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Abstract—A hybrid system with both eye-in-hand and eye-to-
hand configurations is often necessary for autonomous exploring
equipment, such as ROVs. In order to localize objects accurately
and grasp them rapidly, the relationships among the robot base,
the end effector, the fixed cameras, and the cameras mounted
on the end effector should be calibrated in advance. To achieve
these goals, a fast calibration method is proposed in this paper,
which could calibrate the hybrid camera system simultaneously.
Then the feasibility and robustness of the proposed calibration
method are verified by comparing it to the classical two-step
method through simulations with different noise levels.

Index Terms—Hand-eye calibration, Hybrid camera system,
Hand-in-eye, Hand-to-eye, Simultaneous calibration method.

I. INTRODUCTION

When executing complex tasks under unstructured environ-
ments, like space and undersea exploration, mobile robots are
usually equipped with multi sensors as perception sources.

In practice, the visual servo is still the most universal and
robust control method. There are two most adopted camera
configurations, which are, one or more cameras are attached
to the end effector of the robot called eye-in-hand, and the
other cameras are mounted on the base of the robot called
eye-to-hand [1]. The eye-to-hand cameras have a panoramic
view of the workspace, but a lower resolution. On the contrary,
the eye-in-hand cameras can move close to the scene with the
end effector’s motion, thus clearer images of the object can
be obtained while the sight is limited to the close range of the
object. In order to make use of these advantages, several visual
servo methods[2–5] have been studied recently to employ both
eye-in-hand and eye-to-hand camera configurations.

Most visual servoing methods mentioned above are position
based. The cameras are usually mounted on the end effector
or the base of the robot to direct the action of the manipulator.
To achieve accurate manipulation, the position of the object
is first determined and the grasp action is then conducted.
Intuitively, the critical point of accurate and rapid grasps is the
coordination calibration among those cameras and the robot.
Furthermore, it is necessary for the robot to change tools or
cameras frequently to deal with varying task requirements.
Thus an efficient and effective calibration method is urgently
needed to be studied which timely and precisely evaluates the

relationships among the robot end effector, the robot base and
the eye-in-hand/eye-to-hand cameras.

When the camera is mounted on the end effector, the camera
moves with the end effector synchronously. The hand-eye
calibration problem was formulated as to solve a homogeneous
matrix equation of the form AX=XB by Shiu and Ahmad
[6] for the first time. In the equation above, A and B denote
the homogeneous transformation matrices of the end effector
and the eye-in-hand camera motions respectively, and X is
the homogeneous transformation matrix which represents the
relationship between the camera and the end effector. Soon
Tsai proposed a classical two-step method[7]. Two or more
relative spatial movements of the manipulator and camera with
non-parallel screw axes are required to solve X. Since then
many other methods [8–11]have been thoroughly investigated
as well.

If an overall sight is needed, the camera is used to be fixed
somewhere in the workspace of the manipulator. Then the
target of calibration is to find the relationship between the
robot frame and world frame attached to the fixed camera.
This problem can be solved through at least two relative
movements of the manipulator with respect to non-parallel
screw axes as well. Furthermore, the mathematical expression
was formulated as AX=YB [12, 13]. In the equation, A
represents the transformation matrix from the robot base to
the hand, B represents the calibrated exterior parameter of the
camera to the target mounted on the robot hand, and X and Y
represent the unknown relationships of tool-flange and robot-
world respectively. Solutions to this problem have been also
put forward in [14–16].

Moreover, some intuitive methods which calibrate hand-eye,
robot-world, robot-robot relationships simultaneously have
been developed[17–19]. By employing invariants during cal-
ibration process, probabilistic[18] and iterative[19] methods
are used for solving the unknown transformation relationships
and the results are shown to be satisfied. However, it is noted
that the simultaneous calibration method which is appropriate
for hybrid multi-eye system has not been studied before. With
the prosperous development of service robots[20], industrial
robots[3, 21] and remote-operated vehicles(ROVs)[22, 23], the
hybrid visual servoing system is widely used for its more



accurate and robust control performance. Therefore, a rapid
calibration method for this kind of system is worth being
discussed.

Motivated by [19], we found the model of hybrid multi-eye
system and then present the solution to this problem as well. In
the following, a comparison between the proposed method and
the two-step method is conducted through simulations with
different levels of noises injected to the calibration data of
cameras.

The reminder of this paper is structured as follows. Sec-
tion II is dedicated to the illustration and formulation of
the calibration problem. A mathematical iterative solution is
then presented in Section III. Section IV demonstrates the
simulation settings and analyzes the results with comparison
to the two-step method. Finally, conclusions are provided in
Section V.

II. PROBLEM DESCRIPTION

We assume two cameras are connected with the last joint
link and fixed somewhere in the workspace of the manipulator
respectively, as shown in Fig.1. Without loss of generality,
two unknown constants are denoted as the homogeneous
transformation matrices from the robot hand to the mounted
camera(X) and from the robot base to the global camera(Y).

The state of the robot hand can be described as a homo-
geneous transformation Ai under the frame of the robot base
in which i means the ith movement. Ai is accessible with
assumption that all kinematic parameters of the manipulator
have been determined through calibration. Meanwhile, the
descriptions of the target frame under eye-in-hand and eye-
to-hand cameras are denoted as homogeneous transformations
Bi and Ci, respectively. Both variant matrices are measurable
through the self calibrations of the cameras.

According to the invariant in the transformation loop, the
relationship among the robot base and hand, eye-in-hand and
eye-to-hand cameras can be expressed as

AXB = YC (1)

with accessible matrices Ai, Bi, Ci and unknowns Xi, Yi to
solve.

If one of the eye-in-hand/eye-to-hand cameras is replaced
with a marker(such as a calibration panel), the problem can be
solved by the classical two-step method. Assume that a marker
is put on the robot hand, the Y can be treated and calculated
as the AX=YB problem mentioned in [14, 16, 18]. Then the
X can be solved with an additional marker in the workspace
of the manipulator according to the AX=XB problem. Each
step needs at least two relative motions of the manipulator
and obtain 3 sets of data, which are (A1,2,3, C1,2,3) for Y and
(A4,5,6, B4,5,6) for X.

In this paper, the proposed simultaneous method simplifies
the data acquisition procedure in the two-step method with
only one additional calibration panel. The entire calibration
needs the manipulator and the calibration panel move just for
once to determine the solution of the AXB=YC equation. Then
2 data sets (A1,2, B1,2, C1,2) are obtained with asynchronously

Fig. 1. The calibration problem can be formulated as AXB=YC, where X
and Y are unknown relationships between the robot hand and eye-in-hand
camera, the robot base and eye-to-hand camera, respectively.

movements of the manipulator and the calibration panel of
which the screw axes are not parallel. The detailed iterative
solution to this equation is described in Section III.

III. AN ITERATIVE SOLUTION TO THE EQUATION
AXB=YC

We expand and rewrite AXB=YC as[
RA tA
0 1

][
RX tX
0 1

][
RB tB
0 1

]
=

[
RY tY
0 1

][
RC tC
0 1

]
.

(2)
Then the translational and rotational equations can be de-

rived from the expanding homogeneous transformation matrix
multiplication as:

RARX RB = RY RC, (3)
RARX tB +RAtX + tA = RY tC + tY, (4)

in which R stands for the 3×3 rotational component of
the homogeneous transformation matrix, and t is the 3×1
translational component.

Specific to the equation AXB=YC, the solution can be
found through transforming it into AX=YB problem. However,
it is required in the classical method that at least one marker is
mounted on the robot hand to calculate Y, which is a tedious
procedure for the calibration of the hybrid-eye system. Thus
we present a linear-approximation iterative method in this
paper to solve RX ,RY by using (RAi, RBi, RCi) according to
Eq.3. In the following, tX , tY can be directly calculated from
Eq.4.

A. Solution to the Unknown Rotational Components
According to [24], an arbitrary rotation matrix R which is

an element of SO(3) is the exponential function of its Lie
algebra [ω]∧ as

R = e[ω]∧ = I+
sin(‖ω‖)
‖ω‖

[ω]∧+
1− cos(‖ω‖)
‖ω‖2 ([ω]∧)2. (5)



In Eq.5, ω = [ω1,ω2,ω3]
T is a vector which contains both

rotational axis and angle, while ‖ω‖ and [ω]∧ give the normal
value and screw matrix of ω respectively.

Then the exponential map can be expanded into a sum of
power series by using Taylor expansion, and it is obtained that:

R = e[ω]∧ = I+
∞

∑
n=1

([ω]∧)
n

n!
. (6)

The higher-order terms can be ignored with an assumption
that R is in the neighborhood of the identity matrix I, thus we
have:

R = e[ω]∧ = I+[ω]∧. (7)

This property can be used in solving RX , RY in our problem
if we put back the rotation matrix into the neighborhood of I
as follows:

RA(RX R−1
X0)RX0RB = (RY R−1

Y 0 )RY 0RC, (8)

in which Ri(i = X ,Y ) are the unknown exact values of the
rotation matrices of X and Y, whereas Ri0(i = X ,Y ) are
corresponding guess values. Obviously, if the guess values are
approximated enough to the true ones, Eq.7 can be substituted
into Eq.8:

RA(I+[∆rX ]
∧)RX0RB = (I+[∆rY ]

∧)RY 0RC, (9)

in which [∆ri]
∧ are the associated Lie algebras of RiR−1

i0 (i =
X ,Y ). Expanding Eq.9 and ignoring second-order infinitesimal
terms, we have:

RA[∆rX ]
∧RX0RB− [∆rY ]

∧RY 0RC = RY 0RC−RARX0RB.
(10)

Due to the property of cross product operation and its
corresponding screw matrix, the following relationship can be
verified:

[ωa]
∧

ωb = ωa×ωb =−ωb×ωa =−[ωb]
∧

ωa. (11)

Then, by using this property we can rearrange and expand
Eq.10 by column and get the following equation:

G∆r = u, (12)

in which

G =

−RA[(RX0RB)1]
∧ [(RY 0RC)1]

∧

−RA[(RX0RB)2]
∧ [(RY 0RC)2]

∧

−RA[(RX0RB)3]
∧ [(RY 0RC)3]

∧


9×6

, (13)

∆r = [ ∆rT
X ∆rT

Y ]T6×1, (14)

u =

 (RY 0RC−RARX0RB)1
(RY 0RC−RARX0RB)2
(RY 0RC−RARX0RB)3


9×1

. (15)

and (−)i(i = 1,2,3) means the ith column vector in the
bracket.

Indeed, once the manipulator moves or the pose of the
calibration panel is changed, an equation in the form of Eq.12
can be obtained for every measurement. Concatenating these
equations together, hence we have:

G̃∆r = ũ (16)

in which

G̃ = [ GT
1 GT

2 · · · GT
n ]T9n×9 (17)

ũ = [ uT
1 uT

2 · · · uT
n ]T9n×1 (18)

and n represents n sets of measurement data.
Associate with the solution of non-homogeneous linear

equations, it is naturally suggested that the least-square method
can be employed to solve ∆r.

∆r = (G̃T G̃)−1G̃T ũ (19)

Extracting ∆ri(i = X ,Y ) with respect to X, Y from ∆r, the
initial guessed rotation matrix can be updated with

R(n+1)
i0 = e[∆ri]

∧
R(n)

i0 (i = X ,Y ). (20)

The iterative procedure runs towards at least a local optimal
solution until a preset threshold is reached. To guarantee a
global optimum, the initial rotation matrices should be good
enough. In fact, the initial guess values are also critical to
ensure the effectiveness of this algorithm according to Eq.8
and Eq.9. Fortunately, the poses of both cameras can be ap-
proximately evaluated considering their mechanical mounting
dimensions.

B. Solution to the Unknown Translational Components

Compared with the rotational components, the solution to
the translational components is effortless. Rearrange Eq.4 and
we have:

Ht = v (21)

in which

H = [ RA −I ]3×6, (22)

t = [ tT
X tT

Y ]T6×1, (23)

v =−tA−RARX tB +RY tC. (24)

As with Eq.16 for solving rotational matrices, we can use
n sets of measured data and stacking them up into

H̃t = ṽ (25)

in which
H̃ = [ HT

1 HT
2 · · · HT

n ]T3n×6, (26)



ṽ = [ vT
1 vT

2 · · · vT
n ]T3n×1. (27)

Therefore, we can solve t by

t = (H̃T H̃)−1H̃T ṽ. (28)

IV. SIMULATIONS

A. Simulation Environment and Results

To verify the effectiveness and robustness of the algorithm
proposed in this paper and compare it with previous methods,
several simulations are performed with the amount and noise
level of the measured data as variables. Without loss of gener-
ality, a UR5 robot which has 6 degrees of freedom(DOFs)
is employed in the simulation environment. The kinematic
parameters of UR5 are referred to [25].

Which is different from [19], the movement of the manipu-
lator alone does not change the measured data of C. And it is
impossible to acquire the unique solution when F is singular
due to the same RC. Hence the data set can be acquired as
following schemes. Once the pose of the calibration panel is
changed, ten sets of measured data are organized into a data
group with the robot hand moves for ten times. Thus the total
amount of the data sets is 10n suppose the calibration panel
moves for n times.

The true and initial values of X and Y are preset for all simu-
lations as shown in the Table.I. Furthermore, composite noises
are added into the measured data of cameras to simulate the re-
al environment approximately which are described in Table.II.
The noises are subject to Gaussian distributions and three
levels are preset. For rotational components, the noises are
injected into the original Euler angles θl j(l = B,C; j = α,β ,γ)
and each of the expectations µl j of the noise distributions is set
as the corresponding true value. Meanwhile, the translational
noises are added to the every component tlk(k = x,y,z) and the
expectations τlk are the true values as well.

The calculation errors can be evaluated through the defini-
tions as follows:

εr = θ(Ri,calR−1
i,true) (29)

and
εt =

∥∥ti,cal− ti,true
∥∥ , (30)

in which εr and εt stands for the rotational and translational
errors respectively. θ(−) is the rotational angle of the matrix it
works on, while (−)i,cal and (−)i,true represent the calculation
results and true values of the rotational matrices Ri and trans-
lational vectors ti with i meaning the unknown transformation
matrices X, Y.

The simulation results are divided into the rotational and
translational errors and shown in Fig.2. In all figures, the solid
red lines represent the results of the proposed method while
the dash blue lines are that of the classical two-step method.

B. Analysis and Discussion

It is clearly shown that most results of both methods keep
stable convergence while the rest oscillate around the neigh-

borhoods of the true values due to the high-level noises. Mean-
while, the calibration accuracy decreases for both methods
with the noises getting strengthened. Definitely, the sensitivity
to the noises of the simultaneous method are lower compared
with the two-step method which shows its superiority on
the robustness and accuracy. Thus the simultaneous method
performs significant improvement in the terms of rotational
and translational errors while some higher translational errors
are temporarily obtained during early calculation.

In most cases for the simultaneous method, errors decreases
sharply with the data sets involved in the calculation increas-
ing. A rapid convergence can be obtained with 50 data sets,
namely only 5 pose changes of the calibration panel are needed
to be made. By contrast, much more measured data sets are
required for the two-step method to gain the same level of
accuracy with considering that two calibration panels have to
be handled sequently which is tedious and time consuming for
the practical operation.

V. CONCLUSION

In this paper, a hybrid calibration problem for eye-in-
hand/eye-to-hand cameras is proposed and formulated as a
matrix equation AXB=YC. Inspired by the former research,
we put forward a linear approximation iterative solution to this
problem, which is shown to be efficient and robust to converge
to the true values of the unknowns X and Y simultaneously
in the simulations. The comparison with the classical two-
step method highlights the overwhelming performance of the
proposed method in the aspects of accuracy, efficiency and
robustness.

In the future work, physical experiments are to be car-
ried out to verify the effectiveness and practicability of the
algorithm for practical use, for example, deep sea or space
exploration. And the pose changes of the calibration panel and
the manipulator will be also studied to enhance the operability.
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