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Groupwise Retargeted Least-Squares Regression
Lingfeng Wang and Chunhong Pan

Abstract— In this brief, we propose a new groupwise retargeted least
squares regression (GReLSR) model for multicategory classification. The
main motivation behind GReLSR is to utilize an additional regularization
to restrict the translation values of ReLSR, so that they should be similar
within same class. By analyzing the regression targets of ReLSR, we
propose a new formulation of ReLSR, where the translation values are
expressed explicitly. On the basis of the new formulation, discriminative
least-squares regression can be regarded as a special case of ReLSR
with zero translation values. Moreover, a groupwise constraint is added
to ReLSR to form the new GReLSR model. Extensive experiments on
various machine leaning data sets illustrate that our method outperforms
the current state-of-the-art approaches.

Index Terms— Groupwise, least-squares regression (LSR),
multicategory classification, retargeted least-squares regres-
sion (ReLSR).

I. INTRODUCTION

Least-squares regression (LSR) has been widely applied in many
machine learning tasks, such as manifold learning, discriminative
learning, semisupervised learning [1], feature selection [2], artifi-
cial neural networks (ANNs) training [3], and so on. In the past
decades, researchers have paid more attention to LSR, and the
proposed many variants, including “kernel” ridge regression [4],
weighted LSR [5], LASSO regression [6], a least-squares sup-
port vector machine (SVM) [7], discriminative least-squares regres-
sion (DLSR) [8], and retargeted LSR (ReLSR) [9]. These variants
have also had a profound influence on machine learning.

We have n training samples {xi , yi }n
i=1, where xi ∈ R

d×1 is a
data point and yi ∈ {1, 2, . . . , c} is the corresponding label of xi (c
is the number of classes). Letting X = [x1, x2, . . . , xn]T ∈ R

n×d

be the data matrix, the purpose of LSR and its variants is to learn
a regression matrix W ∈ R

d×c and an offset vector b ∈ R
c×1

such that a well-defined target matrix T ∈ R
n×c can be expressed

approximately as

XW + enbT ≈ T (1)

where en = [1, 1, . . . , 1]T ∈ R
n×1 is a vector with all 1s.

LSR: LSR adopts Y = [y1, y2, . . . , yn]T ∈ R
n×c as the regression

target, where yi is a label vector with −1 or 1 for the i th data sample.
For example, if the i th sample belongs to the j th class, its label is

yi = [−1, . . . ,−1, 1,−1, . . . ,−1]
with only the j th element being equal to 1. The objective function
of LSR is defined as

min
W,b

‖XW + enbT − Y‖2
F + λ‖W‖2

F (2)

where λ is a regularization parameter.
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DLSR: One limitation of LSR is that the regression target needs
to be 1 or −1, which is inappropriate for classification. To solve this
problem, Xiang et al. [8] proposed a DLSR model. In DLSR, the
regression target is

Y + Y � U, s.t. U � 0 (3)

where U ∈ R
n×c is a nonnegative matrix and � is an elementwise

product. The constraint U � 0 means that each element of the matrix
U is greater than or equal to zero, namely, Ui, j ≥ 0, ∀i, j . The
objective function of DLSR is

min
W,b,U

‖XW + enbT − Y − Y � U‖2
F + λ‖W‖2

F

s.t. U � 0. (4)

As interpreted in [8], the core idea behind DLSR is to force
the regression targets of different classes to move along opposite
directions by introducing a technique called ε-dragging represented
by non-negative dragging matrix U. The dragging matrix U should
be optimized in the learning process.

ReLSR: Motivated by [8], Zhang et al. [9] proposed ReLSR, which
learns regression targets from input data. The objective function of
ReLSR is

min
W,b,T

‖XW + enbT − T‖2
F + λ‖W‖2

F

s.t. Ti,yi − max
j �=yi

Ti, j ≥ 2, i = 1, 2, . . . , n. (5)

From (5), the regression target in ReLSR is

Ti,yi − max
j �=yi

Ti, j ≥ 2, i = 1, 2, . . . , n. (6)

The target matrix T is proposed to guarantee that each sample
is correctly classified with the large margin. Based on the target
matrix T, the margin between the targets of true and false classes
should be larger than 2.

In this brief, a new groupwise ReLSR (GReLSR) model is pro-
posed for multicategory classification. The new formulation of the
ReLSR model is first proposed. The main superiority of the new
model is that the translation values can be explicitly expressed. Then,
the groupwise regularization is proposed to restrict the translation val-
ues within the same class to be similar. Specifically, the contributions
and the details are highlighted as follows.

1) With the new formulation of the ReLSR model, we prove
that DLSR is a special case of ReLSR with the translation
values being zeros. Furthermore, it is feasible to introduce
new constraints to restrict regression target, for example, the
groupwise regularization proposed in this brief.

2) Owing to the introduction of groupwise regularization, the
flexibility of regression targets in GReLSR falls between DLSR
and ReLSR.

3) A new optimization method is proposed to solve the GReLSR
model. Note that, the proposed optimization method can also
be used to solve the ReLSR model under the new formulation.
The new optimization method is faster than the optimization
method proposed in [9].
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The remainder of this brief is organized as follows. First, previous
work is briefly introduced in Section II. The new ReLSR model
and the relationship between DLSR and ReLSR are described in
Section III. The proposed GReLSR model and the corresponding
optimization algorithm are presented in Section IV. Experimental
results are provided in Section V and some concluding remarks are
given in Section VI.

II. PREVIOUS WORK

LSR has attracted more attention in the past decades, and many
variants have been proposed. One major limitation of LSR is that
the regression target needs to be 1 or −1, which is inappropriate for
classification [10], [11]. To solve this problem, many new models
have been proposed, which can be mainly divided into two groups,
namely, loss function improvement, and soft label learning.

The loss function improvement methods have been proposed by
introducing new surrogate losses to replace the least-squares loss
used in LSR [12]. For example, the classical SVM1 utilizes the hinge
loss [13] or squared hinge loss [14], while the logistic regression [16]
adopts the logistic loss. A large number of loss functions (or regres-
sion targets) have been proposed in the robust regression research
area, for example, Huber loss [17], Tukey loss, and so on. Huber
loss [17] is widely used in robust regression. It is quadratic for small
values and linear for large values.

The soft label learning methods have been proposed to learn new
soft labels to replace the hard labels. These methods can preserve the
least-squares loss with new learned soft labels; as a result, closed-
form solutions for regression parameters can be maintained as LSR.
In [18], a new stagewise least-squares model is proposed in which
labels are stagewisely updated according to the regression errors.
Xiang et al. [8] proposed a DLSR model for multicategory classifi-
cation tasks, in which a technique called ε-dragging is introduced to
force the regression targets of different classes to move along opposite
directions. Based on analysis of the loss functions, Wang et al. [19]
proved that DLSR is a relaxation of L2-SVM, and proposed margin
scalable DLSR, which can explicitly control the margin as well as
the number of support vectors of DLSR. Zhang et al. [9] proposed
an ReLSR model that learns the regression targets from input data.
As discussed in [9], the regression target of ReLSR is more accurate
than LSR and DLSR in measuring the classification performance.
However, they did not provide enough theoretical analyses of the
regression target of ReLSR as well as of the relationship to DLSR,
making it difficult to understand the ReLSR model comprehensively.

III. FROM DLSR TO RELSR

Before discussing the relationship between DLSR and ReLSR, we
reformulated the regression target of ReLSR as

Ti,yi − Ti, j ≥ 2, j �= yi , i = 1, 2, . . . , n. (7)

We also defined a new regression target

Y + Y � U + aeT
c , s.t. U � 0 (8)

where a ∈ R
n×1 is an offset vector and ec = [1, 1, . . . , 1]T ∈ R

c×1.
We let the regression target set of ReLSR be

A = {T|Ti,yi − Ti, j ≥ 2, j �= yi , i = 1, 2, . . . , n} (9)

and let the new regression target set of (8) be

B = {
Y + Y � U + aeT

c |U � 0
}
. (10)

A new formulation of ReLSR is proposed based on B.

1The SVM proposed in [13] is L1-SVM, in [14] is L2-SVM, and in [15]
is multiple rank multilinear SVM.

A. New Formulation of ReLSR

A theorem was proposed to interpret the relationship between A
and B before proposing a new formulation of the ReLSR model.

Theorem 1: Two sets A and B are equal, namely, A = B.
Proof: To prove A = B, we only need to prove following two

aspects, i.e., A ⊆ B and B ⊆ A.
A ⊆ B: Let T be any item in the set A, namely, T ∈ A. The i th

row Ti,∗ can be reformulated as

Ti,∗ = Yi,∗ + (
Ti,∗ − Yi,∗ − ai eT

c
) + ai e

T
c (11)

where ai = Ti,yi − 1. Denoting a matrix U, its i th row is

Ui,∗ =
{

0, j = yi

Ti,yi − Ti, j − 2, j �= yi .
(12)

By substituting (12) into (11), we find that

Ti,∗ = Yi,∗ + Yi,∗ � Ui,∗ + ai eT
c .

By considering all rows of T, the item

T = Y + Y � U + aeT
c , U � 0.

Therefore, the item T belongs to the set B, namely, T ∈ B.
Accordingly, we can conclude that A ⊆ B.
B ⊆ A: For any item T ∈ B, that is

T = Y + Y � U + aeT
c , s.t. U � 0

we can find that

Ti,yi − Ti, j = 2 + Yi,yi Ui,yi − Yi, j Ui, j ≥ 2

and ∀ j �= yi i = 1, 2, . . . , n.

Therefore, the item T belongs to the set A, namely, T ∈ A.
Accordingly, we can conclude that B ⊆ A.

From Theorem 1, we can see that Ui,yi is equal to 0 (for any row
of i). Hence, the set B can be reformulated as

B = {
Y + Y � U + aeT

c
∣
∣U � 0, {Ui,yi = 0}n

i=1
}
.

Correspondingly, the regression target

Y + Y � U + aeT
c , s.t. U � 0, {Ui,yi = 0}n

i=1. (13)

By considering the new target described in (13), the ReLSR model
can be reformulated as

min
W,b,U,a

∥
∥XW + enbT − Y − Y � U − aeT

c
∥
∥2

F + λ‖W‖2
F

s.t. U � 0, {Ui,yi = 0}n
i=1 . (14)

In (14), the constraint is represented with the dragging matrix U.
Therefore, it is easier to interpret the relationship between DLSR
and ReLSR. Specifically, DLSR is a special case of ReLSR with the
translation values being zeros (see Section III-B). Furthermore, it is
feasible to introduce new constraints to restrict the translation values
(as well as the regression target). In this brief, we propose that the
groupwise regularization restrict the translation values, so that a new
regression target is obtained implicitly (see Section IV).

B. Regression Target Analysis

The target matrix in LSR is Y, in which the false class is −1
and the true class is 1. When the dragging matrix U is the zero
matrix, the target matrix Y + Y � U becomes Y. Hence, we can
find that Y ⊂ Y + Y � U (the constraint on U is ignored for the
convenience of description). The main difference between DLSR
[see (3)] and ReLSR [see (13)] is that ReLSR introduces a matrix
aeT

c . Each row, e.g., the i th row, of aeT
c is a constant vector, namely,
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ai eT
c , which explicitly represents a translation value ai of all class

labels. Therefore, it is easy to find that Y+Y�U ⊂ Y+Y�U+aeT
c .

To summarize, we obtain

Y ⊂ Y + Y � U ⊂ Y + Y � U + aeT
c . (15)

From the preceding equation, we see that when the transla-
tion values of all class labels are zeros, the regression target
of ReLSR degrades into DLSR. Hence, we conclude that DLSR
is a special case of ReLSR with the translation values being
zeros.

IV. GROUPWISE RELSR MODEL

The regression target of ReLSR is made more flexible than that
of DLSR by introducing the translation matrix aeT

c . However, the
translation values {ai }n

i=1 of all samples (each row corresponds to
a sample) are considered independently. As a result, for samples of
the same class, their regression targets can be significantly different.
One potential solution is to add constraints on the translation vector
a (or the translation values {ai }n

i=1). In this brief, we propose a new
groupwise constraint, in which the samples in same class should
have similar translation values. Before introducing the groupwise
constraint, we first present a generalized regularized ReLSR model,
given by

min
W,b,U,a

∥
∥XW + enbT − Y − Y � U − aeT

c
∥
∥2

F

+ λ‖W‖2
F + γ R(a)

s.t. U � 0, {Ui,yi = 0}n
i=1 (16)

where R(a) is a regularization and γ is a positive constant.
In this brief, the specified groupwise regularization R(a) is pro-

posed, which is defined as

R(a) =
c∑

j=1

∑

i∈S j

(ai − μ j )
2 (17)

where S j collects the indexes of the samples belonging to the j th
class, and � = {μ j }c

j=1 represents all parameters.
To facilitate the description, the groupwise regularization in

(17) is simplified as R(a, �) with the parameter �. Combin-
ing it into the generalized regularized ReLSR, the GReLSR
model is

min
W,b,U,a,�

∥
∥XW + enbT − Y − Y � U − aeT

c
∥
∥2

F

+ λ‖W‖2
F + γ R(a, �)

s.t. U � 0, {Ui,yi = 0}n
i=1. (18)

A. Analysis of Groupwise Regularization

The core idea behind the proposed groupwise regularization is
to ensure that the samples within the same class share the same
translation values, e.g., the samples in the j th class should be close
to the cluster μ j . Therefore, the regression targets in the same class
are similar to each other.

Generally, DLSR model can be regarded as a special case of
ReLSR, in which the zero translation vector 0 is used, namely,
a = 0. With the zero translation vector, the translation values
are the same as each other, which can be treated as an enhanced
hard version of the groupwise regularization. Therefore, the flex-
ibility of regression targets in GReLSR falls between those in
DLSR and ReLSR.

B. Optimization of GReLSR

The objective function in (18) is jointly convex with respect to all
variables. Thus, the alternating optimization method [20] is adopted
to solve (18) in the following three steps.

Step 1: Given U, a, and �, the optimal W and b are calculated by

W = (XTHX + λId )−1XTHT (19)

and

b = TTen − WTXTen

n
(20)

where T = Y+Y�U+aeT
c is an estimated label matrix, Id ∈ R

d×d

is an identity matrix, and H = In − 1
n eneT

n .
Step 2: Given W, b, and �, the optimal U and a are

min
U,a

∥
∥R − Y � U − aeT

c
∥
∥2

F + γ R(a,�)

s.t. U � 0, {Ui,yi = 0}n
i=1 (21)

where R = XW + enbT − Y is a regression error matrix.
Equation (21) can be decomposed into n independent subproblems.
The i th subproblem is the learning of the i th rows of U and a. Let
the i th rows of R, Y, U, and a be r, y, u, and a, and the i th sample
belongs to the kth class, which indicates that the cluster should be
μk . Hence, the i th subproblem is

min
u,a

c∑

j=1, j �=yi

(r j + u j − a)2 + (a − ryi )
2 + γ (a − μk )2

s.t. u j ≥ 0, j �= yi (22)

where ri is the i th element of r (same for yi ). A new optimization
method is proposed in Section IV-C.

Step 3: Given W, b, U, and a, the optimal � = {μ j }c
j=1 is

calculated by

μ j =
∑

i∈S j
ai

Card(S j )
, j = 1, 2, . . . , c (23)

where Card(S j ) is the size of the set S j .
The dragging matrix U, translation vector a, and groupwise (or

cluster) parameter � are all set to be zeros in the initialization.
Iterating the above three steps, we can obtain the optimal values
of the regression parameters W� and b� (as well as the optimal
values of the dragging matrix U�, translation vector a�, and group-
wise parameter ��). Based on W� and b�, each test sample x is
classified by

arg max
j=1,2,...,c

W�T∗ j x + b�
j

where W�∗i is the j th column of W�.

C. Optimization of (22)

Before introducing the optimization algorithm of (22), we first give
the following lemma.

Lemma 1: The closed-form solution of

min
u

(u − z)2, s.t. u ≥ 0

is u =
{

z, z > 0

0, z ≤ 0
.

Fixing the translation value a, the dragging values {u j }c
j=1, j �=yi

can be calculated according to Lemma 1. Assuming that the regres-
sion errors {r j }c

j=1, j �=yi
are arranged in the descending order, namely

r1 ≥ r2 ≥ · · · ≥ rc
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and the corresponding solution of {u j }c
j=1, j �=yi

is

u1 = 0

. . .

ul = 0

ul+1 = a − rl+1

. . .

uc = a − rc

in which a − rl ≤ 0 and a − rl+1 > 0. In such a case, the cost of
the objective function of (22) is

l∑

j=1

(r j − a)2 + (a − ryi )
2 + γ (a − μk)2. (24)

As shown in (24), the cost is proportional to the number of zeros in
{u j }c

j=1, j �=yi
. To decrease the number of zeros, the translation value

a should be large. If a ≥ r1, all items are not zeros. However, with
a large translation value a, the cost of (a − ryi )

2 + γ (a − μk )2 may
be large. Accordingly, the translation value a can start from c1.

Fixing {u j }m−1
j=1 (m −1 is the number of zeros, and {u j = 0}m−1

j=1 ),
the solution of a is

a =
∑m−1

j=1 r j + α

m − 1 + β
(25)

where α = ryi +γ μk and β = 1+γ . Supposing the optimal solution
of a > rm+1, the solution of {u j }c

j=1, j �=yi
should be

{u j = 0}m−1
j=1 and {u j = a − r j }c

j=m . (26)

In other words, the solution represented in (25) and (26) is a
convergence solution.

On the basis of the above analysis, the new algorithm described
in Algorithm 1 is proposed to optimize (22).

As illustrated in Algorithm 1, the computational complexity of the
sort algorithm in Step 2 is O(c log c), the complexity from Steps 3 to
8 is O(c) (note that the parameter a can be calculated incrementally),
and the complexity of Step 9 is O(c). Hence, the complexity of
Algorithm 1 is O(c log c). Our algorithm can be easily and efficiently
parallelized.

By setting γ = 0, Algorithm 1 can also be used to solve the
ReLSR model with the same complexity. The optimization of (22)
is the same as the retargeting algorithm in [9]. The complexity of
the retargeting algorithm is O(c2). Therefore, the new optimization
method, which is derived from the new formulation of the ReLSR
model, is faster.

D. Convergence Analysis of GReLSR

In Section IV-B, we proposed an iterative method of solving
the GReLSR model. To analyze the convergence of the alternating
optimization algorithm, we first denoted the objective function in (18)
as F(W, b, U, a,�). We then have the following lemma, showing
the convergence of the GReLSR model.

Lemma 2: The alternating optimization algorithm monotonically
decreases the value of F(W, b, U, a, �).

Proof: Denote the value of the objective function at the t th
iteration by F(Wt , bt , Ut , at ,�t ). During the (t + 1)th iteration,
we first fix Ut , at , and �t , and solve the subproblem

min
W,b

F(W, b, Ut , at ,�t ).

Algorithm 1 Optimization of (22)

Data: The regression errors {r j }c
j=1 and the cluster μk .

Result: The dragging values {u j }c
j=1, j �=yi

and the translation
value a.

1 α = ryi + γ μk ; β = 1 + γ ;
2 Sorting the regression errors {r j }c

j=1, j �=yi
in descending order.

The assignment of the dragging values is according to the order
of the regression errors.;

3 for m = 1(m �= yi ) to c do

4 a =
∑m−1

j=1 r j +α

m−1+β ;

5 if a ≥ rm then
6 Break;
7 end
8 end
9 {u j = 0}m−1

j=1 and {u j = a − r j }c
j=m (m �= yi );

The optimal solution is Wt+1, bt+1. Since the above problem is
convex, we thereby have

F(Wt+1, bt+1, Ut , at , �t ) ≤ F(Wt , bt , Ut , at ,�t ). (27)

We then fix Wt+1, bt+1, and �t , and solve the subproblem

min
U,a

F(Wt+1, bt+1, U, a, �t ).

The objective function of this subproblem is quadratic. Hence, it is
convex with respect to U and a. It is easy to find that the constraint
is also convex. Hence, this problem is a convex problem. With the
optimal solution being Ut+1, at+1, we obtain

F(Wt+1, bt+1, Ut+1, at+1,�t )

≤ F(Wt+1, bt+1, Ut , at , �t ). (28)

Next, we fix Wt+1, bt+1, Ut+1, and at+1, and solve the subproblem

min
�

F(Wt+1, bt+1, Ut+1, at+1,�).

Owing to the convexity of this subproblem, it follows that:
F(Wt+1, bt+1, Ut+1, at+1,�t+1)

≤ F(Wt+1, bt+1, Ut+1, at+1,�t ). (29)

Combining (27), (28), and (30), we obtain

F(Wt+1, bt+1, Ut+1, at+1,�t+1) ≤ F(Wt , bt , Ut , at ,�t ).

This completes the proof.

V. EXPERIMENTAL RESULTS

We compare the proposed GReLSR model with the seven bench-
mark multicategory models, including L1-SVM [13], [14], L2-SVM,
multiclass SVM (MC-SVM) [21], logistic regression [16], LSR,
DLSR [8], and ReLSR [9], on a range of different data sets. It is
worth noting that as a special case of the GReLSR model, the ReLSR
model is implemented by setting the weighting parameter γ to 0.

A. Parameter Settings

Motivated by [9], the hyperparameter λ for the LSR, DLSR,
ReLSR and proposed GReLSR models was set as follows:

λ = λ̂
tr(XTHX)

tr(Id )
= λ̂

d
tr(XTHX)

where tr(·) is a matrix trace operation. Here, fivefold cross validation
was used to determine the optimal hyperparameter λ by setting λ̂ from
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Fig. 1. Classification accuracy and standard deviation of different models on ten machine learning data sets.

the interval of [0 : 0.1 : 1]. In our GReLSR model, two strategies
were used to determine the parameter γ , that is, either set to be
the constant value 1, or determined by cross validation. The two
models and their results are indicated by GReLSR1 and GReLSR2,
respectively.

For L1-SVM, L2-SVM, MC-SVM, and logistic regression, we
used LIBLINEAR2 to implement them. The major parameter in
these methods is the regularization parameter C , which is also
determined using the cross-validation technique from the candidate
set {10−3, 10−2, 10−1, 100, 101, 102}.

B. Results on State-of-the-Art Machine Learning Data Sets

1) Data Sets: Ten machine learning datasets (without normaliza-
tion) are shown in Table I, including Iris, Vowel, DNA, Vehicle,
Glass, SVMGuide2, Cora-OS [22], Coil20 [23] WebKB-CL, and
WebKB-WC, all adopted to evaluate the performance of the GReLSR
model. The first six data sets were downloaded from the LIBSVM
Web site.3 Each data set was randomly partition it into two parts,
with 40% of the samples selected for training and the rest for testing.
Please refer to [19] for the details of the data sets.

2) Results: The comparative results on ten machine learning
data sets are shown in Fig. 1. In most cases, our two models,
both GReLSR1 and GReLSR2, gave better results than the other
approaches, including the ReLSR model. On the basis of cross
validation of the weighting parameter γ , the results of GReLSR2
were better than, or at least equal to, those of GReLSR1. Espe-
cially with a constant weighting parameter, GReLSR1 also provided
higher recognition results on six data sets, including Iris, DNA,
Glass, SVMGuided2, Core_OS, and Web_KB_CL, as compared
with ReLSR. In most cases, the GReLSR2 results were better than
ReLSR. However, in Vehicle and Web_KB_WC, ReLSR was better.
Fortunately, our recognition results were higher than the others except

2Available at www.csie.ntu.edu.tw/~cjlin/liblinear.
3Available at: www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

TABLE I

BRIEF DESCRIPTION OF THE DATA SETS. IN THE CORA-OS, WEBKB-CL,
AND WEBKB-WC DATA SETS, PCA IS APPLIED TO PROJECT THEM

INTO 200-D SUBSPACE

for ReLSR in Vehicle and for DLSR and ReLSR in Web_KB_WC,
which indicates that the groupwise regularization may not break the
ReLSR model.

C. Face Recognition Results

We further evaluated our model on three widely used face
recognition data sets, namely, AR [24],4 CMU-PIE5 [25] and

4For the AR dataset (100 persons), all images were cropped and resized to
165 × 120. For each person, seven images from Session 1 were selected as
the training images, while the remaining seven images from Session 2 were
used for testing.

5For the CMU-PIE dataset (68 persons), we selected only the frontal face
images from all of the face images. The face images were cropped and resized
to 64 × 64. For each person, we selected five images for training.
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Fig. 2. Comparisons on three widely used face recognition data sets. From left to right: AR, CMU-PIE, and Extended Yale B.

Fig. 3. Recognition accuracies on ten machine learning data sets with
different values of the weighting parameter γ . Logarithmic values of the
weighting parameters are shown on the x axis. For example, −4 means that
the weighting parameter is 10−4.

Extended Yale B6 [26]. We compared the GReLSR1 model with the
above seven benchmark models7 and one representation-based face
recognition method, namely the collaborative representation classi-
fication model. For each data set, we utilized principal component
analysis (PCA) to reduce the dimension of each image, and selected
five different dimensions. The comparative results are shown in Fig. 2.
From this figure, we can see that GReLSR1 performed better than
the other methods as a whole. In particular, the results of GReLSR1
were better than those of ReLSR.

D. Parameter Evaluation

In this section, we evaluated the proposed GReLSR model with
the different weighting parameter setting, and the results are shown
in Fig. 3. Here, the weighting parameters were set to {10n}4

n=−4. The
results show that the GReLSR model was stable with the weighting
parameter γ , which indicated that introducing groupwise regulariza-
tion did not break ReLSR model. It is worth noting that, with a

6For the Extended Yale B data set (38 persons), we selected 2414 frontal
face images. For each person, we selected five images for training.

7In this experiment, the parameter λ for LSR, DLSR, ReLSR, and GReLSR1
was uniformly set to a constant value of 0.01.

specified weighting parameter, GReLSR provided better recognition
results than ReLSR on the ten data sets, which partially validates that
adding groupwise regularization is necessary. Furthermore, we found
that when the parameter γ = 10−2, 10−1 or 1, the classification
results of GReLSR were better than ReLSR. Thereby, without using
the cross-validation technique, it is suggested that the parameter γ

be selected between 10−2 and 1.

VI. CONCLUSION AND DISCUSSION

By reformulating the regression target of ReLSR, we conclude
that the difference between DLSR and ReLSR is whether or not
translation values should be utilized. Unfortunately, ReLSR does not
use an additional constraint to restrict translation values. On the
basis of this observation, we propose a groupwise constraint, which
requires that the translation values within the same class should be
similar. By adding the groupwise constraint as a regularization into
ReLSR, a new GReLSR model is proposed for multicategory classi-
fication tasks. Extensive results testified to the superior performance
of GReLSR compared with the other methods.

A. Constraints

The GReLSR model has two main constraints. First, the opti-
mization problem is divided into three subproblems. Although all
subproblems are convex and the convergence of optimization can
be guaranteed, the convergence speed could be slow, as it relies on
the number of iterations. Second, the performance of the GReLSR
model depends on the choice of the parameter γ . Cross validation is
good technique to determine the parameter γ ; however, it is partially
dominated by the number of training data.

B. Extensions

The GReLSR model has following potential extensions, which
will be our future effects. First, by utilizing the L2,1 norm on the
regression matrix W, the proposed GReLSR can be adopted for
feature selection tasks as [2] and [8]. Second, the proposed groupwise
retargeted least-squares error can also be used to train other classifiers
that use least-squares error as the optimization criterion, such as
ANNs. Third, the groupwise regularization can be replaced by others,
such as sparse regularization. Fourth, the kernel methods [27] can be
introduced to allow the GReLSR model to process the nonlinear case.
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