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Abstract—Real Time Bidding (RTB) is an emerging business
model and a popular research topic of online advertising markets.
Using cookie-based big-data analysis, RTB advertising platforms
have the ability to precisely identify the features and preferences
of online users, segment them into various kinds of niche markets,
and thus achieve the precision marketing via delivering advertise-
ments to the best-matched users. The segmentation granularity
used by such platforms, typically referred to as the Demand Side
Platforms (DSPs), plays a central role in the effectiveness and
efficiency of the RTB ecosystem. In practice, fine-grained user
segmentations may lead to increased value-per-clicks and bid
prices from advertisers, but at the same time reduced competition
and possibly decreased bid prices in each niche market. This
motivates our research on the optimal segmentation granularity
to solve this dilemma faced by DSPs. Using a RTB market
model with two-stage resales, we analyzed DSPs’ segmentation
strategies taking the revenues of both advertisers and DSPs
into consideration. We also validated our proposed model and
analysis using the computational experiment approach, and
the experimental results indicate that with the increasing of
segmentation granularity, the weighted sum of the DSP and
advertisers’ revenues tends to first rise and then decline in
all weight-value cases, and the optimal granularity is greatly
influenced by the value of weights. Our work highlights the need
for DSPs of moderately using, instead of overusing, the online
big data for maximized revenues.

Keywords: real time bidding, demand side platforms, market
segmentation, two-stage resale model, computational experiment

I. INTRODUCTION

With the rapid development and integration of Internet
economy and big data analysis, Real Time Bidding (RTB) has
emerged to be one of the most popular business model for
online advertising and digital media [2, 4]. Using this RTB
channel, advertisers can easily reach their target audiences via
big-data-driven user profiling, and display their advertisements
directly to the best-matched audiences with lowered costs. As
such, RTB is widely recognized as an effective and efficient
advertising format for online marketing.

The key advantage of RTB advertising is precision mar-
keting, which is realized through the market segmentation
strategies of Demand Side Platforms (DSPs). As a central

part of the RTB ecosystem, DSPs have the potential of
improving the match quality between advertisers and their
target audiences through market segmentation, which can
directly increase the effectiveness of RTB advertising. As such,
market segmentation has been widely considered as the most
important and challenging task for DSPs.

Market segmentation, which is also called user segmenta-
tion, has been widely studied in marketing research, and is
regarded as the most effective way to improve the targeting
accuracy for advertisers [15]. User segmentation aims to divide
the users into multiple distinct groups via clustering methods,
such as k-means and probabilistic-density-based mixture mod-
els [14]. In practice, a simple static feature such as age can
be used to segment users into multiple groups with different
age intervals [7], and such segmentation method is particularly
effective for age-specific products and services [3, 6]. Gener-
ally, users’ online behavior contains implicit signals about their
interests and preferences [17], and thus many behavior-driven
user segmentation approaches were proposed by analyzing the
historical user activity [1]. As the most useful user activity,
search behavior is regarded as an important indicator to reveal
users’ behavior pattern. Based on user queries, a topic-based
user segmentation algorithm was proposed [12], which can
divide the users with similar query terms into the same group.
Moreover, a lot of hidden semantics maybe embedded in
users’ search behavior. As such, researchers have proposed
some latent semantic user segmentation approaches based on
latent Dirichlet allocation [5] or probabilistic latent semantic
approach [16], so as to mine the hidden semantics and maxi-
mize the value of search behavior. Besides the search behavior,
the evaluation behavior is another useful user activity, which
reflects users’ implicit preferences. By studying the semantic
overlapping between the classes of items positively evaluated
by users and the rest of classes, Saia et al. [11] proposed
an interpretable and non-trivial user segmentation approach to
uncover the implicit preferences, which can help advertisers
find their desired target audiences.

As for RTB advertising, the research on market segmenta-
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tion is still far from enough. In RTB practice, such distinguish-
able features as users’ gender, age, interest and purchasing
intention can be extracted as tags through cookie-based big-
data analysis, and used for characterizing online users. Each
tag can divide the users into multiple audience groups. Typ-
ically, different choices and combinations of tags may result
in a different market segmentation granularity, which is a key
parameter to determine both the competition degree among
advertisers and their valuation of ad impressions. On one hand,
fine-grained market segmentation typically leads to increased
advertiser-audience match quality, and in turn increased value-
per-clicks and bid prices from advertisers. On the other hand,
however, fine-grained market segmentation will also decrease
the number of advertisers in each niche market, resulting in
reduced competition and possibly lowered bid prices in each
niche market [8]. As such, there is a critical need for DSPs to
determine the optimal granularity of market segmentation so
as to maximize their revenues and improve the effectiveness
of the RTB ecosystem.

In this paper, we strive to optimize the granularity of market
segmentation using a two-stage resale market model that is
commonly used in RTB practice. We take the revenues of
both DSPs and advertisers into consideration, and propose a
mathematical programming model for optimizing the market
segmentation granularity to maximize the weighted sum of
their revenues. Considering the theoretical intractability of
the proposed model, we utilize the computational experiment
approach to validate our model. The experimental results show
that the market segmentation granularity has great influence on
the weighted-sum revenues of both advertisers and DSPs. With
the increasing refinement of market segmentation granularity,
the total revenue has a tendency of a rise first and followed by
a decline, in all weight-value cases. Furthermore, the optimal
strategies for market segmentation differs in terms of the
values of weights, which represent the allocation of maximized
revenues between the DSP and advertisers.

The remainder of this paper is organized as follows. In
Section II, we introduce the two-stage resale model of RTB
advertising, briefly state our research problem, and propose
our research model on market segmentation and its solution
procedure. In Section III, we design numerical experiments
using the computational experiment approach to validate our
model and analysis. Section IV discusses the managerial
insights of our research findings, and Section V concludes
our research efforts.

II. MODEL OF MARKET SEGMENTATION

A. Two-stage Resale Model

In RTB advertising, each ad request will trigger an auction
session with a two-stage bidding process, in which DSPs serve
as resellers in pursuit of intermediate fees in each auction.

Figure 1 presents the two-stage resale process of an ad
request in a RTB system with n DSPs. Once an ad request
arrives, each DSP will identify the interests and characteristics
of the user behind the ad request, and start the first-stage
auction asking for bids from all eligible matched advertisers

Fig. 1. The two-stage resale process in RTB advertising

registered on it. The winning advertiser on each DSP i,
together with his/her bid bi, cost ci and value-per-click vi,
will enter the second-stage auction, where each DSP i will
submit a bid di according to its winning bid bi. For instance,
if d1 > d2 > · · · > dn, then DSP 1 wins the second-stage
auction and the ad impression with the cost d2. When reselling
this ad impression back to its winning advertiser, the advertiser
needs to pay c1 to DSP 1 and get revenue v1, while DSP 1
needs to pay d2 and get revenue c1−d2 from the ad impression.

B. Problem Statement

In RTB markets, various kinds of tags can be extracted from
cookie data to characterize the target audiences (or users), and
each tag can divide the audiences into multiple groups. Thus,
a hierarchical structure of the users can be constructed by
increasing and refining tags. Figure 2 presents a (M + 1)-
layer structure of the users including M tags, where the ith
tag can divide the users into ti groups. Obviously, the lower
layers contains more tags, resulting in better matching quality
and less users in each niche market.

Fig. 2. The user structure

For DSPs, each layer corresponds to one of their segmenta-
tion strategies, which lead to different marketing effects for
advertisers and different revenues for DSPs. Typically, the
optimal strategy that maximizes the DSP’s revenue differs
from that maximizes advertisers’ revenues. This makes our
strategy optimization fall into the classical principle-agent
problem in information economics. Without loss of generality,
in our research, we will investigate the optimal segmentation
strategy that maximizes the weighted sum of revenue of both
the DSP and its advertisers.

C. Notations

Suppose there are M alternative tags for characterizing the
target audiences, denoted by T = {T1, T2, · · · , TM}, and the
audiences can be segmented to ti groups with tag Ti. Using
these tags, DSP can segment the RTB market with M +1 di-
verse granularities, represented by L = {L1, L2, · · · , LM+1},
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and Li is generated with i−1 tags. There are Πj≤i−1tj niche
markets for Li, where t0 = 1. Generally, each granularity cor-
responds to one of the DSP’s segmentation strategy. As such,
the DSP has totally M + 1 market segmentation strategies.

Suppose there are S ad requests in a given time period,
denoted as Q = {q1, q2, · · · , qS}. The reserve price of each
ad request qj ∈ Q is denoted as ρj . Denote the advertiser set
on the DSP as U = {u1, u2, · · · , uN}, and the corresponding
set of advertisers’ budgets as B = {B1, B2, · · · , BN}.

For simplicity, we can reasonably assume that there is only
one niche market matched with each advertiser, and thus each
ad request falls into only one niche market under a specific
granularity. If we represent the matching probability between
the advertiser uk ∈ U and the ad request qj ∈ Q under
granularity Li as σi(k, j) ∈ {0, 1}, then σi(k, j) = 1 if and
only if ad impression qj falls into the niche market matched
with advertiser uk under granularity Li. For convenience, we
can also characterize the targeting of the advertisers with the
M tags. In this case, if each tag in {T1, T2, · · · , Ti−1} for
advertiser uk and ad request qj takes the same value under
granularity Li, then σi(k, j) = 1. Generally, the matching
probability is used to measure the matching degree of the ad
impression with the advertiser, and only if σi(k, j) = 1, the
advertiser uk will participate in the auction and bid for qj .

Let vi(k, j) be the value function of the advertiser uk ∈
U for ad impression qj under granularity Li. Then we can
assume that the bid of advertiser uk for ad impression qj is
also vi(k, j) according to the equilibrium outcome of Vickrey
auction mechanism [8].

D. Market Segmentation Model

Suppose there are K competing DSPs in the RTB market,
and the winning advertiser in one DSP can obtain the ad
impression only if he/she beats all the winning advertisers on
other DSPs.

Under granularity Li, the advertisers on the DSP bidding
for qj can be given as follows
Ui(j) = {uk ∈ U |σi(k, j) = 1, bi(k, j − 1) ≥ vi(k, j)}, (1)

in which the advertisers who bid the highest and the second
highest can be found by

uk∗(i,j) = argmaxuk∈Ui(j)
vi(k, j),

uk′ (i,j) = argmaxuk∈Ui(j)/uk∗(i,j)
vi(k, j).

(2)

Obviously, uk∗(i,j) wins in the DSP.
Suppose the bid of the DSP for ad request qj is d1(i, j),

and the highest bid of all the other DSPs is d2(i, j). Then we
can use the following indicator function to define whether or
not the DSP wins ad request qj under granularity Li:

I(i, j) =

{
1, if d1(i, j) > d2(i, j)
0, otherwise. (3)

Thus, if I(i, j) = 1, the DSP wins the second-stage auction,
and the winning advertiser on it obtains the ad impression.
According to the RTB auction mechanism, the advertiser with
the highest bid wins the auction and pays the second highest
bid [9]. Thus, advertiser uk∗(i,j) needs to pay

ci(k
∗(i, j), j) = max{vi(k

′
(i, j), j), ρj}I(i, j) (4)

to the DSP, and the DSP needs to pay
c1(i, j) = max{d2(i, j), ρj}I(i, j) (5)

for the ad impression.
Assume the revenue of the advertiser from an ad impression

is equal to his/her value for the impression, then the winning
advertiser uk∗(i,j) obtains revenue vi(k

∗(i, j), j)I(i, j) from
qj , and the remaining budget for advertiser uk after qj is

bi(k, j)=

{
bi(k, j − 1)− ci(k

∗(i, j), j), if k = k∗(i, j)
bi(k, j − 1), otherwise, (6)

where bi(k, 0) = Bk. Besides, the revenue of the DSP from
ad impression qj is ci(k

∗(i, j), j)− c1(i, j).
Denote the revenue of the DSP and all the advertisers from

ad impression qj under the granularity Li as r1(i, j) and
r2(i, j), respectively. Then we have

r1(i, j) = ci(k
∗(i, j), j)− c1(i, j), (7)

r2(i, j) = vi(k
∗(i, j), j)I(i, j). (8)

We assume that DSPs are rational and accept only nonneg-
ative revenues from auctions. It is worth noting that in many
cases, such as d1(i, j) > d2(i, j) > vi(k

′
(i, j), j) > ρj , the

DSP wins with negative revenue vi(k
′
(i, j), j)− d2(i, j) < 0.

In order to eliminate such cases, the DSP’s bid d1(i, j) should
be no larger than vi(k

′
(i, j), j). In our model, we assume

d1(i, j) = vi(k
′
(i, j), j) for simplicity.

As such, under granularity Li, the DSP’s revenue and ad-
vertisers’ total revenue generated from all ad requests qj ∈ Q
can be obtained by

g1(i) =
∑

j∈Q r1(i, j), g2(i) =
∑

j∈Q r2(i, j). (9)
Typically, g1(i) and g2(i) will not reach their maximums

under the same granularity Li. Thus, the DSP has to take
both its own revenue and the advertisers’ total revenue into
consideration through the following formula

g(i) = f(g1(i), g2(i)) = wg1(i) + (1− w)g2(i), (10)
where w ∈ [0, 1] is the weight of the DSP’s revenue in the
objective function.

With the above analysis, we can formulate our market
segmentation model as follows:

max
Li∈L

g(i) = wg1(i) + (1− w)g2(i)

subject to:
Ui(j) = {uk|uk ∈ U, σi(k, j) = 1, bi(k, j) ≥ vi(k, j)}
uk∗(i,j) = argmaxuk∈Ui(j) vi(k, j)

uk
′
i(j)

= argmaxuk∈Ui(j)/uk∗(i,j)
vi(l, j)

I(i, j) =

{
1, if vi(k

′
(i, j), j) > d2(i, j)

0, otherwise
ci(k

∗(i, j), j) = max{vi(k
′

i(j), j), v
′′
(j), ρj}I(i, j)

c1(i, j) = max{d2(i, j), ρj}I(i, j)
r1(i, j) = vi(k

∗(i, j), j)I(i, j)

r2(i, j) = ci(k
∗(i, j), j)− c1(i, j)

g1(i) =
∑

j∈Q r1(i, j)

g2(i) =
∑

j∈Q r2(i, j)

bi(k, j) =

{
bi(k, j − 1)− ci(k

∗(i, j), j), if k = k∗(i, j)
bi(k, j − 1), otherwise

bi(k, 0) = Bk

for i = 1, 2, · · · ,M + 1, j = 1, 2, · · · , S.
(11)
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For any given w, we can determine the optimal granularity
Li∗ and the corresponding optimal revenue g(i∗) through
solving this model (11). Besides, the DSP’s revenue g1(i

∗)
and the advertisers’ revenue g2(i

∗) can also be determined,
respectively.

E. The Solution

As can be seen in our model (11), there are lots of
complex iterative processes for each granularity and each ad
request. Moreover, the iterative processes are highly dependent
between each ad request and its previous one. As such, it is
rather difficult to derive its accurate numerical solution.

Our solution can be depicted as follows. In order to identify
the optimal granularity, we first compute the weighted sum
of the DSP and advertisers’ revenues from each ad request
under each granularity, and then the weighted total revenue
under each granularity by summing up the revenues from
all the ad requests. Finally, by comparing the weighted total
revenues under all possible granularities, we can identify
the optimal revenue and the corresponding granularity. The
detailed process of our solution to model (11) can be described
as follows:

Step 1 : Find the set of advertisers Ui(j) on the DSP bidding
for each ad request qj under each granularity Li

using formula (1).
Step 2 : Find the advertisers uk∗(i,j) and uk′ (i,j) with the

highest and the second highest bids on the DSP for
ad request qj from the advertiser set Ui(j), according
to formula (2).

Step 3 : Check if the DSP wins ad request qj by comparing
its bid d1(i, j) with the highest bid d2(i, j) of all the
other DSPs, according to formula (3).

Step 4 : Compute the cost ci(k
∗(i, j), j) of advertiser

uk∗(i,j) and the cost c1(i, j) of the DSP for ad
request qj according to formula (4) and (5), respec-
tively, and update the remaining budget bi(k, j) of
each advertiser uk according to formula (6).

Step 5 : Compute the revenues of the DSP and the advertis-
ers from ad request qj under granularity Li according
to formula (7) and (8), respectively.

Step 6 : Determine the total revenues g1(i) and g2(i) of the
DSP and the advertisers by summing up the revenues
from all ad requests qj ∈ Q according to formula (9).

Step 7 : Compute the weighted total revenue g(i) for any
given weight w ∈ [0, 1], according to formula (10).

Step 8 : Identify the maximized weighted total revenue
g(i∗) and the corresponding optimal granularity Li∗

according to formula (11).

III. COMPUTATIONAL EXPERIMENTS

Due to the essential model intractability and the lack of
high-quality data in online RTB markets, it is quite difficult
to validate our proposed model with online field experiments.
Fortunately, with the help of computational experiments ap-
proach [13], we can design experiment scenarios to evaluate
our model and analysis. In this section, we will utilize the

computational experiment approach to validate the effect of
market segmentation on the total revenue, and identify the op-
timal segmentation granularity for maximizing the advertisers’
and the DSP’s revenues.

A. Computational Experiment Scenario

We consider a randomly generated experiment scenario that
there are 2 DSPs in the market, and they have the same
winning probability in each auction. By analyzing the big data
of target audiences, 9 tags are extracted to characterize the ad
requests, and each tag can divide these ad requests into 2
groups. Utilizing these tags, 10 strategies can be used for the
DSP to segment the market, with the number of tags as 0 to
9, respectively, as shown in Figure 3. For these strategies,
the numbers of niche markets are 20 = 1, 21 = 2, 22 =
4, · · · , 29 = 512, respectively.

Fig. 3. The 10 strategies for segmenting the market and the corresponding
niche markets

To evaluate these 10 strategies, we construct a computa-
tional experiment with randomly generated parameters of 2
DSPs, 1,000,000 ad requests and 100 advertisers. The ad
requests are randomly distributed in these niche markets, and
the total budgets of the advertisers are uniformly distributed
in [200, 1500]. Figure 4 generates the above data in our
experiment.
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Fig. 4. The total budget of each advertiser, the target niche market of each
advertiser and the total number of ad requests in each niche market under
Strategy-10

Due to the positive correlations between the advertisers’
values of ad impressions and the accuracy of matching [10], it
is reasonable to assume that the CPMs (Cost Per Mille) of the
advertisers increase with the granularity. Suppose the CPMs
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of the advertisers under Strategy-1 is uniformly distributed in
[2.00, 5.00], the lower bound and the upper bound will increase
1.00 and 2.00 each time, respectively, with the increasing of
the granularity. Moreover, the advertiser with a higher CPM
under one strategy is assumed to have a higher CPM under
other strategies.

B. Experimental Results

In this section, we conduct 1000 independent computational
experiments, aiming to obtain general conclusions for the op-
timal strategy under different weights (w = 0, 0.1, 0.2, · · · , 1).

We first study the cases of w = 0 and w = 1. In both
the two cases, the objective function can be simplified into
optimizing the total revenue of the DSP (i.e., w = 1) or the
advertisers (i.e., w = 0). The experimental results are provided
in Figure 5, from which we can obtain the following results:
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Fig. 5. Comparisons of the total revenues and the average total revenues for
the DSP and the advertisers in the 1000 experiments

(1) In all the 1000 experiments, the total revenues of both
the DSP and the advertisers have a tendency of a rise first and
followed by a decline, with the increasing of granularity. The
maximum occurs at Strategy-4 952 times out of 1000 times
(95.2%) for the DSP, and Strategy-7 988 times out of 1000
times (98.8%) for the advertisers.

(2) The average total revenues of both the DSP and the
advertisers also have a tendency of a rise first and followed
by a decline, with the increasing of granularity. The maximum
occurs at Strategy-4 for the DSP, and Strategy-7 for the
advertisers.

Moreover, we study the effects of different weights (w ∈
{0, 0.1, 0.2, · · · , 1}) on the weighted total revenues for these
strategies, and the variations of the weighted total revenues
under different strategies and different weights are given in
Figure 6. Furthermore, by fixing one parameter, we can verify
the effects of different strategies and w on the revenues, and
the results are shown in Figure 7–Figure 8, respectively. The
optimal strategies and the corresponding revenues of the DSP
and the advertisers under different w are given in Table I.
From these results, we can obtain the following conclusions:

(1) For all possible values of w, the weighted total revenues
have a tendency of a rise first and followed by a decline, with
the increasing of granularity.

(2) The optimal granularity may differ with the changes of
the w values. Specifically, the optima occurs at Strategy-4 for
w = 0.8, 0.9, 1, Strategy-5 for w = 0.6, 0.7, Strategy-6 for
w = 0.3, 0.4, 0.5, and Strategy-7 for w = 0, 0.1, 0.2.
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1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

Strategy

T
o
ta

l 
re

v
e
n
u
e

 

 

w=0

w=0.1

w=0.2

w=0.3

w=0.4

w=0.5

w=0.6

w=0.7

w=0.8

w=0.9

w=1

Fig. 7. The effect of segmentation
strategy on the weighted total rev-
enues

1 2 3 4 5
0

200

400

600

800

1000

1200

1400

Strategy

T
o
ta

l 
re

v
e
n
u
e

 

 

w=0

w=0.1

w=0.2

w=0.3

w=0.4

w=0.5

w=0.6

w=0.7

w=0.8

w=0.9

w=1

6 7 8 9 10
0

200

400

600

800

1000

1200

1400

Strategy

T
o
ta

l 
re

v
e
n
u
e

 

 

w=0

w=0.1

w=0.2

w=0.3

w=0.4

w=0.5

w=0.6

w=0.7

w=0.8

w=0.9

w=1

Fig. 8. Comparisons of the effect of w on the weighted total revenues under
different segmentation strategies

TABLE I
THE OPTIMAL STRATEGY AND THE CORRESPONDING REVENUES OF THE

DSP AND THE ADVERTISERS UNDER DIFFERENT w

w Optimal strategy The corresponding revenue
DSP Advertisers

0, 0.1 0.2 Strategy-7 428.17281 1204.848
0.3,0.4,0.5 Strategy-6 813.72377 1084.670

0.6,0.7 Strategy-5 1104.20787 671.925
0.8,0.9,1.0 Strategy-4 1231.93101 278.428

(3) For the DSP, the optimal strategy is to choose the value
of w in {0.8, 0.9, 1.0} in our experiment and set the granularity
as in Strategy-4; for the advertisers, the optimal strategy is to
choose the value of w in {0, 0.1, 0.2} and set the granularity
as in Strategy-7.

(4) For different strategies, the effect of w on the
weighted total revenues may be entirely different. Specially,
for Strategy-1 – Strategy-5, the weighted total revenues are
monotone increasing with w, while monotone decreasing for
Strategy-6 – Strategy-10.

C. Result Analysis

From the experimental results in the above section, we can
obtain the following research findings:

(1) The weighted total revenue will not always increase
with the increasing refinement of granularity. There exists
a threshold, before which the revenues can be improved
by increasingly fine-grained segmentation while decreasing
sharply in case that the granularity exceeds the threshold.
Furthermore, this threshold will be greatly influenced by the
weight values (w), and different choices of the weights will
lead to different thresholds.

(2) Larger w indicates that the DSP pays more attention
to improving its own revenue than the advertisers’ revenues.
Thus, the deduced optimal granularity is more favorable to the
DSP instead of the advertisers, and vice versa.
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IV. MANAGERIAL INSIGHTS

Our research findings can offer useful managerial insights
for DSPs’ decision making in RTB advertising markets. On
one hand, big-data-driven precision marketing is widely con-
sidered as one key advantage of RTB advertising. Intuitively,
one might expect that big data will lead to better revenues
for DSPs. However, our study offers a counterintuitive con-
clusion that, although online big data has the potential of
improving the RTB advertising effectiveness via increased
advertiser-audience match quality, it does not always result
in better revenues. Instead, we prove that there exists an
optimal granularity for RTB market segmentation, beyond
which the revenues will decrease due to reduced competition
among advertisers in RTB auctions. As such, our work can be
considered as a counter-example to the “bigger data is better”
idea in RTB advertising, and also highlights the need for
DSPs of moderately using the online big data for maximized
revenues with optimal “resolutions” in user profiling.

On the other hand, our study offers an actionable solution
framework for DSPs’ market segmentation, especially when
faced with the principal-agent decision-making scenario. In
RTB practice, most DSPs aim at maximizing their own rev-
enues without consideration of advertisers’ revenues. Our work
indicates that the weighted sum of the DSP and advertisers’
revenues can serve as a good optimization objective to de-
rive an effective solution that benefits both the DSPs and
advertisers. By dynamically adjust the weighted allocation
parameter w, DSPs can easily derive the optimal granularity
that corresponds to various combinations of the total revenues.

V. CONCLUSIONS AND FUTURE WORK

Market segmentation is an important task for DSPs, and
plays a critical role in maintaining the effectiveness and
efficiency of RTB advertising. In this paper, we established a
RTB advertising model with two-stage resales, and optimized
the market segmentation granularity so as to maximize the
weighted sum of the DSP and advertisers’ revenues. The
computational experiment approach is used to evaluate our
model and solution. In our future work, we are planning to
extend this paper from the following aspects: (a) Studying the
principal-agent games played by advertisers and the DSPs, and
analyze their bidding behavior and the resulting Nash equi-
librium continuum; (b) Comparing the market segmentation
strategies under all exising profit models adopted by DSPs,
and exploring new profit models for DSPs.

ACKNOWLEDGMENT

This work is partially supported by NSFC (71472174,
71232006, 61533019, 61233001, 71402178) and the Early
Career Development Award of SKLMCCS (Y6S9011F4E).

REFERENCES

[1] J. Bian, A. Dong, X. He, S. Reddy, and Y. Chang, “User
action interpretation for online content optimization”,
IEEE Transactions on Knowledge and Data Engineering,
25(9): 2161–2174, 2013.

[2] R. Cavallo, P. McAfee, and S. Vassilvitskii, “Display
advertising auctions with arbitrage”, ACM Transactions
on Economics and Computation, 3(3): 15, 2015.

[3] S. Faggian, and L. Grosset, “Optimal advertising strategies
with age-structured goodwill”, Mathematical Methods of
Operations Research, 78(2): 259–284, 2013.

[4] J. Feldman, V.S. Mirrokni, S. Muthukrishnan, and et al.,
“Auctions with intermediaries”, Proceedings of the 11th
ACM Conference on Electronic Commerce, 2010, pp. 23–
32.

[5] X. Gong, X. Guo, R. Zhang, X. He, and A. Zhou,
“Search behavior based latent semantic user segmentation
for advertising targeting”, Proceedings of the 13th IEEE
International Conference on Data Mining, 2013, pp. 211–
220.

[6] L. Grosset, and B. Viscolani, “Advertising for the in-
troduction of an age-sensitive product”, Optimal Control
Applications and Methods, 26(3): 157–167, 2005.

[7] J. Mazanee, “Market Segmentation”, in Encyclopedia
Tourism, London: Routledge, 2000.

[8] R. Myerson, “Optimal auction design”, Mathematics of
Operations Research, 6(1): 58–73, 1981.

[9] S. Muthukrishnan, “Ad exchanges: Research issues”, In-
ternet and Network Economics, 1–12, 2009.

[10] M. Mobius, H. Nazerzadeh, G. Lewis, and et al., “Buy-
it-now or take-a-chance: A new pricing mechanism for
online advertising”, Society for Economic Dynamics, pa-
per 443, 2012.

[11] R. Saia, L. Boratto, and S. Carta, “A latent semantic
pattern recognition strategy for an untrivial targeted ad-
vertising”, Proceedings of the 4th International Congress
on Big Data, 2015, pp.491–498.

[12] S. Tu, and C. Lu, “Topic-based user segmentation for
online advertising with latent dirichlet allocation”, Pro-
ceedings of the 6th International Conference on Advanced
Data Mining and Applications, 2010, pp. 259–269.

[13] F.Y. Wang, “Artificial societies, computational experi-
ments, and parallel systems: A discussion on computa-
tional theory of complex social-economic systems”, Com-
plex Systems and Complexity Science, 1(4): 25–35, 2004.

[14] M. Wedel, and W.A. Kamakura, “Market Segmentation:
Conceptual and Methodological Foundations”, Springer
Science & Business Media, 2012.

[15] A. Weinstein, “Handbook of Market Segmentation:
Strategic Targeting for Business and Technology Firms”,
Routledge, 2013.

[16] X. Wu, J. Yan, N. Liu, S. Yan, Y. Chen, and Z.
Chen, “Probabilistic latent semantic user segmentation for
behavioral targeted advertising”, Proceedings of the 3rd
International Workshop on Data Mining and Audience
Intelligence for Advertising, 2009, pp. 10–17.

[17] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z.
Chen, “How much can behavioral targeting help online
advertising?”, Proceedings of the 18th International Con-
ference on World Wide Web, 2009, pp. 261–270.

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016    001196




