

0
i

)− Sg
i

∥∥2
2
, (1)

where f predicts the new shape based on the initial shape

for each image. Equation 1 is a complex non-linear prob-

lem, and it is very difficult to learn f directly. We usually

solve Equation 1 in a cascade fashion. The face shape can

be estimated from a initial shape S0
i , and progressively re-

fines the shape by a cascade of E regressors, i.e., we can

divide f into a series of simple regressors
{
f1, f2, ..., fE

}
.

Each regressor fe refines the shape by producing an update

ΔSe from the previous shape, and then updates the previ-

ous shape as: Se = Se−1+ΔSe, (e = 1, ..., E). The shape

update ΔSe is computed from the regressor fe, which takes

the form as: ΔSe = fe
(
x, Se−1

)
.

3.2. The first stage for face alignment

Cascade regression methods have achieved an impres-

sive alignment performance. However, there are still some



challenging factors for cascade regression methods, e.g.,

large head pose variations, various facial expressions and

illumination variations. Among them, head pose variations

is one of the most challenging factors. Traditional methods

treat head pose estimation and face alignment as two sepa-

rate problems. A head pose estimator is first trained to di-

vide the face images into several views. Then different face

alignment models are trained separately according to differ-

ent views. The traditional methods rely on the accuracy of

the head pose estimator, which is also an opening problem

for 2D face images in the wild. Besides, both the model

complexity and computational cost are increased. We ar-

gue that face alignment and head pose estimation is similar

to the “chicken-and-egg” problem. They are closely relat-

ed with each other. Dealing with them together offers sig-

nificant advantages over treating them separately. Recent

works have also shown that head pose estimation can boost

the performance of face alignment [26, 28].

In this paper, we use multi-task Auto-encoders for face

alignment with related pose information. Similar to [26],

our method is also a heterogeneous multi-task learning

problem. Face alignment is taken as the main task, while

head pose estimation is the related auxiliary task. In the first

stage, we take the low-resolution images
{
x0
i

}N

i=1
as input.

Suppose that the ground-truth face shape and head pose are

represented as {Sg
i , y

g
i }Ni=1. The stacked Auto-encoders are

used to learn a non-linear mapping from the image pixels

to the final landmark locations. The original image can be

projected into high level image representations gradually by

learning a sequence of T non-linear mappings:

xt = σ
(
W txt−1 + bt

)
, t = 1, ..., T − 1, (2)

where xt = {xt
i}Ni=1, W t is the projection matrix, bt is the

bias term, and σ (·) is the sigmoid function.

The overall objective function of our first stage frame-

work contains two parts. The first part is used to project

the high level image representations to the final coordi-

nates of the facial landmark locations. The second part is

used to project the high level image representations to the

head pose classifications. The proposed multi-task learning

framework can be formulated as follows,

J = Jr
(
Sg, f

(
xT−1;W r

))
+ Jl (y

p − yg) , (3)

where Sg = {Sg
i }Ni=1, yg = {ygi }Ni=1, and yp =

{ypi }Ni=1 denotes the predicted head pose. The first term

Jr
(
Sg, f

(
xT−1;W r

))
is a regression task for face align-

ment, which can be defined as a least square loss function:

N∑
i=1

∥∥Sg
i − f

(
xT−1
i ;W r

)∥∥2
2
, (4)

where f
(
xT−1
i ;W r

)
= W rxT−1

i , which means we use a

linear function to project the high level image representa-

tions to the output coordinates of the facial landmark loca-

tions. The second term is a classification task for head pose

estimation, which can be represented as a cross-entropy loss

function:

−
N∑
i=1

ygi log
(
p
(
ypi |xT−1

i ;W l
))

(5)

where

p
(
ypi = m|xT−1

i ;W l
)

=
exp(W l

mxT−1
i )

K∑

j=1
exp(W l

jx
T−1
i )

, (m = 1, ...,K) , (6)

K denotes the number of head pose categories, W l
j repre-

sents the j − th column of W l. The objective function of

the first stacked Auto-encoders can be rewritten as:

min
W

N∑
i=1

∥∥Sg
i − f

(
xT−1
i ;W r

)∥∥2
2

−λ1

N∑
i=1

ygi log
(
p
(
ypi |xT−1

i ;W l
))

+ λ2

T∑
t=1

‖W‖2F ,
(7)

where λ1 is a balance term which denotes the relative im-

portance of the auxiliary task,
T∑

t=1
‖W‖2F is a regulariza-

tion term which prevents the Auto-encoders from overfitting(
W =

{
W r,W l

})
.

Equation 7 is a non-convex problem. We adopt the s-

tochastic gradient descend method to solve this problem.

The partial derivatives of the objective function with respect

to the weight matrix are:

∂J
∂W r =

(
W rxT−1 − Sg

)
xT−1,

∂J
∂W l =

(
p
(
y|xT−1;W l

)− yg
)
xT−1.

(8)

Based on the partial derivatives, we can update the weight

matrix as:
W r = W r − η ∂J

∂W r ,
W l = W l − η ∂J

∂W l ,
(9)

where η is the learning rate. Then we can compute the

gradients layer by layer, and follow the standard back-

propagation to optimize Equation 7.

Note that Equation 7 is actually a heterogeneous multi-

task learning problem. Face alignment and head pose es-

timation have different loss functions and thus may have

different convergence rates. In order to guarantee the con-

vergence of the main task, we propose a simple yet effective

solution. We decrease λ1 in Equation 7 gradually during the

optimization process. Specifically, we use a relatively large

coefficient at the early steps to induce the Auto-encoders to

consider the auxiliary task so that it can handle large pose



variations. While at the later steps, we could use a relative-

ly small coefficient to ensure the convergence of the main

task. Zhang et al. used “early stopping” to solve the hetero-

geneous multi-task learning problem [26]. Compared with

their method, the gradient descend direction of our method

is more consistent and smoother. Note that Zhang et al.
adopted dynamic coefficient strategy in the later work [27].

Compared with their strategy, the gradient descend direc-

tion of our method is more stable. Although our method is

very simple to deal with heterogeneous multi-task learning

problem, it is very effective in practical applications.

3.3. The second stage for face alignment

In order to reduce the computational cost and train a ro-

bust model for face alignment, a low resolution image is

used to get a rough estimation of the initial facial land-

mark locations in the first stage. A cascade model is needed

to further refine the initial landmark locations because of

the following reasons. First, a single model is usually not

powerful enough for accurate face alignment. Second, we

haven’t taken advantage of the local texture information in

the high resolution face images. Hence we further refine the

facial landmarks on the high resolution face images for the

second stage. If we use raw pixels as the input, we need a

“deeper” network to learn the features automatically, which

needs many human labeled training samples. Thus, we can-

not feed the high resolution images to this stage directly

because of the limited training samples and redundant glob-

al image information. An effective way is to first extract

some shape-indexed features in a small neighborhood of the

initial landmark locations, and then concatenate them to-

gether to form a powerful feature representation [2, 16, 25].

These features can be used as the input to the second stage.

The deviation between the initial landmark locations and

ground-truth landmark locations is used as the training la-

bels.

Given the high resolution images
{
x̄0
i

}N

i=1
, their ini-

tial and ground-truth landmark locations are denoted as{
S̄0
i

}N

i=1
and

{
S̄g
i

}N

i=1
, respectively. For the image x̄0

i ,

we extract the shape-indexed features as h0
(
x̄0
i ; S̄

0
i

)
. Then

the shape-indexed features are also projected into high level

representation gradually by learning a sequence of T non-

linear mappings,

ht = σ
(
W tht−1 + bt

)
, t = 1, ..., T − 1, (10)

where ht =
{
ht

(
x̄t
i; S̄

t
i

)}N

i=1
is the high level represen-

tation of the projected shape-indexed features, σ (·) is the

sigmoid function. Similar to the first stage, the overall ob-

jective function for the second stage can be reformulated

as:

min
W

N∑
i=1

∥∥ΔSi − f
(
hT−1
i ;W r

)∥∥2
2

−λ1

N∑
i=1

ygi log
(
p
(
ypi |xT−1

i ;W l
))

+ λ2

T∑
t=1

‖W‖2F ,
(11)

where ΔSi is the shape deviation between the predicted

shape S̄0
i and the ground-truth shape S̄g

i , f
(
hT−1
i ;W r

)
=

W rhT−1
i is a linear function to project the high level im-

age representations to the face shape deviation,
T∑

t=1
‖W‖2F

is a regularization term
(
W =

{
W r,W l

})
. The stochastic

gradient descend method is also used to solve Equation 11.

Recent deep learning based methods have shown that un-

supervised pre-training is an important technique that can

improve the performance [8, 22]. Given a j − th layer of

the stacked Auto-encoders, we pre-train our method by min-

imizing the following reconstruction errors,

min
Wj

N∑
i=1

∥∥ât−1
i − at−1

i

∥∥2
2
+ λ̂

(
‖Wj‖2F +

∥∥(Wj)
′∥∥2

F

)
,

(12)

where âti = f
(
W tat−1

i + bt
)
, ât−1

i = f
(
(W t)

′
âti + b̂t

)
,

f (·) = σ (·) is the sigmoid function. We pre-train the s-

tacked Auto-encoders in a layer-wise manner. Then the pa-

rameters are preserved to be the initialization of the weight

matrix. Finally, we fine-tune the weight matrix using back-

propagation. This strategy is proved to be better than the

pure back-propagation with random parameter initializa-

tion [8].

4. Relation to previous work
There are several points when we use deep learning

based methods for face alignment. The first one is to

improve the generalization capacity of the network. The

second one is to preserve shape constraint and local tex-

ture information for accurate face alignment. Considering

the above points, we have proposed the multi-task Auto-

encoders for coarse-to-fine face alignment. Note that com-

pared with [25], head pose information is incorporated into

our method. We argue that head pose estimation and fa-

cial landmark localization are two closely related problem-

s, which inspires us to solve these two problems together.

The objective function (Equation 7 and Equation 11) can

influence the weight matrix of the whole network by back

propagating the errors. It makes the Auto-encoders more ro-

bust for the challenging face alignment problem. Besides,

we need less number of Auto-encoders than [25] because of

the improved generalization capability. Hence, our method

is more efficient than [25].

Although Zhang et al. have done similar work to veri-

fy the effect of multi-task learning for Convolutional Neu-



ral Network (CNN) [26], they haven’t considered the shape

constraint and the local texture information. Besides, CNN

relies on a large number of training images to learn the fea-

tures. The cost for acquisition of human labeled face images

restricts the wide usage of this method. Our method has the

following advantages over [26]. First, it needs less training

samples than [26], which means we can still get a satis-

fied performance even with limited training samples. Be-

sides, the shape constraint, which is very important for face

alignment, is naturally encoded into our two-stage frame-

work. Furthermore, the shape-indexed features is used in

our method for face alignment. Such high level features are

carefully designed so that they are very likely to be mutu-

ally uncorrelated and to be complementary with each oth-

er. Compared with [26], we only consider the most related

head pose information, which has an important impact on

the multi-view face alignment results [26]. However, other

facial attributes can be easily added to our method for face

alignment.

5. Experimental results

5.1. Implementation details

The first stage of our method has four layers which is the

same with [25] except for the final output layer. All of the

images are resized to a resolution of 50× 50. Then the raw

pixels are used as the input units. The number of hidden

units are 1600, 900 and 400, respectively. The second stage

also has four layers. The SIFT features [13] which are ex-

tracted from 80×80 face images are used as the input units.

The number of hidden units is 400, 200 and 80 respective-

ly. The training dataset is the same with [26, 19], which

consists of 10, 000 outdoor face images from the web. Each

face image is annotated with five facial landmarks, together

with the pose, gender, glass and smiling information. In or-

der to train a robust model, we augment the training samples

by small translation, rotation and scaling.

We have tested our method on the AFLW dataset [10]

and AFW dataset [31]. The face images in the AFLW and

AFW datasets formulate a more challenging scenario than

other datasets ( e.g., XM2VTS [15]). AFLW dataset con-

tains 24, 386 face images gathered from Flickr. 3, 000 face

images are selected to test our algorithm, which is the same

as [26]. AFW dataset contains 205 face images. Each face

is labeled with 6 landmarks. However, some face images are

annotated incompletely due to the challenging viewpoints.

The images without 5 common facial points (center of eye-

s, tip of nose, mouth corners) are simply dropped. Finally

we have a total number of 170 testing images on the AFW

dataset. The normalized root mean squared error (NRMSE)

is adopted to measure the face alignment performance. It

is computed by dividing the root mean squared error by the

bi-ocular distance. The cumulative error distribution curve

is also used to evaluate the alignment results. It is given as a

percentage of the face images of which the NRMSE is less

than a specific value.

5.2. The effectiveness of multi-task learning
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Figure 1. The cumulative error distribution curves of our method

with and without multi-task learning on the AFLW database.

In order to verify the effectiveness of multi-task Auto-

encoders for face alignment, we train face alignment mod-

els with and without multi-task learning for the first stage

and second stage, respectively. The cumulative error distri-

bution curves of different models are shown in Figure 1. As

shown in Figure 1, we can get a significant improvement for

face alignment with the multi-task learning in the first stage.

Head pose information provides a strong multi-view face

shape prior for learning Auto-encoders in the first stage. We

get almost 10 percent improvement for face alignment with

the multi-task learning.

Figure 1 also shows the alignment performance of the

second stage with and without multi-task learning. As

shown in Figure 1, we can also get a better performance

with multi-task learning. However, the improvement is

marginal compared with the first stage. The possible rea-

son for the marginal improvement is that we already get a

multi-view face shape prior after the first stage. Head pose

information in this stage has a relatively small influence on

the final performance compared with the first stage. How-

ever, the shape residue estimation can still benefit from the

head pose estimation, which gives us about 4 percent im-

provement in the second stage.

5.3. Comparison with other deep learning based
methods

In this section, we compare our method with other deep

learning based methods on the AFLW dataset. The com-

pared methods are TCDCN [26], CFAN [25], Cascaded C-

NN [19]. The results of different methods are shown in Fig-

ure 2. Compared with other deep learning based methods,
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Figure 3. Face alignment results of RCPR, TSPM, Luxand, SDM, CDM, ESR and ours on the AFLW dataset (the first row) and the AFW

dataset (the second row ). (a) Mean errors of different landmarks. (b) The overall mean errors.
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Figure 2. The cumulative error distribution curves of TCDCN, C-

FAN, Cascaded CNN and ours on the AFLW dataset. The align-

ment results of TCDCN, CFAN and Cacaded CNN are reported

from [27].

CFAN performs not very well when NRMSE is larger than

0.1. The possible reason is that CFAN has not considered

head pose information. Thus it is not very robust to large

pose variations. TCDCN performs better than CFAN and

Cascaded CNN under the multi-task learning framework.

However, the shape constraint and local texture informa-

tion have not been used fully in TCDCN. Our method per-

forms better than CFAN, TCDCN, and Cascaded CNN. The

reason is that our method incorporates multi-task informa-

tion, e.g., head pose information, into face alignment, which

increases the generalization capabilities of the network. Be-

sides the two-stage cascaded process preserves the shape

constraint, which is very important for face alignment.

An important factor for evaluating different face align-

ment methods is the computational cost. We evaluate our

method on the AFLW dataset and record its average com-

putational time per image. Our method is running using

matlab on a PC with 3.4 GHZ CPU. The running time and

environment of our method are shown in Table 1. It can be

seen from Table 1 that our method is an efficient one even

with the unoptimized algorithm and codes. The first stage

of our method takes about 0.5ms, while the second stage

takes about 2.5ms. Our method has a relatively low compu-

tational cost compared with previous deep learning based

face alignment methods.

Algorithm Running time Environment

Ours 3ms Intel i7 CPU, matlab

Table 1. Running time and environment of our method.

5.4. Comparison with other face alignment methods

We also compare with other face alignment methods

on the AFLW and AFW datasets. The compared meth-

ods include Robust Cascade Pose Regression (RCPR) [1],

Tree Structured Part Model (TSPM) [31], Luxand face S-

DK, Explicit Shape Regression (ESR) [2], Cascaded De-
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(b)

(c)

(d)

(e)

Figure 4. Face alignment results on the AFLW dataset with different head poses. (a) left profile. (b) left. (c) frontal. (d) right. (e) right

profile.

formable Model (CDM) [24], Supervised Descend Method

(SDM) [23].

Figure 3(a) presents the mean errors of different land-

marks ( e.g., left eye, right eye) on the AFLW and AFW

datasets. The overall mean errors of different methods are

shown in Figure 3(b). From Figure 3, we can see that S-

DM achieves a better alignment performance than most of

the other methods. While our algorithm outperforms SD-

M by a margin of almost 2 percent on both the challenging

AFLW and AFW datasets. On the AFLW dataset, our av-

erage mean error is 6.5, while SDM is 8.5. On the AFW

dataset, our average mean error is 6.7, while SDM is 8.8.

We can also see from Figure 3(a) that the alignment error

of nose is larger than other facial landmarks for almost all

of the face alignment methods. One of the possible rea-

sons is that the texture information around nose is not very

informative. The learned or hand-crafted features may not

work very well in these areas. Figure 3 have further shown

that our method is robust to multi-view face images with

large pose variations, which is a very challenging problem

for face alignment.

Finally, we present some alignment examples on the

AFLW dataset. Figure 4 has shown some examples with

different head poses on the AFLW dataset. As shown in

Figure 4, our method performs well with multi-view face

images. We can locate the facial landmarks accurately with

the left profile and right profile face images due to the us-

age of head pose information under the multi-task learning

framework. Besides, our method is also robust to various

occlusions and large facial expression variations because of

the improved generalization ability.

6. Conclusions

This paper has developed a fast two-stage multi-task

Auto-encoders framework for multi-view face alignment by

integrating several useful alignment techniques. Head pose

information and shape constraint have been naturally en-

coded into our framework. Deep learned features and hand-

crafted features are combined to boost the alignment perfor-

mance. Experimental results on the challenging AFLW and

AFW datasets have shown that the proposed frame achieves

state-of-the-art multi-view face alignment results. Future

work is to apply the Auto-encoders framework to improve

the alignment accuracy of more facial landmarks.
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