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Abstract—In social marketing practice, it is usually
important to anticipate the long-term impact of the target
application to maintain a long-lasting marketing effect,
whereas a new product or technology should spread as
quickly as possible to establish a competitive advantage.
To find a balance between them, we tackle this challenge
by modelling the problem as an issue of time-discounted
influential sustainability. Given a threshold µ, the goal of
the problem is finding a small subset of nodes as seeds
and deciding the optimal timing to activate each seed that
could maximize the time-discounted number of iterations,
each of which actives more than µ nodes.

We prove that solving the problem is NP-hard and
the objective function is non-negative, non-monotonic, and
non-submodular. Therefore we propose a greedy approach
to approximately solve this problem. Our experimental
results demonstrate that our solution outperforms two
baseline algorithms. In order to provide meaningful advices
for advertisers on selecting proper initial seed users, we
further analyze and compare the performance of four
seeding strategies on three typical types of social networks.

Keywords: social marketing, influence sustainability,
information diffusion, seeding strategy.

I. Introduction
With the rapid development of social networking

tools, and integration of online advertising and big
data analysis, more and more advertisers now prefer
to promote their products or services through the so-
cial marketing channels. Social marketing is a typical
research field of social computing [1], which is strongly
related to human social dynamics. In literature, social
marketing is defined as the design, implementation, and
control of programs calculated to influence the accept-
ability of social ideas, and it involves considerations of
product planning, pricing, communication, distribution,
and marketing research [2], which is a much broader idea
than social advertising and even social communication.
Social marketing has a positive effect on the brand
image, awareness and equity, which can contribute to
a significant improvement in purchasing intention [3].

As a Cyber-Physical-Social system (CPSS) [4], on-
line social media makes it possible for tracking the
spread of advertising information to infer influence dif-
fusion mechanisms, and adjusting advertising strategy to
maximum advertisers’ final revenue. Generally, social
marketing can be broadly modeled in terms of three
components: a social network through which advertising
information is propagated, a set of users that propagate
the information, and a seeding strategy that activates
the process by determining targeted users chosen by
advertisers [5].

Many researchers have made great efforts on de-
termining a maximum-influence seeding strategy and
proposed considerably remarkable methods [5–8]. Given
an influence diffusion model m and an initial seed set
S, the expected final number of active nodes is denoted
by π(S,m). Most previous works mainly focus on
the classical influence maximization problem, which is
defined as finding the optimal set S, |S| = k to maximize
the final influenced size π(S,m). After an initial seed
set S is determined, the whole seeds belonging to S will
be activated at the same time when a marketing process
begins.

However, this classical problem does not cover all the
full range of influence diffusion. Influence diffusion is a
typical dynamic processes, which is related to temporal
contexts. Analysis on message dissemination in social
networks shows that although an extremely hot topic
has a high final attracted size, it is generally quick to
disappear from the public attention as people will soon
lose interest in it [9]. Note that the inherent need of social
marketing activities, such as product promotion, may
expect the long-term impact and awareness of the target
application to maintain a longer marketing effectiveness
in social network. Moreover, a high intensity reflection
may accelerate consumers’ high expectations or negative



effects on new products, and arouse the vigilant of
competitors early.
Therefore, it is important to predict the temporal scale

and think about it both in spatial and temporal aspects,
such as the duration of advertising information diffusion
[9] and the expected time-discounted influence spread
[10]. The former is highlighted as influential sustainabil-
ity. Let πt be the number of active nodes of each iteration
during promotion. Given a threshold µ, the influential
sustainability problem is defined as deciding the optimal
timing to activate each seed in S so as to maximize the
number of iterations that πt > µ . The latter is called
time-discounted influence maximization, which is based
on an assumption that campaigns for a new product
or technology should spread as quickly as possible, as
early access to the market can establish a competitive
advantage, that is, to establish and increase the entry
of industry barriers, to prevent potential competitors to
enter the market, and thus dominate the market.
To a certain extent, these two issues are contradictory.

However, as a practical matter, it is necessary to find
a balance between them. The work in [9] has de-
signed several efficient algorithms to solve the influential
sustainability problem. However, it assumes that the
seeding strategy has been determined, whereas it is a
challenging task for advertisers to determine a proper
seeding strategy. Most advertisers are faced with budget
limitations [11][12], which restrict them to select a finite
number of users as their promotion targets. In addition to
the complexity of social networks and user behaviours,
advertisers usually are lack of ability to predict and
control the diffusion process in social networks. Thus
they are not able to estimate the marketing performance
and further to select the proper seeding strategy.
This paper is targeted at studying advertisers’deci-

sions on seeding strategy in social marketing for the
time-discounted influential sustainability maximization
problem. We present a formal definition of the problem,
and give emphasis on analyzing its properties. To solve
the problem, we introduce a greedy algorithm. Also,
we design experiments in three typical social networks:
Erdős–Rényi random graph [13], Watts-Strogatz small
world graph [14] and Barabási-Albert scale-free graph
[15] to make further investigations of our research using
real-world census data in China. Our research will pro-
vide reliable support for advertisers to determine their
seed users in social marketing.
The remainder of this paper is organized as follows.

In Section II, we describe some preliminaries. Section
III presents the time-discounted influential sustainability

maximization problem. In Section IV, a greedy algorithm
is proposed to solve the problem. Section V conducts
experiments to validate the efficiency of the greedy
algorithm, and also gives detailed analysis of the ex-
perimental results. Section VI concludes.

II. Preliminaries

In this section, we first model a social network as a
directed graph. Next, we introduce two typical influence
diffusion models: the independent cascade (IC) model
and the linear threshold (LT) model. Moreover, we
describe several seeding strategies.

A. Social Network

Generally, a social network is a social structure
of nodes that represents individuals and the relation-
ships between them within a certain domain[16]. There-
fore a social network is modeled as a directed graph
G(V,E,P), where V = v1, v2, ...., vn represents the set
of n nodes, E = e1, e2, ..., em represents the set of m
directed edges, and P : E → (0, 1) is a probability func-
tion which associates an influence probability pi ∈ (0, 1)
with each edge ei ∈ E, i = 1, 2, ...,m. Given a node
vu ∈ V , the degree d(vu) is the number of neighbors of
vu.
The dynamics process of social marketing can be well

represented as an information cascading process, during
which decentralized nodes in a network environment act
on the basis of how their neighbors act at the earlier time
[17]. Therefore, a node’s degree is considered to be an
important factor to measure its influence. Given an edge
ei(vw, vu), vw, vu ∈ V , the corresponding influence
probability pi is the probability that vu is activated by
vw separately after vw is active.

B. Influence Diffusion Models

For the propagation of ideas or innovations through
a social network represented by a directed graph G, we
will refer to each individual node as either being active
(an adopter of the ideas or innovations) or inactive. The
number of total users in the social network is fixed
during the whole promotion period. Before a promotion
starts, we assume that all nodes are inactive at step 0.
The IC model [18] and LT model [19] are two seminal

graph-based influence diffusion models. They are based
on directed graphs, where each node can be activated by
a monotonicity assumption that the active node can not
be deactivated.
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1) Independent Cascade Model: In the IC model,
when a node vw is active at step t, it will try once to
activate each currently inactive neighbor vu through the
edge ei(vw, vu) ; it succeeds with the probability pi de-
fined on the edge. Once vw succeeds, v will be active at
step t+1. Whether or not vw succeeds at step t, it cannot
make any further attempts. If there are multiple newly
active neighbors of an inactive node, their attempts will
be executed successively in an arbitrary order.

2) Linear Threshold Model: In the LT model, there
is an influence threshold ρ(vu) ∈ (0, 1) for each node
vu. An inactive node vu is activated by its activated
neighbors if the sum of influence probability exceeds
its influence threshold. Let τ(vu) = {vw|vw, vu ∈
V, ei(vw, vu) ∈ E} denote the set of parent nodes
of vu. There is a constraint that

∑
τ(vu)

pi ≤ 1. If∑
τ(vu)

pi ≥ ρ(vu) at step t, vu will be active at step
t+ 1.

C. Seeding Strategies
The seeding strategy is of particular importance, since

a proper strategy can help advertisers to deliver the ideas
to a wide range of target users. Generally, based on the
structure information of social networks, there are three
typical seeding strategies for advertisers as follows[6].

1) high-degree seeding: Using well-connected hubs
as initial seeding points implies a high-degree seeding
strategy. Hubs are nodes with the highest degree in a
given graph, which are regarded as the best information
spreader.

2) low-degree seeding: Seeding the fringes refers to a
low-degree seeding strategy. In contrast to hubs, fringes
are nodes with the lowest degree in a given graph. It is
presented that influenceable people, rather than particu-
larly influential individuals, drive cascades of influence
[8]. Actually, for the influential sustainability problem,
seeding fringes outperforms seeding hubs under some
circumstances, e.g. in a highly-connected network, as the
newly active hubs will bring a large number of active
neighbors at a single step.

3) high-betweenness seeding: Seeding bridges is
called the high-betweenness seeding strategy. A bridge
is a node of a graph whose deletion increases its number
of connected components. Seeding bridges may spread
information to different parts of the network and prevent
information from being simply looped through a highly
clustered subnet.

III. Problem Statement
Let Pk = {(vi, ti)|vi ∈ V, ti ∈ [0, T ]}, |Pk| = k be

the seed activation sequence, where (vi, ti) is a pair for a

seed vi which is choosen under a given seeding strategy
ϕ , and ti is the timestamp that the advertiser attempts
to activate vi.
As influence cascade is a probabilistic process, let

θt be a random variable representing the size of active
nodes at the round t as follows. So the size of newly
activated nodes RPk

(t) is indicated as follows.

RPk
(t) = θt − θt−1 (1)

The objective function to be optimized is

ωU (Pk) =
∑
t

E(U(RPk
(t), t)) (2)

We denote by E the expectation in the above equation.
U is the campaigner’s utility function which decreases
monotonically with time and increases monotonically
with the size of newly active nodes. Now we can
formally define our problem.

Definition 1. Given a social network G(V,E,P), a
seeding strategy ϕ, the campaigner’s utility function
U , a positive integer k, the goal of time-discounted
influential sustainability problem is to find the optimal
seed activation sequence P ∗

k of k nodes such that the
campaigner’s expected utility is maximized. Formally,

P ∗
k = argmax

Pk

ωU (Pk) (3)

According to [9], the increase of newly activated
nodes should exceed a threshold µ so as to maintain an
acceptable degree of influence. Therefore, in this paper,
U is defined as the unit step function multiplied by a
time-discounted function, which is shown as follows.

Uµ(RPk
(t), t) = H(RPk

(t)− µ) ∗ γt (4)

where γ is the time-discounted factor γ ∈ (0, 1), and the
unit step function H(x) is defined as

H(x) =

{
1, x ≥ 0

0, x < 0
(5)

Lemma 1. Given a sequence of seed activation P ,
computing its influence spread RP (·) is NP-hard.

Proof. Please refer to [9].

Lemma 2. The objective function ωU (P ) is not mono-
tone.

Proof. Consider the case shown in the Fig. 1. Assumed
all influence probabilities are set to 1. Let P1 =
{(v1, 0)}, P2 = {(v1, 0), (v2, 0)}. We have P1 ⊂ P2,
RP1(0) = 1,RP1(1) = 3,RP1(2) = 2,RP1(3) =
1,RP1(4) = 3, RP2(0) = 2,RP2(1) = 4,RP2(2) = 4.
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If µ = 1, then ωU (P1) = 1 + γ + γ2 + γ3 + γ4, and
ωU (P2) = 1+γ+γ2, so that ωU (P2) < ωU (P1). If µ =
2, then ωU (P1) = γ+γ2+γ4, and ωU (P2) = 1+γ+γ2,
so that ωU (P2) > ωU (P1).

Fig. 1. An example for Lemma 2 and Lemma 3

If Ω is a finite set, a sub-modular function satisfies
the following equivalent definition: For every X,Y ⊆
Ω with X ⊆ Y and every x ∈ Ω \ Y ,we have that
f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

Lemma 3. The objective function ωU (P ) is not sub-
modular.

Proof. Consider the case shown in the figure 1. Let P3 =
P1 ∪ (v3, 0) and P4 = P2 ∪ (v3, 0). We have RP3(0) =
2,RP3(1) = 3,RP3(2) = 1,RP3(3) = 1,RP3(4) = 2,
RP4(0) = 3,RP4(1) = 4,RP4(2) = 3.If µ = 3, then
ωU (P1) = γ + γ4,ωU (P2) = γ + γ2,ωU (P3) = γ +
γ4,ωU (P4) = 1 + γ + γ2, so that ωU (P4) − ωU (P2) >
ωU (P3)− ωU (P1).

IV. Algorithms

As the objective function of the time-discounted in-
fluential sustainability problem is non-negative, non-
monotonic, and non-submodular, we consider a greedy
hill-climbing approach to approximately solve this opti-
mization problem.
To implement this greedy algorithm, we need a

method of evaluating the k-dimensional vector∇ωU (P ),
which is defined as follows.

∇ωU (P ) = (ωU (P ∪ vu, tu))vu∈S ∈ Rk (6)

According to the equation 2, it is necessary to calculate
RP (t) firstly, whereas it is a NP-hard problem as shown
in lemma 1. Since it is unclear how to accurately
evaluate RP (t) by an effective method, a good estimate
is conventionally obtained by simulating the random
process of each model many times.

Algorithm 1: A Greedy Algorithm
Input: A graph G, a threshold µ, a discounted

factor γ, an influence diffusion model m,a
seeding strategy π

Output: seed activation sequence P
P = ∅;
while size(P )! = k do

S = π(G, k − size(P ));
t
′
= max(0,max(ti|(vi, ti) ∈ P ));

for vu in S do
t∗u = argmaxtu∈[t′ ,T ] ωU (P ∪ (vu, tu);
bu = maxt∈[t∗u,T ] RP∪(vu,t∗u)

(t);
v∗u = argminvu∈S bu;
P = P ∪ (v∗u, t

∗
u);

return P ;

V. Experiments

In this section, we design experiments to make further
investigation of our models and solutions. The agent-
based propagation model will be validated in three
typical network structures, namely Erdős–Rényi (ER)
random graph, Watts-Strogatz (WS) small world graph
and Barabasi-Albert (BA) scale-free graph.

A. Experimental Settings
First, we build a group of users according to a real-

world census data of Beijing in China in 2000, in which
the overall number of the sampled population is 13297.
Each user is randomly mapped to a real person’s profile,
which contains 74 features including gender, age, career
information, and so on.
Next, we construct 3 sets of randomly generated social

networks.
• 10 ER random graphs
In the case of the ER graphs, there is an adjustable
parameter a representing the probability of connect-
ing between two nodes, which is set in the range
from 0.001 to 0.01 at intervals of 0.001 in our
experiments. Thus, we have 10 different random
graphs.

• 14 WS small world graphs
In the WS graphs, each node is connected to b
nearest neighbours. The parameter b is set to be
an integer in [2, 15] with the interval of 1. So we
have 14 small world graphs.

• 10 BA scale-free graphs
During the construction of the BA graphs, a new
node is attached to c existing nodes. The parameter
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c is also set to be an integer in [1, 10] with the
interval of 1 to build 10 scale-free graphs.

In all these social networks, each node refers to
an agent and each edge refers to a social connection
between agents. Furthermore, each edge is assigned with
a random variable as the influence probability, which
is computed based on the feature similarity of two
connected nodes.
Then, we study four seeding strategies with k = 20,

including those three strategies described in section II-C
and a benchmark random seeding strategy, which selects
random nodes for seeding.
To validate the efficiency of the proposed greedy

algorithm, we implement two benchmark algorithms in
addition to the greedy algorithm. The first algorithm
activates all the seeds synchronously in the step 0,
that is, ti = 0, ∀(vi, ti) ∈ P . The second algorithm
activates seeds in a random order. The former is called
the synchronous algorithm, and the latter is called the
random algorithm. The time-discounted factor γ is set
to 0.95 and the threshold µ is set to 100. Besides, we
implement two influence diffusion models, including the
IC model and LT model.
For a set that including a seeding strategy π, an

influence diffusion model m and an algorithm f , we
implement an experiment in each social networkG. Each
experiment runs 10 simulations.

B. Algorithm Efficiency
Performances of the three algorithms are listed in

Table I. We use BA(LT) to denote the set of experiments
for the LT model and the BA graphs, and so on. Each
column in the table is the expected value of final revenue
under a specific algorithm. Therefore, the value of each
grid is calculated as 1

10

∑
π ωU |G,m,f .

According to the results, the greedy algorithm out-
performs the other two, which validates its efficiency.
Besides, the differences between the greedy algorithm
and the synchronous algorithm are quite small under
several cases, e.g, the ER(IC) case. That is because
when degrees of nodes in a given graph are generally
low, it is an optimal approach to activate all the seeds
synchronously.

C. Comparison between different seeding strategies
Performances of the four seeding strategies scheduled

by the greedy algorithm are listed in Table II. Each
column in the table is the expected value of final revenue
under a specific strategy. Therefore, the value of each
grid is calculated as 1

10

∑
ωU |G,m,π,f=greedy .

TABLE I
Comparison between algorithms

greedy synchronous random
ER(IC) 230.57 229.56 125.29
ER(LT) 62.86 58.8 19.32
WS(IC) 363.87 278.55 16.31
WS(LT) 211.13 190.68 11.31
BA(IC) 185.99 165.96 12.68
BA(LT) 41.91 38.56 0.41

TABLE II
Comparison between seeding strategies

high-
degree

low-
degree

high-
betweenness

random

ER(IC) 61.48 48.71 60.13 60.24
ER(LT) 37.19 8.45 0 17.22
WS(IC) 90.77 92.54 90.79 89.77
WS(LT) 70.64 70.42 1.99 68.07
BA(IC) 47.14 45.35 47.13 46.36
BA(LT) 28.3 0 0 13.60

According to the results, the high-degree seeding strat-
egy outperforms the others in most cases. Even though
the low-degree strategy works best in the WS(IC) case,
the gap in performance between the high-degree strategy
and the low-degree strategy is quite small. Therefore, it
implies that choosing the most influential nodes as the
initial seeds is always recommendable.
For different types of graphs, the differences of de-

grees among nodes are not the same. For the WS graphs,
the differences are small because each node is connected
to a fixed number of nearest neighbours. That’s the
reason why the results of the high-degree strategy and
the low-degree strategy in WS graphs are similar.
When building a BA graph, a new node is attached

to a fixed number c of existing nodes. Let vm be the
m-th node added to a BA graph, n be the final size
of the graph and x be the temporal size of the graph.
The expected degree of vm is

∑n
m

c
x . So an earlier

existed node will have a higher expected degree than
a new one. The greater the parameter c is, the larger the
differences are. When c is small, the results of the low-
degree strategy is quite small as only a relatively small
number of nodes can be active eventually. And When c
is large, the results of the high-degree strategy is quite
small as a large number of nodes are active in the early
few steps. That’s the reason why the final results of the
high-degree strategy and the low-degree strategy in BA
graphs are also similar.
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The high-betweenness strategy does not perform well
under the LT models. Particularly in both the ER(LT)
case and the BA(LT) case, the number of newly activated
nodes of each iteration do not exceed the threshold µ
during the promotion so that the final revenue is zero.

VI. Conclusion and Future Works
In this paper, we present a problem of time-discounted

influential sustainability, which extends the classical
influence maximum problem. We make property analysis
on the problem and propose a greedy algorithm to solve
it. We evaluate the proposed approach on typical social
networks with three types of structures, i.e., Erdős-
Rényi random graph, Watt-Strogatz small world graph,
and Barabási-Albert scale-free graph. Furthermore, we
implement four seeding strategies and compare perfor-
mances among them. Our experiment results show that
choosing the most influential nodes as the initial seeds
is always recommendable.
A greedy hill-climbing approach is proved to be

within an approximation guarantee (1−1/e) of the op-
timal solution for the influence maximum problem
[7]. Note that e is the natural constant. However,
as the objective function of our proposed problem is
non-negative, non-monotonic, and non-submodular, the
greedy approach cannot guarantee the (1−1/e) approx-
imation to the optimal solution. Therefore we plan to
improve the existing greedy algorithm on the base of
existing research of network science.
The SIR model [20] is one seminal non-graph based

approach, which has been mainly developed to model
epidemiological processes. However, due to similar pat-
terns in the spread of epidemics and social contagion
processes, we will adopt the SIR model to study on the
seeding strategies for social marketing.
Besides, considering the limitations of the reported

experiment, we intend to extend it with the real-world
social networking data.
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