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Abstract—Learning based hashing techniques have attracted broad research interests in the Big Media research area. They aim to

learn compact binary codes which can preserve semantic similarity in the Hamming embedding. However, the discrete constraints

imposed on binary codes typically make hashing optimizations very challenging. In this paper, we present a code consistent hashing

(CCH) algorithm to learn discrete binary hash codes. To form a simple yet efficient hashing objective function, we introduce a new code

consistency constraint to leverage discriminative information and propose to utilize the Hadamard code which favors an information-

theoretic criterion as the class prototype. By keeping the discrete constraint and introducing an orthogonal constraint, our objective

function can be minimized efficiently. Experimental results on three benchmark datasets demonstrate that the proposed CCH

outperforms state-of-the-art hashing methods in both image retrieval and classification tasks, especially with short binary codes.

Index Terms—Supervised hashing, binary codes, code consistent constraint, information-theoretic criterion

Ç

1 INTRODUCTION

HIGH dimensional big Media data like audios, images
and videos are growing rapidly nowadays. Emerging

with these increasingly growing volume of data is the need
to retrieve relevant contents from such large databases. The
fundamental scientific problem behind this need is the near-
est neighbor (NN) search problem. However, finding the
exact nearest neighbors of a query point from a very large
database with N d-dimensional points is not feasible espe-
cially when N and d tend to be very large [1]. In order to
alleviate this issue, some efforts have been made to reduce
the search space, such as KD-tree[2], or to reduce the compu-
tational cost in calculating the similarities, like hashing.

Hashingmethods aim to learn compact binary codes with
hamming distance computation. They map the high-dimen-
sional data to a binary embedding while preserving some
predefined similarity in the original space (e.g., euclidean
space or semantic space). Then bit-wise XOR operations are
performed to calculate the individual similarities. Due to the
reduced time cost of the Hamming distance computation
and the low storage overhead to store the binary codes, hash-
ing has become one of themost popular approximate nearest
neighbor (ANN) search techniques for many large scale

computer vision applications, including content-based
image retrieval [3], [4], object recognition [5] and image
matching [6]. One representative method in the earlier hash-
ing work is Locality-Sensitive Hashing (LSH) [7]. Since LSH
and its variants [8] employ randomly generated projections
as their hash functions without exploring data distribution,
they often require long bit codes to achieve satisfactory
performance.

Recently, learning based hashing methods draw much
attention because these methods exploit data distribution
and even additional supervisory information. These meth-
ods employ statistical learning to directly learn hash func-
tions from the data instead of using randomly generated
projections. Various methods have been developed in the
literature of learning based hashing. Generally, according to
whether and how supervisory information is used, learning
based hashing methods can be divided into three main cate-
gories, i.e., unsupervised hashing [9], [10], [11], [12], [13],
semi-supervised hashing (SSH) [14], [15] and supervised
hashing [16], [17], [18], [19], [20]. In unsupervised hashing,
iterative quantization (ITQ) [9] and hashing with graphs
(AGH) [10] resort to some information-theoretic criteria as
their learning objectives meanwhile taking no account of
the external supervisory information. A common criterion
is to maximize the information entropy on each bit (which
favors a more balanced distribution) and minimize the cor-
relation among them. In [21], deep neural networks are
employed to learn nonlinear hash functions with the previ-
ously mentioned criteria.

In contrast, semi-supervised and supervised hashing
methods explore the external supervisory information for
better search of semantically similar neighbors, which is
more compatible with the image retrieval tasks in real appli-
cation scenario. Note that, supervisory information emerges
in multiple forms. Hence, how to efficiently utilize the
supervisory information effectively becomes very impor-
tant. Most existing supervised hashing algorithms apply the
pairwise similarity matrix as their supervisory information,
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e.g., the graph Laplacians constrained hashing methods,
such as spectral hashing (SH) [22], discrete graph hashing
(DGH) [23] and (AGH)[10]. More recently, semantic label
information is directly exploited in [9], [24], [25]. Particu-
larly, in supervised discrete hashing (SDH) [24], the learnt
binary codes are demanded to be optimal for linear classifi-
cation. In addition, [26] utilizes the relative ranking infor-
mation as supervision and optimizes various retrieval
evaluation criteria such as mean average precision (mAP)
and Normalized Discounted Cumulative Gain (NDCG) [26]
directly. Recently, several deep learning based hashing
methods [27], [28], [29], [30] are also proposed that exploits
multiple forms of supervisory information.

In general, most of the existing hashing methods can be
formulated as mix-integer optimization problems. These
problems are still NP-hard due to the involvement of dis-
crete constraints on binary codes. The supervised learning
framework, which consists of discrete constraints and the
empirical loss via supervisory information, is very challeng-
ing to optimize and thus satisfactory results are rather hard
to obtain. To simplify the optimization, most of the afore-
mentioned approaches usually adopt a spectral relaxa-
tion [22] on the thresholding (sign operator) procedure,
leading to suboptimal solutions as pointed out by [24]. To
alleviate this problem, SDH [24] proposed to directly learn
binary codes without relaxations and provide a tractable
and scalable solver for the formulated discrete optimization
problem, making a breakthrough towards the binary opti-
mization in the hashing literature. However, the way in
SDH to leverage the supervisory information might not be
optimal. It is still necessary to develop new algorithms that
can well capture the supervisory information meanwhile
have an efficient optimization process. For a brief review of
the literature of hashing techniques, readers can refer to a
recent review of hashing methods in [31].

This paper presents a code consistent hashing (CCH)
algorithm to learn binary codes for image retrieval. Our
basic motivation is that learning hash function in an infor-
mation-theoretic way may yield high-quality binary codes
as well as improve existing supervised hashing schemes.
We introduce a new code consistent constraint to leverage
the label information and the Hadamard code favored by
the information-theoretic criterion. The supervisory label
information is mainly exploited with fixed ’discriminative’
binary prototypes that are induced from information
entropy maximization. Specifically, we demand that the
data within the same class should be mapped into a unique
binary code (termed as the class prototype) in the Hamming
embedding. At the same time, from the view of information
theory, different prototypes representing particular classes
should be as far away from each other as possible. We dis-
cover that the Hadamard codes [32] are the perfect candi-
dates for the class prototypes, which are equidistant and
potentially balanced and uncorrelated.

To formulate such motivation, we relax the aforemen-
tioned ‘unique binary code’ constraints with a Frobenius
Norm, so that it is moremathematically sound and can allow
for small intra-class variations in the learnt codes. In our for-
mulation, we do not expect the learnt binary codes can be
directly used for linear classification in the Hamming space
as in [24], but it turns out that the proposed code consistent

term does improve the classification accuracy. Besides, for
better generalization performance, we seek linear hashing
functions in a kernel space as in [17], [24]. Taking all these
factors into consideration, we propose a joint learning frame-
work for supervised hashing with discrete variables. To effi-
ciently optimize the mixed-integer problem, we keep the
discrete constraint of binary codes in the optimization pro-
cess as in [24], meanwhile taking advantage of orthogonal
constraints on the transformation matrix. As a result, we can
develop a much faster optimization process. Extensive
experiments on several benchmark datasets are conducted
to verify the effectiveness and efficiency of the proposed
method on both retrieval and classification tasks.

There are three major contributions of this work:
1. Based on the information-theoretic criterion (uncorre-

lated and balanced bits), a new code consistent term with
Hadamard code is introduced for supervised hashing. It not
only yields high-quality binary codes but also reduces the
model complexity of supervised hashing schemes.

2. Compared to discrete hashing methods [24], [33], we
handle the discrete constraints (NP-hard in general) by
introducing an orthogonal constraint to the transformation
matrix in CCH, which reduces the discrete cyclic coordinate
descent (DCC) method [24] to a one-step thresholding oper-
ation (sign function) in each iteration.

3. Compared to several state-of-the-art hashing methods,
CCH achieves better results on both retrieval and classifica-
tion tasks. Particularly, its training time is comparable to the
simplest CCA-ITQ and is six times faster than SDH.

The rest of this paper is organized as follows: Section 2
introduces some preliminaries related to our method. Then
Section 3 describes our formulation and derives the optimi-
zation procedure. Next, Section 4 evaluates our method on
two datasets. Finally, we end up with some conclusions in
Section 5.

2 PRELIMINARIES

For the sake of clarity, we first review some preliminaries
about the learning based hashing and class prototypes.
Meanwhile, the motivation of our proposed work is slightly
touched in this section.

2.1 Learning Based Hashing

Given a set of training data X ¼ fxigNi¼1 2 Rd�N , the task of
hashing is to learn a set of hash functions ½h1ðxÞ; h2ðxÞ; . . . ;
hkðxÞ�, each of which can map the d-dimensional input onto
a binary code bit f�1; 1g, where k is the code length in the
binary embedding. Therefore the learnt binary codes for X

are denoted as B ¼ fbigNi¼1 2 f�1; 1gk�N , with each column
bi representing the k-bits binary codes for xi.

For learning based hashing methods, the hash functions
are learnt from dataX with additional supervisory informa-
tion. For instance, suppose the supervisory information
appears as semantic labels, that is, each training sample xi

is associated with a label yi 2 f1; 2; . . . ; Lg. If we treat the
learnt binary codes bi as a feature for classification, and
enforce that the learnt binary codes should be optimal for
classification tasks in the binary embedding as in [24], then
a joint optimization framework for binary codes classifica-
tion and hash function learning can be derived as follows:
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arg min
F;W;B

Xn

i¼1
‘fyi; fðbi;W Þg þ � Wk k2F

s:t: bi ¼ sgnðF ðxiÞÞ; i ¼ 1; . . . ; n;

(1)

where W 2 RL�k is the model parameter for a linear multi-
class classifier, ‘ is the loss function for classification, � is

the regularization parameter to prevent overfitting and �k k2F
denotes the squared Frobenius norm. F ðxÞ ¼ PTX, and
HðxÞ ¼ sgnðF ðxÞÞ is the set of hash functions that encodes X
to the binary embedding. Typical choices of loss functions
for ‘ include hinge loss, logistic loss and a simple quadratic
loss [24]. To more efficiently optimize problem (1), it can be
reformulated to the following problem by the regularization
methods [34] while keeping the binary constraints of bi as
in [24]

arg min
F;W;B

Xn

i¼1
‘fyi; fðbi;WÞg þ � Wk k2F

þ n
Xn

i¼1
bi � F ðxiÞk k2F s:t: bi 2 f�1; 1gk:

(2)

The last term in (2) is derived from the constraints in (1),
and serves as the quantization loss from the continuous
embedding F ðxiÞ to binary codes bi, n is the regularization
parameter. The problem in Equation (2) is very informative
and easy to optimize using an iterative procedure. Nonethe-
less, only minimizing the classification error might not be
able to generate the optimal hash codes for the image
retrieval task as it does not explicitly take the distribution of
binary codes into consideration for ANN search. It is quite
understandable that the code which is good enough for lin-
ear classification might not work well with nearest neighbor
classifier. Therefore, extensions should be made to better
leverage the label information for optimized retrieval per-
formance. To this end, we explicitly take the distribution of
binary codes into consideration by enforcing a class proto-
type consistent constraint to the learnt binary codes. We
refer to this method as code consistent hashing and will
elaborate it in the next section.

Now we have briefly reviewed a learning based hashing
method called SDH which exploits the label information
directly in its formulation. In the next part, we will review
some basic knowledge of a special kind of binary codes
called Hadamard code, which plays an important role in
constructing our proposed algorithm.

2.2 Hadamard Code

We aim to learn binary codes that can leverage both the
label information and the information-theoretic criterion
to benefit the retrieval task. Information theory is well
exploited in many machine learning tasks and information-
theoretic criterions like the maximum correntropy crite-
rion [35], [36], [37] have achieved great success in various
applications [38]. Previous observations have shown that
binary codes with balanced and uncorrelated bits (which
favor a large information entropy) are desired for image
retrieval tasks [9]. Various algorithms [22], [33] exploit this
observation to formulate the learning of hash function as a
constrained optimization problem, i.e., learn binary codes
subject to B1 ¼ 0 and BBT ¼ NIk, where 1 ¼ f1; 1; . . . ; 1gT 2

RN and 0 ¼ f0; 0; . . . ; 0gT 2 RN . The constraint B1 ¼ 0 is
imposed to maximize the information entropy of each bit,
leading to balanced partitioning of the data. Another con-

straint BBT ¼ NIk forces k bits to be mutually uncorrelated
with each other in order to minimize redundancy among
them. However, these constraints are imposed on all the
samples (which is often very large) in the training set, mak-
ing the objective hard to optimize. In this work, we explore
another way to satisfy these information-theoretic favored
constraints by enforcing the binary codes to be as close as
possible to their predefined class prototypes in the binary
embedding that satisfy such strict constraints. The class pro-
totypes can be understood as class centers in the binary
embedding. We shall address the details of this idea in the
next section. Here, we only give a brief introduction of the
Hadamard code that serves as the class prototypes in our
proposed framework.

The research of the Hadamard code that originates deca-
des ago [32] is a verywell-established one in the field ofmath-
ematics and has various variants. Here we only consider a
specific kind of Hadamard code that has been used as error
correcting codes in themulti-class classification problem [39].
As a matter of fact, the code has just the desired properties
mentioned above, i.e., balanced and uncorrelated bits.

One can generate a Hadamard code from the Hadamard
matrix. A Hadamard matrix is a squared matrix H 2 fþ1;
�1gm�m that meets HHT ¼ mI. This requires that any two
rows of the matrix are orthogonal (thus uncorrelated) to each
other. The generation of a Hadamard matrix is rather simple
using the Sylvester’s method [40], [41], where a new Hada-
mard matrix is produced from the old one by Kronecker
product. For instance, given a Hadamard matrix H2 ¼ ½þþ;
þ��, we can produceH4 byH4 ¼ H2 �H2 as below, where�
denotes the Kronecker product. Similarly,H8 is computed by
H8 ¼ H4 �H2

H4 ¼ þ þ
þ �

� �
� þ þ
þ �

� �
¼

þ þ þ þ
þ � þ �
þ þ � �
þ � � þ

0
BB@

1
CCA: (3)

However, it’s easy to see that the size of Hadamard
matrix generated with this method is a power of 2, and the
first row and column is always 1 for all sizes of Hadamard
matrix. Excluding the first row and first column from a
Hadamard matrix H 2 fþ1;�1gm�m, the Hadamard code is
constructed from the Hadamard matrix as HC 2 fþ1;
�1gðm�1Þ�ðm�1Þ. It is easy to see the size of Hadamard code is
limited to a power of 2 minus 1 (e.g., 15, 31, 63, ...). As inher-
ited from the Hadamard matrix, the orthogonal property
still holds for the Hadamard code. With a closer examina-
tion, we can see that the Hadamard code have several other
properties. First, each row and column of a Hadamard code
has m=2 symbols that equals to one; Second, the distance
between any two rows (or columns) is m=2. The first prop-
erty means that each bit code is balanced, while the second
property ensures that when the Hadamard code is used
as the predefined class prototypes (i.e., class centers ), the
distance between any two class prototypes is very large
with a constant value of m=2. It’s worth mentioning that
the second property also make it very popular as an error
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correcting code [39], because it is robust to small errors that
may occur in some bits.

3 CODE CONSISTENT HASHING

As mentioned in Section 2.1, we aim to leverage both the
label information and the information-theoretic criterion to
learn binary codes in Hamming space. The learnt codes
should be optimal for retrieval tasks using nearest neighbor
search with the Hamming distance. To achieve this, one
intuitive idea is to yield LDA like codes in the binary
embedding, i.e., codes from the same class lie close to each
other, whereas codes from different classes separate from
each other with a large margin. To this end, we propose to
enforce the codes lie close to their respective class centers
(termed as class prototypes in this work). Those class proto-
types are not learnt (so that we do not have to deal with the
NP-hard optimization problem with no guaranteed best
solution) but are rather predefined with the Hadamard
code whose codes are both balanced and uncorrelated.

3.1 Code Consistent Constraint

We formulate the aforementioned idea into the following
constrained optimization problem with a code consistent
term:

arg min
B;P;M

CY �MTB
�� ��2

F

s:t: MTM ¼MMT ¼ Ik; B ¼ sgnðPT ðXÞÞ;
(4)

where B 2 f�1; 1gk�N is the binary codes with each column

representing one sample. PT 2 Rk�h is the projection matrix

that transform featuresX 2 Rd�N in the original space to the

binary embedding with a sgn function. C 2 f�1; 1gk�L is
composed of the predefined class prototypes corresponding

to each class, and here Y 2 f0; 1gL�N is a matrix representing
the label ground-truth, with each column yi denoting the cor-
rect label for that sample. yi is a one-hot vector and the posi-

tion of 1 in each column yi ¼ ½0 � � � 1 � � � 0�T indicates that the

correct class label, e.g., the one-hot vector yi ¼ ½1; 0; 0; 0; 0; 0�T
denotes the ith sample belongs to the first class in a classifica-
tion problem with six classes involved in total. Thus, CY is a
k�N matrix, with each column representing the class proto-
types of the corresponding samples inB. The code consistent

term kCY �MTBk2F measures the empirical error of the gen-

erated codes B, i.e., the total deviations of MTB from their
respective class centers CY . To add another degree of free-

dom, we introduce a transformation matrixM 2 Rk�k in this
term and here we enforce the transformation matrixM to be
an orthogonal matrix, i.e., a rotation matrix, so that the dis-
tances between each class can be preserved during the trans-
formation. For a better understanding of this term, we can

rewrite the term kCY �MTBk2F as kMTCY �Bk2F , since

kUk2F ¼ TrðUTUÞ ¼ TrðUTIUÞ ¼ TrðUTMMTUÞ ¼ kMTUk2F .
Therefore, this term trys to close the gap between the
learnt binary codes B and a rotational form of their class
prototypes. What is more, as specified in Section 3.2, the
introduction of this rotation matrixM will drastically reduce
the computational cost to minimize the overall objective
function.

Algorithm 1. Code Consistent Hashing (CCH)

Input: Data matrix X 2 Rd�N , the corresponding label matrix

Y 2 f0; 1gL�N , class prototypes C 2 f�1; 1gm�L, the kernel
width s, the regularization parameter a and number of iter-
ations IterNum.

Output: Hash functions in matrix form PT 2 Rk�h the learnt

binary codes B 2 f�1; 1gk�N .
1: Initialization: Normalize all data points: xi  xi=kxik, cal-

culate the kernel features with fðxÞ ¼ ½expð x� x1k k2=sÞ;
. . . ; expð x� xhk k2=sÞ�, initialize B with randomly gener-

ated binary codes matrix B 2 f�1; 1gk�N and set iteration
to 0;

2: while iteration < IterNum do
3: P-Step:
4: P ¼ ðfðXÞfðXÞT Þ�1fðXÞBT ,
5: M-Step:
6: USV T ¼ SVDðCYBT Þ ; M ¼ VUT ,
7: B-Step:
8: B ¼ sgnðQÞ; where Q ¼MCY þ aPTfðXÞ,
9: iteration ¼ iterationþ 1
10: end while
11: B ¼ sgnðPTfðXÞÞ

With regards to the separability of inter-class samples,
we specifically make the class prototypes to be the Hada-
mard code to enforce a large margin between different
classes. Next, we will describe the process for generating
the class prototype matrix C. As introduced in Section 2.2,
using the Hadamard code as the class prototypes naturally
separate all classes with a uniform distance of m=2, which
is very promising for separating different classes with a
large margin. Besides, as we mentioned earlier in Section
2.2, the property of having balanced and uncorrelated bits
is another reason that makes the Hadamard code an ideal
choice for class prototypes. However, in practical applica-
tions, the number of classes L seldom meets the number of

the code length m of HC (m ¼ 2k � 1; k ¼ 2; 3 . . .). Most of
the time, we need to choose L codewords (columns) from

HC 2 fþ1;�1gm�m to form a class prototype matrix C 2
fþ1;�1gk�L. However, the resultant matrix C violates the
property of having balanced and uncorrelated bits
described before. To compensate for this, we employ a
greedy search method as in [41] to select k codewords
from HC to form C so as to best approximate the balanced
bits property. Due to a small search space determined by
the number of classes and the code length, this strategy
works quite well to achieve class prototype matrix with
balanced bits. And in practice, we find that the chosen
codes also favor the small correlation property. In general,
we can learn hash functions P with any suitable embed-
ding learning algorithm, linear or nonlinear. Here, for bet-
ter generalization performance, we learn our hash
functions in a kernel embedding. Specifically, we use the
simple yet powerful nonlinear form fðxÞ generated with

an RBF kernel mapping process: fðxÞ ¼ ½expð x� x1k k2=sÞ;
. . . ; expð x� xhk k2=sÞ�, where fxighi¼1 are h chosen anchor
points from the training samples and s is the kernel width.
Thus, the learned hash functions P will project the mapped

data fðXÞ onto the binary embedding with sgnðPTfðXÞÞ.
Similar formulations are widely used as the kernel hash
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function in, e.g., KSH [17]. Typically, the anchor points can
be chosen as the clustering centers with k-means or ran-
domly sampled data points. In this work, we adopt ran-
domly chosen samples as anchor points for simplicity.

3.2 Optimization

The constraint optimization problem with both continuous
and discrete variables in Equation (4) is NP-hard and very
difficult to optimize. Similar to [24], using the regulariza-
tion methods proposed in [34], we keep the binary con-
straints of bi in the optimization and rewrite (4) as the
following problem:

arg min
P;M;B

CY �MTB
�� ��2

F
þ a B� PTfðXÞ�� ��2

F

s:t: B 2 f�1; 1gk�N; MTM ¼MMT ¼ Ik:
(5)

The joint learning problem in Equation (5) is still non-
convex and difficult to solve. Directly optimizing all the
variables at the same time is not tractable. Therefore, we
employ an iterative optimization procedure, where we min-
imize the problem with respect to one variable while fixing
others at each step and iterate over all the steps. The
detailed optimization process is addressed as follows.

We first compute the features in the kernel space, and ini-
tialize B with random binary codes. Our algorithm iterates
over the following three steps to minimize the objective
function in Equation (5).

P-Step. We first fix all the variables except P , the degen-
erated problem is a unconstrained regression problem,
which can be easily computed as:

P ¼ ðfðXÞfðXÞT Þ�1fðXÞBT : (6)

M-Step. By fixing all the variables except M, this prob-
lem degenerates to a regularized least squares problem
with a closed-form solution, same as the problem in ITQ [9]:

USV T ¼ SVDðCYBT Þ ; M ¼ VUT : (7)

B-Step. In this step, we try to optimize B with all other
variables fixed. The optimization problem in this step takes
the following form:

argmin
B

CY �MTB
�� ��2

F
þ a B� PTfðXÞ�� ��2

F

s:t: B 2 f�1; 1gk�N:
(8)

By expanding the Frobenius norm in (8) and removing the
constants, problem (8) is equivalent to:

argmin
B

MTB
�� ��2

F
� 2TrðBTQÞ

s:t: B 2 f�1; 1gk�N:
(9)

Where Q ¼MCY þ aPTfðXÞ and Trð�Þ represents the trace
of a matrix. By expanding problem (9) we can derive an
equivalent problem as follows:

argmin
B
�TrðBTQÞ

s:t: B 2 f�1; 1gk�N:
(10)

Due to the orthogonal property of the learned M

(MMT ¼ Ik) from the last step,

MTB
�� ��2

F
¼ TrðBTMMTBÞ ¼ TrðBTBÞ ¼ const (11)

and it’s easy to see that the optimal solution to problem(10)
would be

B ¼ sgnðQÞ: (12)

Unlike the SDH which iteratively learns B bit by bit with
the discrete cyclic coordinate descent method and needs to
iterate over all the bits for two to five times till the proce-
dure converges. Our proposed method updates B as a
whole with a simple thresholding operation and it only
needs to be carried out once at each B-Step. Compared with
SDH, the computation cost is greatly reduced in this step.

It is noted that the most time-consuming calculation in
the whole procedure is the matrix inversion in the M;P
step. However, it is obvious that the dimensionality of the
matrix, whose inverse needs to be calculated, is not decided
by the number of training samples. Thus, the number of
training samples will not pose any difficulty to the optimi-
zation of our proposed method. Therefore, we argue that
our proposed method is very efficient and can be scaled to
large training set with even millions of training samples.

4 EXPERIMENTS AND RESULTS

The proposed approach is evaluated on several benchmark
datasets. We present quantitative evaluations in terms of
several retrieval metrics and compare our approach Code
Consistent Hashing with many popular unsupervised
methods: Iterative Quantization (PCA-ITQ) [9], Hashing
with Graphs (AGH) [10], Inductive Hashing on Manifolds
(IMH) [11] with t-SNE [42] and state-of-the-art supervised
methods: FastHash [43], Supervised Discrete Hashing [24],
CCA-ITQ [9], Binary Reconstructive Embedding (BRE) [19],
Semi-supervised Hashing [14], Supervised Hashing with
Kernels (KSH) [17]. For all the compared methods, we used
the parameter settings reported in their works for fair com-
parison. And for the proposed approach, we empirically set
a to 1e-4 and the number of anchor points to 1,000 for evalu-
ation efficiency. In practice, our framework converges in
about 3�5 iterations.

In the following sections, we first detail our evaluation
protocols concerning both retrieval and classification tasks.
And in the subsequent section, brief descriptions of the
benchmark datasets are presented, followed by extensive
comparative experimental results and detailed analysis on
each dataset.

4.1 Evaluation Protocols

Our proposed approach is evaluated to validate its effec-
tiveness and efficiency on both retrieval and classification
tasks. For retrieval tasks, two commonly [14] used criteria
for evaluating hashing methods are adopted:

1. Hamming ranking: All the points in the database are
ranked according to their Hamming distance from the
query and the desired neighbors are returned from the top
of the ranked list. Although the complexity of Hamming
ranking is linear, it is still very fast in practice due to the
simplicity in calculating the Hamming distance.

2. Hash lookup: A lookup table is constructed using the
database codes, and all the points in the buckets within a
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small Hamming radius r of the query are returned. The
complexity of the hash lookups is constant time.

As pointed out by [14], evaluations based on Hamming
ranking and hash lookup focus on different characteristics
of hashing techniques. In general, hash lookup empha-
sizes more on the practical search speed and works well
with small number of hash bits. However, when the num-
ber of bits is large, the Hamming space becomes increas-
ingly sparse; and very few samples fall within the
Hamming radius r (r ¼ 2 in our experiments), resulting
in many failed queries. This phenomenon can be clearly
seen in our experimental results. In this situation, Ham-
ming ranking provides better quality measurement of the
Hamming embedding. Therefore, for comprehensive eval-
uations, we adopt both criteria in our experiments. All the
experiments were conducted with relatively compact
codes (from 8 to 36 bits). Since we focus on searching
semantically similar points, the search results are evalu-
ated based on whether the returned images and the query
sample share the same semantic labels for all the com-
pared methods, supervised or unsupervised. Specifically,
we use three metrics, i.e., precision with regards to top K
returned points (K ¼ 500), mean average precision and
precision @ radius r with r ¼ 2 to measure the quantita-
tive performance of different methods. The setting of K
and r are based on standard protocols widely used in pre-
vious literature. Moreover, the first two metrics are Ham-
ming ranking based evaluations, whereas the last one is
based on the hash lookup criterion. In addition to these
quantitative measurements, we also plot the precision-
recall curve for an overall evaluation of the system
performance.

To evaluate the proposed approach on the classification
tasks, the classification accuracy is adopted as the evalua-
tion metric. Specifically, we apply linear SVM (the LIBLIN-
EAR toolbox [44] is used) for classification using the
obtained codes with different hashing algorithms. The clas-
sification results using binary codes are also compared with
the results using the original features for better understand-
ing of the supervised hashing methods.

4.2 Data Sets and Results

In our experiments, three image datasets are used, i.e.,
CIFAR-10,1 MNIST2 and NUS-WIDE,3 with the number
of samples ranging from thousands to hundreds of thou-
sands. Since our approach aims at improving searching
performance for semantic neighbors, all the datasets we
use are fully annotated. The neighbor ground-truth for
searching evaluation is defined by the correct label infor-
mation from the datasets. In addition, the feature vector
used in our approach is normalized to have unit norm
before computing the kernelized features as described in
Section 3.1. And with regards to all the other compared
methods, the recommended normalization is also accord-
ingly implemented. In the following part, we provide
detailed descriptions of the datasets and extensive evalu-
ations on those datasets.

4.2.1 Results on CIFAR-10 Data Set

The CIFAR-10 dataset is a labeled subset of the 80-million
tiny images collection [5]. It consists of a total of 60K 32� 32
color images which are manually categorized into 10 clas-
ses, each of which has 6,000 samples. We represent each
image with a 512 dimension GIST [45] vector feature in our
experiment. Each sample in this dataset is associated with a
mutually exclusive class label. A few example images from
CIFAR10 dataset are shown in Fig. 1. The entire dataset is
partitioned into two parts: a training set with 59,000 sam-
ples (5,900 samples each class) and a test set with 1,000 sam-
ples (100 samples each class). The training set is used for
learning hash functions and constructing the hash lookup
tables. For SSH, BRE, we additionally sample 5,000 random
points from the training set for similarity matrix construc-
tion based on the image labels. Since methods like BRE,
MLH can not scale well when the number of training sam-
ples is very large, we mainly conduct our experiments with
5,000 training samples (500 samples each class and 3,000
labeled samples for constructing similarity matrix in BRE
and SSH) for fair comparisons and evaluation efficiency.
Experiments with 59K training samples are also evaluated
and reported in Table 1 for a comprehensive comparison.

Firstly, we conduct experiments using 32-bit codes with
varied training samples and anchor points and report the
result in Table 1. It is clear that CCH outperforms all the
compared methods on both precision @ radius 2 and mAP
whether the number of training samples is 59K or 5K. Same
as CCH, SDH and KSH all learn hash functions in the kernel
embedding, but they all achieves inferior results with more
training time than CCH. Thanks to the introduction of the
orthogonal matrix M in the objective function, CCH runs
approximately five times faster than SDH. It is worth
noting that the retrieval performance consistently boost
with more anchor points, however, the computational cost
also increase accordingly. Therefore, for evaluation effi-
ciency, we report results with 5,000 training samples and
1,000 anchor points in the following part. Fig. 2 shows some
performance curves illustrating three quantitative results
with regards to different number of bits. We only compare
our CCH with supervised or semi-supervised methods (i.e.,

Fig. 1. Sample images of the CIFAR-10 dataset. Each row corresponds
to images belonging to a certain class. From top to bottom, the image
classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck..

1. http://www.cs.toronto.edu/ kriz/cifar.html
2. http://yann.lecun.com/exdb/mnist/
3. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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BRE, CCA-ITQ, FSH, KSH, SDH, SSH) in this experiment.
Three kernel based methods (CCH, KSH, SDH) achieve com-
parable results on all three metrics. But our proposed CCH
outperforms all the competing methods on all the metrics,
even with a large margin when the code length is short (e.g.,
8, 12 and 16 bits). Since CCH and SDH adopt the same kind
of optimization framework, it is safe to say that the superior
performance is due to the incorporation of the code consis-
tent term in our proposed framework. The reason that CCH
performs very well with shorter bits is possibly that the gen-
erated class prototypes using a greedy search method have
better information-theoretic favored property when the code
length is short. However, when the code length is big, and
the number of classes is small, we need to select a very
skinny matrix from the Hadamard matrix as the class proto-
types, thus the balanced and uncorrelated property is more
easily violated, leading to suboptimal results.

The evaluation of precision @ radius 2 shown in Fig. 2c is
a measure of the hash lookup performance, most compared
methods (e.g., KSH, CCA-ITQ and FSH) suffer from signifi-
cant drops with the increasing of used bits. This is because,
as stated in Section 4.1, the number of points falling in a
bucket decrease exponentially when longer codes are
used, leading to many failed queries by not returning any

neighbor even in a Hamming ball of radius 2. Thus,
although hash lookup tables have faster searching speed
than Hamming ranking, they can’t provide sound results
when longer bits are used. To evaluate the overall perfor-
mance of different kinds of hashing methods, we also plot
the precision-recall curves for different methods with 8, 16,
24 and 32 bits on Fig. 3. For precision-recall curves on 8 and
16 bits, it is quite obvious that CCH outperforms its compet-
ing methods with a large margin, whereas when using lon-
ger bits like 24 and 32, three kernel based methods achieve
comparable results. But compared with methods that learn
hash functions in the original feature space (e.g., CCA-ITQ,
SSH and FSH), those three methods achieve far better per-
formance, validating the effectiveness of learning hash func-
tion in the kernel embedding.

To further evaluate the learnt binary codes, we conduct
classification experiments. Several state-of-the-art super-
vised hashing methods are adopted to generate the binary
codes. We report classification accuracy with code length 8,
16, 32 and 64 in Table 2. The proposed CCH performs best
among all the compared methods with all code length
except 32, even better than SDH which explicitly incorpo-
rates a classification error term in their objective function.
And it is interesting to find out that both CCH and SDH

TABLE 1
Results in Precision @ Radius 2, mAP and Training

Time on CIFAR-10

Method # training # anchor Precision mAP Training time

5,000 300 0.4401 0.3732 0.19
CCH 5,000 1,000 0.4804 0.4925 1.08

5,000 3,000 0.4937 0.6091 7.20
59,000 1,000 0.5103 0.4464 9.39

BRE 5,000 - 0.1907 0.2370 1452.9
KSH 5,000 1,000 0.3135 0.4280 2140.6
CCA-ITQ 59,000 - 0.4287 0.3291 6.19
FastHash 59,000 - 0.2621 0.3409 1485.7
SDH 59,000 1,000 0.5078 0.4283 45.07
SSH 59,000 - 0.1924 0.1785 45.20

AGH 59,000 1,000 0.2757 0.1525 6.78
IMH 59,000 1,000 0.2155 0.1679 44.56
PCA-ITQ 59,000 - 0.2425 0.1545 3.65

Results with 32 bits are reported. For our method, the number of anchors
varies from 300 to 3,000. The training time is in seconds. The experiments
are conducted on a windows server with an Intel Xeon X5660 @ 2.80 GHz
and 128 G RAM.

Fig. 2. Quantitative evaluation results on CIFAR-10. (a) Precision @ top 500 returned samples using Hamming ranking with regards to different num-
ber of bits. (b) Mean average precision with regards to different number of bits. (c) Precision @ radius 2 with hash lookup with regards to different
number of bits.

Fig. 3. Precision-recall curves with regards to different number of bits on
CIFAR-10. (a) 8 bits. (b) 16 bits. (c) 24 bits. (d) 32 bits.
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encounter a performance saturation at bit length 32, increas-
ing the code length from this point will not yield better per-
formance. The reason for this phenomenon might be that
the redundancy and noise introduced by longer bits is not
helpful to increase the discriminability of the learnt codes
but will instead deteriorate the classification performance.
Despite this interesting phenomenon, the classification
results still further validate the effectiveness of the pro-
posed code consistent term. And it is noted that the binary
codes obtained by CCH and SDH are more discriminative
than the original GIST features, even with a short bit length.
This is expected because the learning process of hash codes
can be seen as a nonlinear dimensionality reduction process
from the original space. Redundancy is removed and dis-
criminative information is incorporated in this process to
get a more discriminative representation.

4.2.2 Results on MNIST Data Set

The MNIST dataset consists of 10 handwritten digits rang-
ing from ’0’ to ’9’, each with 7K 28� 28 grayscale images.
Each image is represented with its pixel values in a 784
dimension vector. Same as CIFAR-10, each sample in this
dataset is also associated with a mutually exclusive class
label. A query set consists of 1,000 samples is sampled uni-
formly from the whole dataset and 5,000 (500 each class)
images are used as training set. For BRE, SSH, we addition-
ally sample 3,000 random points from the training set for
similarity matrix construction based on the image labels.
Because this is a relatively simple dataset, 5,000 training
samples are enough for most of the compared methods to
produce satisfactory results. Thus, we mainly conduct our
experiments with 5,000 training samples (500 samples each

class and 1,000 labeled samples for constructing similarity
matrix in BRE and SSH) for fair comparisons and evaluation
efficiency. We also conduct experiments with 69K training
samples, the training time and quantitative results show the
same trend as we analyzed in the CIFAR-10 dataset, so we
do not report them here.

Fig. 4 shows the quantitative evaluation results on this
dataset. Because this is a relatively easy dataset, CCH, KSH
and SDH give very similar performance on all those metrics.
Although somewhat negligible, CCH still outperforms all its
competitors. The same phenomenon on the precision @
Hamming radius 2 is also observed on Fig. 4c. Fig. 5 gives
the precision-recall curves with regards to 12, 16 and 24 bits
respectively. It is clear that ourCCH outperforms all the com-
peting methods especially when the code length is short.
Classification results in shown in Table 2, it’s not surprising
to see that the binary codes generated by CCH boost the
classification accuracy by a large margin compared to the
original features and perform best among all the compared
hashingmethods.

4.2.3 Results on NUS-WIDE Data Set

The NUS-WIDE dataset [46] is a set of Flickr consumer
images collected by NUS lab. This dataset contains around
270,000 images associated with 81 ground truth concept
tags, with each image assigned to multiple semantic labels.
Although searching with multi-label images is gaining trac-
tion in recent studies [47], it is a relatively more advanced
topic that needs special treatment to acquire a reasonable
performance. And all the compared methods, including our
own, mainly focus on the traditional visual search problem
that aims at searching imageswithmutually exclusive labels.

TABLE 2
Classification Results with Learnt Binary Codes on CIFAR and MNIST

#bits BRE CCA-ITQ CCH FastHash KSH SDH SSH Original Feature

CIFAR 8 22.4 43.7 55.6 42.4 46.4 42.8 18.7 54.3
16 30.3 48.8 58.6 47.4 53.2 57.1 19.3 54.3
32 33.4 52.4 59.0 51.3 56.1 59.3 35.5 54.3
64 36.7 51.8 58.9 51.9 58.5 58.7 39.1 54.3

MNIST 8 9.6 79.1 92.0 84.8 85.5 90.0 39.8 88.5
16 68.2 84.3 93.1 90.7 89.6 92.4 47.5 88.5
32 73.6 86.4 93.3 89.5 92.3 93.6 57.8 88.5
64 79.0 85.7 93.0 89.3 92.3 92.5 72.9 88.5

Fig. 4. Quantitative evaluation results on MNIST. (a) Precision @ top 500 returned samples using Hamming ranking with regards to different num-
ber of bits. (b) Mean average precision with regards to different number of bits. (c) Precision @ radius 2 with hash lookup with regards to different
number of bits.
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Therefore, we select a subset that belongs to the 21 largest
classes with each image exclusively belonging to one of the
21 classes, which results in a subset with 72,219 images. It is
noted that the class labels do not have a uniform distribu-
tion, i.e., different classes have different number of images.
The images in the dataset are represented with a Bag-of-
Visual-Word model with local SIFT [48] features. Particu-
larly, a visual vocabulary with 500-length code book and a
soft assignment strategy are used for deriving the image fea-
tures, as described in [45].For each class, 1=10 of the images
are sampled as the query set and the remaining images are
used as the training and gallery set. As the NUS-WIDE data-
set is relatively larger, longer bits might be needed for better
performance, therefore, the performance is evaluated with
different code lengths varying from 8- to 64-bit.

Since this dataset is relatively large, some methods like
BRE and FSH, whose training process take several hours,
do not scale well to this kind of magnitude of data. And pre-
vious experimental results have shown that the perfor-
mance of SDH is a representative one among all the
compared methods. Therefore, for evaluation efficiency, we
only compare CCH with SDH and the very efficient CCA-
ITQ. Performances of some efficient unsupervised methods
(PCA-ITQ, IMH) are also reported to yield a comprehensive
comparison. Like we did on CIFAR-10 and MNIST, three
quantitative metrics and the precision-recall curves are pre-
sented to evaluate the performance. Fig. 6 gives the quanti-
tative evaluation results with regards to different number of
bits. Our proposed CCH achieves the best performance in
most cases. And it is surprising to see from Fig. 6c that both
SDH and CCH continue to perform better as the number of

bits increases, while all the other compared methods reveal
significant drops with longer bits. This is possibly because
the classification error term in SDH and the code consistent
term in CCH can both penalize large intra-class variations,
thus the learnt binary codes are more consolidated to their
class centers than other methods. From both Figs. 6 and 7, it
is clear that supervised methods have great advantages
over unsupervised ones when it comes to searching seman-
tically similar neighbors.

Fig. 6. Quantitative evaluation results on NUS-WIDE. (a) Precision @ top 500 returned samples using Hamming ranking with regards to different
number of bits. (b) Mean average precision with regards to different number of bits. (c) Precision@ radius 2 with hash lookup with regards to different
number of bits.

Fig. 7. Precision-recall curves with regards to different number of bits on
NUS-WIDE. (a) 8 bits. (b) 16 bits. (c) 32 bits.(d) 64 bits.

Fig. 5. Precision-recall curves with regards to different number of bits on MNIST. (a) 12 bits. (b) 16 bits. (c) 24 bits.
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5 CONCLUSION

This paper introduces a new code consistent constraint to
leverage label information and Hadamard code in informa-
tion theory, which results in a simple yet efficient hashing
method, named code consistent hashing. Specifically, we
choose the Hadamard code as the class prototypes to implic-
itly leverage the information theory criteria so as to generate
codes with balanced and uncorrelated bits. An efficient opti-
mization process for discrete codes has been developed to
solve the resultant objective function. Experimental results
show that CCH outperforms state-of-the-art hashingmethods
on various types of visual benchmarks, demonstrating its
remarkable effectiveness, scalability, and efficiency for large-
scale retrieval and image classification tasks.
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