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Abstract High-level semantic feature is important to

recognize human action. Recently, relative attributes,

which are used to describe relative relationship, have been

proposed as one of high-level semantic features and have

shown promising performance. However, the training

process is very sensitive to noises and moreover it is not

robust to zero-shot learning. In this paper, to overcome

these drawbacks, we propose a robust learning framework

using relative attributes for human action recognition. We

simultaneously add Sigmoid and Gaussian envelops into

the loss objective. In this way, the influence of outliers will

be greatly reduced in the process of optimization, thus

improving the accuracy. In addition, we adopt Gaussian

Mixture models for better fitting the distribution of actions

in rank score space. Correspondingly, a novel transfer

strategy is proposed to evaluate the parameters of Gaussian

Mixture models for unseen classes. Our method is verified

on three challenging datasets (KTH, UIUC and HOLLY-

WOOD2), and the experimental results demonstrate that

our method achieves better results than previous methods

in both zero-shot classification and traditional recognition

task for human action recognition.

Keywords Relative attributes � Envelop loss �
Zero-shot learning � Human action recognition

1 Introduction

Recognizing human actions from videos is an essential

issue in computer vision and pattern recognition due to its

significant applications in areas such as video surveillance

and retrieval. In this paper, we address the task of human

action recognition in complex scenes such as diverse and

realistic settings [1]. In the previous decades, many meth-

ods were proposed to focus on this problem. Early action

recognition methods emphasized on tracking motion cap-

ture and the analysis of tracks [2]. In terms of action rep-

resentation, a lot of strategies have been proposed by

researchers to make action representation more discrimi-

native such as space-time pattern templates [3, 4], 2D

shape matching [5, 6], optical flow patterns [7], and tra-

jectory-based representation [8], as well as spatio-temporal

interest points [9–11]. Furthermore, methods based on

spatio-temporal interest points together with bag-of-words

model have shown expected performance. Since these

approaches do not rely on some preprocessing techniques

such as background modeling or body-part tracking, they

are relatively robust to viewpoint, noises and background

changing. Meanwhile, they are invariant to size and illu-

mination variation. In addition, some approaches have

attempted to integrate contextual information for capturing

the spatial and temporal relationship among interest points

[12–15]. Savarese et al. [13] used a local histogram called

ST-correlograms to measure feature co-occurrence patterns
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in a local 3-D region. Ryoo and Aggarwal [14] proposed a

so-called ‘‘feature 9 feature 9 relationship’’ histogram to

capture both appearance and relationship information

between pairwise interest points. Kovashka and Grauman

[15] designed a hierarchy of codebooks using neighbor-

hoods of spatio-temporal interest points. Zhang et al. [12]

proposed a novel coding strategy called context-con-

strained linear coding (CLC), which not only considered

spatio-temporal contextual information but also alleviated

quantization error.

The above action models based on the bag-of-words

model directly associate low-level features with class

labels. However, rich visual spatio-temporal information

can be hardly characterized by one single class label. In

order to describe action related properties, it would be

better to define high-level semantic concepts. Recent works

show that attributes can act as high-level semantic concept

which bridge the gap between low-level features and class

labels. It proves that the attributes are useful in many ways.

For instances, they are helpful for recognizing familiar

actions [16, 17] and also a powerful tool for the zero-shot

learning problem [18, 19] (i.e., no training samples are

available). Some works [16, 17, 19–21] treat attributes as

middle-level features for object or video classification.

Lampert et al. [17] proposed the direct attribute prediction

(DAP) model which intended to predict the presence of

each attribute to train object models. Liu et al. [19] treated

the action attributes as latent variables, whose classifiers

are pre-trained by linear SVM with outputs as the inputs of

latent SVM. The above methods train attribute and object

classifiers independently. Hwang et al. [22] believed that

respective supervision on attributes from low-level features

and objects from attributes may restrict the final perfor-

mance. He claimed that the learned action and attribute

classifiers have to share the same low-level features. They

assume prediction attributes and objects are related, and

hence, multi-task learning model [23, 24] can be used to

share the low-level features. In addition, some methods

have been proposed to select attributes automatically.

However, there are some disadvantages for automatically

mining attributes. The method in [25], which mines the

relationships among nouns (objects) from text and image

data, is unsuitable for discovering the semantic relation-

ships of verbs (actions). Liu et al. [19] mine attributes from

action videos using clustering algorithm. Nevertheless,

these data-driven attributes have no explicit semantics.

However, the above attribute-based methods totally

regard attributes as binary values which indicate the pres-

ence or absence of the corresponding attribute. In this way,

the binary attribute fails to capture the degree of existence

of attribute, so it could hardly represent objects veritably.

So Parikh and Grauman [18] proposed the concept of rel-

ative attributes, which explore a semantically rich repre-

sentation by describing relative relationships in the world.

For example, ‘running’ has stronger presence of ‘leg

motion’ than that of ‘jogging’, and ‘walking’ has weaker

presence of ‘jumping motion’ than that of ‘jumping from

situp’. In the implementation process, a rank function is

trained for each relative attribute using RankSVM with

quadratic loss under the supervision of pairs of samples.

The learned rank function can estimate a rank score which

indicates the relative strength of the attribute presence for

each sample. Then, they utilize single Gaussian model to

estimate the distribution of actions in rank scores space for

zero-shot learning.

Yet, the above relative attributes [18] have two disad-

vantages which may impact the subsequent classification

and zero-shot learning. One disadvantage is that it is not

robust to outliers. Since quadratic loss function increases

quadratically with loss penalty, these outliers will con-

tribute a high penalty to the global loss and deviate the

optimal process. Thereby, the method [18] is sensitive to

outliers. In action videos, many aspects lead to outliers, for

example, mis-labeled pairwise videos, or mistakenly
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Fig. 1 The distribution of action ‘handclapping’ in rank score space
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detected spatio-temporal interest points. In addition, if a

video is a noise sample or a mis-labeled one, the number of

pairwise outliers increases quadratically because the rank

function is trained by pairwise training videos. This could

degrade the performance of the final classifier. To over-

come the above drawback, some researchers suggest that

performance of pairwise learning algorithms can be

improved by removing or down-weighting these outliers

[26]. The other disadvantage is that it is not robust to zero-

shot learning. Parikh and Grauman [18] trained generative

model using signal Gaussian function in rank score space

while it is unsuitable for the intrinsic distribution of actions

in rank score space. Figure 1 shows the distribution of

action ‘handclapping’ in rank score space, where the range

of x and y are [6, 4] and [-8, 4], respectively. As can be

deduced, signal Gaussian function does not well fit these

distributions.

In this paper, we propose a robust framework to over-

come the above two drawbacks. First, we present to

weaken the penalty for samples that are misclassified

(potential outliers), which is realized by simultaneously

introducing Sigmoid and Gaussian envelopes into Rank-

SVM loss objective. In such a way, the influence of outliers

on the final trained model will be greatly reduced, thus

improving the accuracy. Furthermore, we propose a novel

zero-shot learning strategy. Concretely, we use Gaussian

Mixture models (GMM) to train generative model, and a

novel transfer strategy among classes is proposed. Exper-

imental results on three challenging datasets show the

significant improvements over the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2

briefly introduces RankSVM for relative attributes. Section

3 shows the Sigmoid and Gaussian envelop loss to over-

come the negative effects of outliers. Section 4 presents

robust zero-shot learning from rank functions. Section 5

further shows how our method describes the novel human

actions in relative terms. In Sect. 6, we design a series of

experiments to demonstrate that our experimental results

are more accurate than those of the state-of-the-art methods

both zero-shot classification and traditional recognition

task on KTH, UIUC and HOLLYWOOD2 action database.

Finally, in Sect. 7, we conclude this paper.

2 RankSVM for relative attributes

RankSVM is used to train rank functions for relative

attributes, in which each rank function corresponds to one

attribute [18]. Let xi 2 R
D denote the feature vector of the

ith sample in the training data set, and A = {ak} denote a

set of K attributes. Moreover, Bk = {(i, j)} and

Sk = {(m, n)} denote a set of ordered and un-ordered pairs

of samples for attribute ak. Specifically, ði; jÞ 2 Bk ) i � j

means that sample i has a stronger presence of attribute ak

than j, and ðm; nÞ 2 Sk ) m� n means that sample m and

n have similar attribute ak strengths. The goal is to learn

K ranking functions which are subjected to the attribute

strengths relationship between pairs of samples. To achieve

the ends, the RankSVM for each attribute is formulated as:

min
1

2
kwkk2 þ C

X

i;j

ep
ij þ

X

m;n

dp
mn

 !
ð1Þ

s:t: wT
k ðxi � xjÞ� 1� eij; 8ði; jÞ 2 Bk ð2Þ

jwT
k ðxm � xnÞj � dmn; 8ðm; nÞ 2 Sk ð3Þ

eij� 0; dmn� 0: ð4Þ

where wk is the parameter of the kth Rank SVM, eij and dmn

are non-negative slack variables, C is the balancing

constant and p is the exponential of eij and dmn. In

Eq. (1), the first term maximizes the classification margin,

and the second term makes sure that constrains are

satisfied. C is the tradeoff parameter between them. The

above formulation is equivalent to an unconstrained

optimization problem:

min kkwkk2 þ
P

i;j L 1� wT
k ðxi � xjÞ

� �
þP

m;n
L wT

k ðxm � xnÞ
� �

þ
P
m;n

L �wT
k ðxm � xnÞ

� � ð5Þ

where k ¼ 1
2C

and L is the loss function, i.e.,

L(t) = max(0,t)p. When p = 1, it is hinge (linear) loss

function; when p = 2, it is quadratic loss function. The

second term penalizes ordered pairwise samples, and the

loss functions can be seen in Fig. 2, as the dashed lines.

The last two terms penalize similar pairwise samples, and

the loss functions are shown in Fig. 3, as the dashed lines.
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Fig. 2 Loss functions for ordered pairwise samples. The black

dashed line indicates the linear loss function, the green dashed line

indicates the quadratic loss function and the red solid lines indicate

the Sigmoid envelops with a = 10, 3, 1
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3 Envelop loss for robust relative attributes

3.1 Sigmoid and Gaussian envelops

One of the disadvantages of the hinge (linear) and qua-

dratic loss functions is that they are sensitive to outliers

which frequently appear in action videos. Outlier points

produce large penalties, when they are predicted by a value

much smaller than zero (see the dashed lines in Fig. 2) or

far away from zero (see the dashed lines in Fig. 3). Since

the hinge loss increases linearly with loss penalty and

quadratic loss increases quadratically, these outliers will

contribute a high penalty to the global loss. Thereby, these

outliers will deviate the optimal process, and the final

classifier will be biased to the outliers.

To overcome the above drawback, we propose to

simultaneously utilize Sigmoid and Gaussian envelops

instead of the above loss functions. This could reduce the

loss penalty for the outliers.

For the ordered pairs of action videos, the loss function

is replaced by the Sigmoid envelop:

L1ðt; aÞ ¼ 1� sigmoidðt; aÞ ¼ 1� 1

1þ e�at
ð6Þ

where t is the penalty value, and a is a parameter which

determines the steepness of the Sigmoid envelop. The

Sigmoid envelops with several values of a are shown as the

red solid lines in Fig. 2 where the range of x and y are [-3,

3] and [0, 3], respectively. We can see that when the

parameter a gets smaller, the Sigmoid envelop gives

smaller penalties for the same score. In contrast, when the

a gets greater, the Sigmoid envelop approximates the

empirical 0/1 loss.

For the similar pairwise action videos, the Gaussian

envelop is utilized as loss function:

L2ðt; bÞ ¼ 1�Nðtj0; b2Þ ¼ 1� 1

b
ffiffiffiffiffiffi
2p
p e�t2=2b2

ð7Þ

where b2 is the variance that controls the steepness of the

Gaussian envelop. The Gaussian envelops with different

values of b are illustrated as the red solid lines in Fig. 3.

When the parameter b gets greater, the Gaussian envelop

gives smaller penalties for the same score.

It is noticed that as long as loss functions give smaller

loss penalties than hinge and quadratic loss functions,

these loss functions can be used as envelops. However,

the advantage of Sigmoid and Gaussian envelops lies in

two folds. The first is that Sigmoid and Gaussian func-

tions are derivable, which can help to solve the Rank-

SVM. The other is that when the parameter a increases,

the Sigmoid envelop approximates the empirical 0/1 loss,

which is in principle a good criterion but a NP-hard

problem. Thus, we utilize Sigmoid and Gaussian as

envelops.

So with the Sigmoid and Gaussian envelops, the

unconstrained optimization problem of RankSVM in

Eq. (1) is expressed as:

minkkwk2 þ
P
i;j

L1 wTðxi�xjÞ;a
� �

þ
P
m;n

L2 wTðxm�xnÞ;bð Þ

ð8Þ

where w is the parameter of classifier.

3.2 Learning

To solve the objective function, we adopt gradient descent

technique. The gradient of Eq. (8) with respect to w is:

r ¼ 2wk�
X

i;j

aF1ð1� F1Þðxi � xjÞ �
X

i;j

1

b3
F2ðxi � xjÞ

ð9Þ

where

F1 ¼ 1=f1þ e�awTðxi�xjÞg
F2 ¼

ffiffi
2
p

q
e½w

Tðxm�xnÞ�2=b2

wTðxi � xjÞ

(
ð10Þ

The gradient descent algorithm can then be written as:

witerþ1 ¼ witer � griter ð11Þ

where the index iter indicates the iteration number and g is

a learning rate parameter. If g is too big, the objective

function may not reach the local minimum. While if g is

too small, the convergence rate is too slow. In practice, g is

set to 0.01 and learning stops when the relative decrease in

loss is less than 0.001.
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Fig. 3 Loss functions for un-ordered pairwise samples. The black

dashed line indicates the linear loss function, the green dashed line

indicates the quadratic loss function and the red solid lines indicate

the Gaussian envelops with b = 1, 3, 10
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The Sigmoid and Gaussian envelops are nonconvex

functions, so the solution may reach a local minimum. To

avoid the locally optimal solutions, we treat the RankSVM

with envelop loss as a second optimization step, refining

the results from another ranker, similar to [27]. Concretely,

this RankSVM is initialized with the model learned from a

basic RankSVM, and then it converges to a local optimum.

The flow chart of the two-step optimization problem is

shown in Fig. 4.

4 Robust zero-shot learning from rank functions

After learning rank functions using the above loss envelops

for each attribute, in this section we propose a robust

strategy for zero-shot learning, i.e., no training samples are

available [28]. Consider R action classes of interest. All the

action classes should predefine attributes and their rela-

tionships, which can help deal with zero-shot learning

problem. Q classes with available training data are called

‘seen’ classes, while the remaining U = R - Q classes

with no training data available are called ‘unseen’ classes.

For the Q seen classes, they are described by relative

attributes with respect to each other. For example, ‘‘‘jog-

ging’ has stronger presence of ‘leg motion’ than ‘walking’,

yet weaker than ‘running’‘‘, ‘‘‘jump forward’ and ‘jump

from situp’ have similar ‘jumping motion’’’, etc. On the

other hand, the U unseen classes should be described rel-

ative to one or two seen classes for a subset of the attributes

in order to transfer the knowledge from the seen classes.

Concretely, the unseen class cj
(u) can be described as c

ðqÞ
i �

c
ðuÞ
j � c

ðqÞ
k for attribute ak or c

ðqÞ
i � c

ðuÞ
j or c

ðuÞ
j � c

ðqÞ
k or

ci
(q)* cj

(u), where ci
(q) and ck

(q) are seen classes.

The class relationship is propagated via relative attri-

butes during training to the corresponding action videos,

e.g., for seen classes ci
(q) and c

ðqÞ
j ; c

ðqÞ
i � c

ðqÞ
j ) i �

j; 8i 2 c
ðqÞ
i ; 8j 2 c

ðqÞ
j for attribute ak. Then we learn all

K relative attributes using RankSVM with Sigmoid and

Gaussian envelop loss as described in Sect. 3. Afterwards,

all the action videos in the training set predicted a real-

valued rank score for each rank function. This allows us to

transform the ith action video xi 2 R
D to a K-dimensional

vector ~xi 2 R
K ; ~x which indicates its real-valued rank

scores for all K attributes. We build a generative model

using GMM for each of the Q seen classes in rank score

space R
K ; and it is formulated as:

P
ðqÞ
i ð~xÞ ¼

XZ

z¼1

cðqÞiz u ~x j lðqÞiz ;R
ðqÞ
iz

� �
; i ¼ 1; . . .;Q ð12Þ

where Z is the number of distributions, ciz
(q) is the weight of

the zth Gaussian which is learned from Q seen classes,

l
ðqÞ
iz 2 R

K is the mean value, RðqÞiz 2 R
K	K is the covariance

matrix. In addition, u is a Gaussian probability density

function where the covariance matrix is assumed to be

diagonal matrix for computational efficiency:

u ~x j lðqÞiz ;R
ðqÞ
iz

� �
¼ 1

ð2pÞK=2jRðqÞiz j
1=2

e�
1
2
ð~x�l

ðqÞ
iz
ÞTRðqÞ

iz

�1
ð~x�l

ðqÞ
iz
Þ

ð13Þ

Now, we transfer knowledge from seen classes to

unseen classes. The parameters of the GMM for U unseen

classes are estimated using the relative descriptions. More

specifically, we first sort the Z Gaussian distributions with

the corresponding mean values in descending order for

each GMM of seen class. Then, an unseen class cj
(u) is

given and we follow the rules below:

1. In the case of c
ðqÞ
i � c

ðuÞ
j � c

ðqÞ
k for attribute ad, where

ad is one of pre-defined attributes for unseen class

cj
(u), and ci

(q) and ck
(q) are seen classes, the dth

dimension of mean value of the zth Gaussian compo-

nent l
ðuÞ
jz d is set to 1

2
ðcðqÞiz l

ðqÞ
iz d þ cðqÞkz l

ðqÞ
jz dÞ;

2. In the case of c
ðqÞ
i � c

ðuÞ
j ; l

ðuÞ
jz d is set to l

ðqÞ
iz d � gz;

where gz is the weighted average value of rank scores

of seen classes for attribute ad, i.e.,

gz ¼ 1
Q

PQ
b¼1 cðqÞbz l

ðqÞ
bz d;

3. Similarly, in the case of c
ðuÞ
j � c

ðqÞ
k ; l

ðuÞ
jz d is set to

l
ðqÞ
kz d þ gz;

4. In the case of cj
(u)* ci

(q), l
ðuÞ
jz d is equal to l

ðqÞ
iz d; and d,

the entry of the covariance matrix of the zth Gaussian

component RðuÞjz d is equal to RðqÞiz d;

5. If ad is not used to describe cj
(u), l

ðuÞ
jz d is simply set to

gz.

In all the above cases except case 4, we simply set

RðuÞjz d ¼ 1
Q

PQ
b¼1 cðqÞbz RðqÞbz d:

Inputing Pairs of 
Action Videos

Basic RankSVM
Initialized Model

RankSVM with 
Envelop Loss

Final Model

First Step Second StepFig. 4 The two-step learning

strategy: nonconvex

optimization problem is

initialized with the output of a

basic RankSVM
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For a test action video, we first compute ~xi 2 R
K using

the proposed RankSVM that indicates the rank scores of

relative attribute for the action video. Then the video is

assigned to the seen or unseen class which has the highest

probability:

c
 ¼ arg max
k2f1;...;Rg

Pkð~xiÞ ð14Þ

From the above process of setting the parameters of gen-

erative model for the unseen classes, we can see that it is

essential to transfer knowledge from seen classes according

to prior, i.e., pre-defined relative attributes. The algorithm

of our method is shown in Algorithm 1.

5 Describing human actions in relative terms

We can make use of relative attributes to describe a novel

action video: whether its class happens to be familiar or

not. Our goal is to describe the specific attribute strength of

a novel action video on the basis of two reference action

videos.

In the training stage, we are given a set of training

videos, each represented by a feature vector xi 2 R
D; a list

A = {ak} of K attributes, and the relationship in relative

strength of ak, i.e., Bk ¼ fði; jÞgs:t:i � j and Sk = {(m, n)}

s.t. m* n. Note that ak is the pre-defined attribute and all

the training data are from seen classes. We learn K rank

functions by our proposed RankSVM as described in Sect.

3 and evaluate them on all training action videos.

To describe a novel action video j, we calculate rank

scores using all K rank functions. For each attribute ak, we

choose two reference action videos i and l from training set

to describe j via relative attributes. In theory, any training

video with a good rank function could be a reference video.

However, in practice we are in a dilemma. On one hand,

we wish to select reference videos not similar to the novel

video according to attribute strength to avoid an overly

precise description. On the other hand, to avoid unrelated

descriptions, the value of attribute strength should not be

too far from that of the novel action video. Therefore, we

pick the reference action videos i and l as in [18]. Con-

cretely, when i � j � l; we prefer to leave 1/8 action videos

between i and j, as well as j and l. When i or l does not

exist in extreme case, l is chosen to be the action video with

the least strength of ak, and i corresponds to the action

video with the highest strength of ak. After getting the

reference videos, we can describe the novel action video

depending on the rank scores, for instance ‘‘j has a stronger

presence of attribute ak than j, yet weaker than l’’.

6 Experiments and discussion

In this section, we first present the low-level features for

action and attribute representation, as well as the compared

baseline algorithms. Second, we introduce the experimen-

tal datasets and define the action relative attributes. Third,

we verify the effect of our method for zero-shot learning on

three datasets. Fourth, we present the results of traditional

classification task. Fifth, we show our method could

describe the actions in videos using relative attributes.

Finally, we discuss the influence of parameters in our

algorithm.

6.1 Low-level feature extraction and baseline

6.1.1 Low-level feature extraction

To detect interest points from videos of action, we adopt

the Harris 3D corner detector proposed in [29], which is an

extension of the Harris 2D corner. The Harris 3D method

detects the location where the video intensities have sig-

nificant local variations in both space and time. In order to

achieve this goal, matrix F is defined as:

F ¼
L2

x LxLy LxLt

LxLy L2
y LyLt

LxLy LyLt L2
t

2
4

3
5 ð15Þ

where Lx, Ly and Lt are the gradients of Gaussian smoothed

video in horizontal, vertical and temporal directions. The

Harris 3D corner detector finds points whose F has large

eigenvalues. For each interest point, the histogram of ori-

ented gradients (HOG) [30] and histogram of optical flow

162 Pattern Anal Applic (2015) 18:157–171
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(HOF) [31] are used as local appearance descriptors. The

two features can reflect the action characteristic. All the

descriptors are quantized to D visual words using the

k-means clustering. Then, each action video is represented

by a histogram vector xi 2 R
D in the framework of stan-

dard bag-of-words model [32].

6.1.2 Baseline

We compare our zero-shot learning algorithm with relevant

baselines and other excellent algorithms on human action

recognition. There are two algorithms as our relevant base-

lines. The first one is the Direct Attribute Prediction (DAP)

model proposed by Lampert et al. [17], which uses binary

attribute descriptions for all classes. Action videos from

Q seen classes are trained by linear SVM for each binary

attribute. A test action video is assigned to a class using:

c
 ¼ arg max
c2f1;...;Rg

YK

k¼1

P ak ¼ hc
kjx

� �
ð16Þ

where P(ak = hk
c|x) is computed by transforming the binary

classifier score via a Sigmoid function, and hk
c is the

ground-truth binary bit for attribute ak of class c. If ak is not

used to describe an unseen class, we set P(ak = hk
c|x) to

0.5. We implement this baseline using LIBSVM [33].

The other baseline is proposed by Parikh and Grauman

[18]. They use RankSVM with quadratic loss (QRS) to

train rank functions for per attribute. After getting the

predicted rank scores from the rank function, they then

build a generative model via a single Gaussian function

(SG) for the sequential zero-shot learning.

6.2 Datasets and action relative attributes

We validate our algorithm on three publicly available

datasets: KTH dataset [34], UIUC action dataset [35] and

HOLLYWOOD2 [36]. The KTH dataset is a standard

benchmark for human action recognition. It contains six

action classes (box, handclap, hand wave, jog, run, and

walk), each of which is performed in four different sce-

narios by 25 subjects, resulting in a total of 599 video clips.

We quantize the descriptors by k-means clustering and the

number of codebook is set to 2,000. We manually define 5

relative attributes such as ‘‘leg motion’’ and ‘‘arm motion’’,

as shown in Table 1. The UIUC action dataset [35] con-

tains about 532 videos of 13 actions (‘sit to stand’ and

‘stand to sit’ are combined to ‘sit and stand’) including

jump forward, push up, raise one hand, etc. These videos

are performed by 8 actors. We quantize the descriptors by

k-means clustering and the number of codebook is set to

2,000. We manually define 10 relative attributes as illus-

trated in Table 2. The Hollywood 2 dataset is composed of

video clips extracted from 69 Hollywood movies, and

contains 12 classes of human actions (AnswerPhone,

DriveCar, Eat, FightPerson, GetOutCar, HandShake,

HugPerson, Kiss, Run, SitDown, SitUp and StandUp).

There are totally 1,707 action videos divided into a training

set (823 videos) and a test set (884 videos), where training

and test samples are obtained from different movies. The

dataset intends to provide a comprehensive benchmark for

human action recognition in realistic and challenging set-

tings. We quantize the descriptors by k-means clustering

and the number of codebook is set to 3,000. We manually

define 7 relative attributes as shown in Table 3.

6.3 Zero-shot learning results

In this subsection, we verify the effect of zero-shot learning

on the three datasets. As indicated above, relative attributes

can help to recognize unseen action classes. We use the

Table 1 The definition of action relative attributes for the KTH

dataset

Attribute Relative

Leg motion Run�jog�walk�box*handclap*handwave

Arm motion Handwave�handclap�box�run�jog*walk

Arm–hand open Handclap�handwave�box*jog*run*walk

Arm-shape straight Handclap*handwave�walk�box�jog*run

Over chest-level arm

motion

Handwave�box*handclap�jog*run�walk

Table 2 The definition of action relative attributes for the UIUC

action dataset

Attribute Relative

Jumping motion 3*4�5�8�12�1*2*6*7*9*10*11*13

Arm motion over

shoulder

5*10�13*7�1�8�12*11*3*4*6*9*2

Arm: intense

motion

5�3�10�13�7�4*8�1�12�11�2*6�9

Leg: intense

motion

3*5�8�12�4�9�2�11�1*6*7*10*13

Cyclic motion 1*5*6�2*3*8*12�13�4*7*9*10*11

Arm straight 4*5*10*11�2*3*9*12�6�7*13�1�8

Raise arms 5*10�7*13�1*3*9�8*12�2*4*6*11

Leg: fold motion 4*9�2�3*8�12*5�11�1*6*7*10*13

Arm–hand:

move-back–

forward

3*8�12*2�1*4*5*6*7*9*10*11*13

Torso vertical-

shape up/down

motion

4�9�6�3*5�8*12�11�1*2*7*10*13

1 Hand-clap, 2 crawl, 3 jump forward, 4 jump from situp, 5 jump

jacks, 6 push up, 7 raise one hand, 8 run, 9 sit and stand, 10 streth out,

11 turn, 12 walk, 13 wave
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leave-Z-classes-out-cross-validation strategy [18, 19].

Concretely, for each run we leave Z classes out as unseen

classes, and the remaining classes are used for training.

We first examine the zero-shot learning accuracy as the

proportion of unseen classes increases. The results are

illustrated in Figs. 5 and 6, in which the unseen classes are

from 1 to 3 for KTH and HOLLYWOOD2 dataset, and from

1 to 4 for UIUC dataset. In this figure, DAP is the method

proposed in [17]; QRS ? SG [18] uses RankSVM with

quadratic loss combining with a single Gaussian function;

QRS ? GMM uses RankSVM with quadratic loss com-

bining with Gaussian mixture model; ERS ? SG uses

RankSVM with Sigmoid and Gaussian envelop loss com-

bining with a single Gaussian function; ERS ? GMM uses

RankSVM with Sigmoid and Gaussian envelop loss com-

bining with Gaussian mixture model. Some interesting

observations can be drawn from the figure. The first one is

recognition rate for all five algorithms decreases with more

unseen classes. However, our ERS ? GMM performs bet-

ter than the other algorithms in most situations. The second

one is ERS ? GMM about 2% better than ERS ? SG, and

QRS ? GMM is also better than QRS ? SG, due to

training generative model using GMM which can accu-

rately capture the intrinsic distribution of actions in rank

score space. The results show that GMM is beneficial for the

subsequent recognizing unseen classes. The third one is

ERS ? GMM which gains about 3 % recognition rate over

QRS ? GMM and ERS ? SG also gains about 3 % rec-

ognition rate over QRS ? SG, owing to adopting Sigmoid

and Gaussian loss to restrain the influence of outliers. In a

word, the accuracy of our method (ERS ? GMM) is about

5 % better than that of QRS ? SG [18]. The last one is

ERS ? GMM, QRS ? GMM, ERS ? SG, and QRS ?

SG, all of which achieve better results than DAP due to the

benefit of relative description.

Table 3 The definition of action relative attributes for the HOL-

LYWOOD2 action dataset

Attribute Relative

Arm motion 4�9�6�7*3*2*1�5*8*10*11*12

Arm Cyclic motion 9�6�2�1*3*4*5*7*8*10*11*12

Raise arms 4�1*3*7�9�11*12*6�2*5*8*10

Torso up 12�5*11�1*2*3*4*6*7*8*9�10

Leg: intense motion 9�12*5�1*2*3*4*6*7*8*10*11

Arm–hand open 4�7*8�9�1*2*3*5*6*10*11*12

Arm–hand: move-

back-forward

9�10*11*12�5�1*2*3*4*6�7*8

1 answerphone, 2 drivecar, 3 eat, 4 fightperson, 5 getoutcar, 6

handshake, 7 hugperson, 8 kiss, 9 run, 10 sitdown, 11 SitUp, 12

standup
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Further, we show the average accuracy of each class in

the case of Z ¼ 2: In this situation, all 15 possible con-

figurations of training and test classes for KTH dataset and

78 for UIUC dataset are used. See Figs. 7 and 8. We can

see that our method (ERS ? GMM) gets better results in

most classes. For the KTH dataset, majority of classes are

recognized with an accuracy of 80 % and obtain better

performance than the compared methods. Yet, our

approach achieves worse result than other approaches only

on the ‘run’ action. It is because the appearances and

attribute relationships are close to ‘jog’ action. In addition,

our method successfully achieves 75 % accuracy rate for

most of the classes in UIUC dataset, and 8 of the classes

over 90 %.

We then examine the performance of our method under

a noisy environment. For the two datasets, feature vector

x of each sample is corrupted by the zero mean additive

Gaussian noises, where its standard deviation is determined

by the corresponding signal to noise ratios (SNR) value.

Figures 9 and 10 show the results on KTH and UIUC

datasets, respectively. In the two figures, the left column is

ERS ? GMM vs. QRS ? GMM, while the right column is

ERS ? SG vs. QRS ? SG. As we can see, all approaches

maintain their performances in two datasets when

SNR C 40. The reason is that in such cases, the noise

intensity is negligible compared to the action video signal

intensity. The action videos are not significantly corrupted

by noises. However, when the SNR value drops below 40,
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the noise power rises so that different methods have con-

siderable declines of accurate rate.

In KTH dataset, by adopting RankSVM with Sigmoid and

Gaussian envelop loss, i.e., ERS ? GMM and ERS ? SG,

they are more robust against noises than QRS ? GMM and

QRS ? SG. Even though in the toughest situation

(SNR = 10), the ERS effectively restrains noises to deliver

promising accurate rate. In the UIUC dataset, the classifi-

cation abilities of various methods reduce significantly when

SNR falls below 15. In contrast, the proposed ERS outper-

forms other approaches with a tolerable accuracy due to

adopting the Sigmoid and Gaussian envelop loss.

6.4 Traditional classification results

In this subsection, we take a series of experiments on

KTH, UIUC and HOLLYWOOD2 action dataset to
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Fig. 9 The performance of different methods under the additive Gaussian noise environment of different SNR on KTH dataset for recognizing

unseen classes

Table 4 Recognition results of different methods on the KTH dataset

Method Accuracy (%)

Laptev et al.[37] 91.8

Savarese et al. [13] 86.83

Ryoo and Aggarwal [14] 93.8

Kovashka and Grauman [15] 94.53

Wang et al. [38] 93.8

Liu et al. [19] 91.59

Ji et al. [39] 90.2

DAP [17] 82.2

QRS ? SG [18] 88.1

QRS ? GMM 92.7

ERS ? SG 93.8

ERS ? GMM (Ours) 95.98
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prove that our proposed algorithm can also improve

performance of traditional action classification. Note

that when zero unseen class Z = 0, the zero-shot

learning method degenerates to the traditional classifi-

cation task.

In KTH dataset, we adopt the Leave One Out Cross

Validation (LOOCV) strategy [14, 15], specifically 24

videos of actors as training and the rest one as test videos.

Table 4 compares our algorithm with the other excellent

algorithms. We can see that our method achieves the
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Fig. 10 The performance of

different methods under the

additive Gaussian noise

environment of different SNR

on UIUC action dataset for

recognizing unseen classes
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Table 5 Recognition results of different methods on the UIUC action

dataset

Method Accuracy (%)

Tran and Sorokin [35] 98.31

DAP [17] 86.2

QRS ? SG [18] 93.4

QRS ? GMM 95.7

ERS ? SG 96.2

ERS ? GMM (Ours) 98.87
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highest recognition accuracy of 95.98 %. Noticeably, the

accuracy rate of ERS ? GMM is over 2 % than that of

ERS ? SM baseline, due to accurately describing the

intrinsic distribution of actions using GMM in rank score

space. Also, ERS ? GMM gains more than 3 % accuracy

rate over QRS ? GMM, owing to simultaneously adding

Sigmoid and Gaussian envelop loss to restrain the impact

of noises. In addition, relative descriptions (ERS ? GMM,

ERS ? SM, QRS ? GMM, QRS ? SM) achieve signifi-

cant improvement than binary attributes (DAP). Note that

our method uses less training data but achieve better per-

formance than [19] which treats attributes as latent vari-

ables. Concretely, we only use KTH as training data, yet

[19] uses a mixed dataset including KTH [34], Weizmann

[4], and UIUC [35]. Figures 10, 11 shows the confusion

table of recognition results on the KTH dataset, from which

we can see that leg-related actions (jog and run) are prone

to be misclassified, due to their similar strength of attri-

butes and appearance exhibitions.

We then verify our method on the UIUC action dataset,

and Table 5 shows the results. Our algorithm achieves the

highest recognition accuracy of 98.87 %. Figure 12 shows

the confusion table of recognition results on this dataset,

from which we can see that 8 classes achieves recognition

accuracy of 100 %.

Finally, we test our algorithm on the HOLLYWOOD2

action dataset, and Table 6 shows the results. Our algo-

rithm obtains the best results. Once again, we prove the

effectiveness of our algorithm on this dataset which is

realistic and challenging.

6.5 Describing action videos using relative attributes

As mentioned in Sect. 5, our algorithm can describe novel

action video using relative attributes. For instance, ‘jump

jack’ has a stronger presence of attribute than ‘crawl’, but

weaker than ‘jump from situp’. Figure 13 shows some

examples of describing novel action videos.

6.6 Discussion

In this subsection, we further evaluate the performance of

the proposed method with respect to a for Sigmoid

envelop, b for Gaussian envelop, and the number of

Gaussian components Z for zero-shot learning. The paper

mainly reports the results on KTH dataset, and our
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Fig. 12 Confusion table of our method on the UIUC action database

Table 6 Recognition results of different methods on the HOLLY-

WOOD2 action dataset

Method Accuracy (%)

Marzalek et al. [36] 35.50

Han et al. [40] 42.12

Gilbert et al. [41] 50.90

Ullah et al. [42] 55.70

Chakraborty et al. [43] 58.46

DAP [17] 46.23

QRS ? SG [18] 53.10

QRS ? GMM 56.87

ERS ? SG 58.65

ERS ? GMM (Ours) 61.73

168 Pattern Anal Applic (2015) 18:157–171

123



experiments have shown that the conclusions can be gen-

eralized to UIUC and HOLLYWOOD2 action dataset as

well.

We first study the influence of parameters a in Eq. (6)

and b in Eq. (7) in our algorithm. From Fig. 14, the

experimental results indicate that when a = 2 and b = 1.5,

results are the best. We then test the performance under

different number of Gaussian components Z. Figure 15

lists the performance using 1, 2, 3, 4, and 5 Gaussian

components, respectively. As can be seen, the performance

increases with the raise of Gaussian components, while it

starts to drop when Z goes bigger than 3. Thus, we use

Z = 3 in our experiments. Note that the previous set of

experiments has been conducted with the optimal set of

parameters.

7 Conclusion

In this paper, a robust learning framework using relative

attributes is proposed for human action recognition. We

first restrain the influence of outliers implemented by

simultaneously adding Sigmoid and Gaussian envelops into

the traditional RankSVM loss objective. In this way, the
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effect of outliers on the optimization has been greatly

reduced, thus improving the accuracy. Furthermore, we

utilize GMM to estimate the distribution of actions in rank

score space, and then a novel transfer strategy is proposed

for evaluating the parameters of GMM for unseen classes.

The experimental results show better results than previous

methods in human action recognition.
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