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Abstract—Person head detection is still a challenge due to the 

large variability in heads’ sizes and orientations, lighting 

conditions and strong occlusions. Small heads require local 

information contained in low level layers instead of semantic 

features of upper layers. But most of these fine details are lost in 

the early convolutional layers of the deep convolution neural 

networks (DCNN). In order to improve the overall detection 

accuracy, it is important to utilize local information from lower 

layers into the detection framework. In this letter, we use multi-

scale representation fusion of DCNN as a way to incorporate lower 

layers with upper layers for detection. Our proposed model is 

based on the recent object detection network Single Shot MultiBox 

Detector (SSD). VGG16 is used as the base network. Batch 

normalization (BN) layers are used in our proposed multi-task 

learning method to accelerate training process and improve the 

robustness. Compared to state-of-the-art methods, our proposed 

detector achieves superior person head detection performance on 

the HollywoodHeads dataset (81.0 AP) and Casablance dataset 

(78.5 AP). 
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I.  INTRODUCTION  

Person head detection in still images is the task of localizing 
head in the wild robustly, regardless of human poses and head 
orientations. It’s important for many tasks, such as attributes 
recognition, person identification, human tracking, action 
recognition, autonomous driving, person count and many others. 
In recent years, face detection and pedestrian based on deep 
Convolution Neural Networks (CNN) have made significant 
achievements. However, person head detection is still a difficult 
challenge due to the large variability in appearance, body 
postures, lighting conditions and strong partial occlusions in the 
wild. 

Significant progress has been made in object detection 
because of recent advances in deep CNNs. In particular, Single 
Shot MultiBox Detector (SSD) [1] achieves high object 
detection accuracy on PASCAL VOC, COCO, and ILSVRC 
and this network runs at real-time. SSD can localize objects 
better because it learns to regress the object shape and classify 
object categories instead of repurposing classifiers to perform 
detection. However, this detector has worse performance on 

smaller object categories than bigger object categories mainly 
due to the coarseness of its feature maps. As demonstrated in 
[2], features in the CNN are hierarchically distributed. Lower 
layers respond to corners and edges and hence contain more 
local information. Features of upper layers are more semantic 
and class-specific. Most of existing methods only use the very 
top layer for objects detection and ignore the importance of 
lower layers. 

In this paper, we introduce a novel framework that based on 
SSD for end-to-end head detection. Multi-scale represents are 
used to enhance the detection accuracy especially for small-size 
human heads. The practice of fusing the multiple convolutional 
layers of deep CNNs has been applied successfully in many 
object classification and detection methods [3, 4, 5], the 
differences and details of our proposed method will be stated in 
part III. In our detection model, VGG16 [6] is used as the base 
network to extract features. Then some convolutional layers are 
added to the end of the base network for detection. In the next, 
multiple scale layers from the base network are combined. This 
combined layer and the added convolutional feature layers are 
selected to detect person heads. We add a batch normalization 
layer [18] after each of those convolution feature layers. At 
training time, these feature layers produce a set of default boxes 
of different scales and aspect ratios and are matched to the 
ground truth boxes. At prediction time, both the shape offsets 
and the confidences of the head for each of this default box are 
produced by the detector. Finally, a non-maximum suppression 
method is adopted to produce the final detections. Fig 1 shows 
some results of the proposed detector. It can ban seen that Our 
model has good performance on small-size human heads and 
achieves better results in complex conditions such as strong 
partial occlusions. 

The remainder of this paper is organized as follows. In 
Section II, the related work for object detection is reviewed. 
Human head detection method based on deep neural network is 
described in Section III. Section IV introduces datasets and 
experimental results. Finally, in Section V, we draw 
conclusions and discuss future research directions of this work. 
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Fig. 1. The results of person head detection using our proposed model. 

II. RELATED WORK 

In recent years, image classification and object detection 
have achieved significant improvement due to the advances in 
deep CNNs [6, 7, 8, 9, 27, 28]. Object detection is more 
challenging compared to image classification. Firstly, it needs 
to judge if the input image contains the target or not. And then, 
localizes the objects if they are contained in the image. 

Traditional object detection methods are based on feature 
extraction methods and classifiers, including obtaining sub 
regions of the whole images and extracting their features, then 
classifiers are used on the features to determine whether the sub 
windows contain the target objects or not. The classical face 
detection method, proposed by Viola and Jones [10], uses Haar-
like features and cascade boosting classifiers. HOG feature-
based deformable part model (DPM) [11] is widely adopted 
among conventional object detection. 

Most traditional object detection methods are time-
consuming and have poor performance and robustness. And 
with the development and successful of deep neutral networks, 
object detection methods based on deep CNNs become the first 
choice. Region-based convolutional neural network (R-CNN) 
[12] is the first efficient deep learning based method. Firstly, R-
CNN extracts around 2000 region proposals from an input 
image using Selective Search (SS) method [13]. In the second, 
features of region proposals are extracted by CNNs. Finally, 
liner SVM is produced on the features to classify these 
proposals. This original region-based CNNs method is 
computationally expensive. To reduce the cost, SPPnet [14] and 
Fast R-CNN [15] shares convolutions among region proposals. 
With the advances in deep learning and object detection, many 
efficient and real-time detectors are proposed. Faster R-CNN 
[16] uses a Region Proposal Network (RPN) to generate high-
quality region proposal instead of using SS method and this 
network shares full-image convolutional features. The pipeline 
of region-based method is to produce potential bounding boxes 
firstly and then apply a classifier on them. This practice 

repurposes classifiers to perform detection. Differently, YOLO 
[17] uses regression method to detection objects. This network 
is much faster and can be trained end-to-end. Since YOLO 
predicts detections only on the convolutional layer, its detection 
accuracy is worse than Faster R-CNN. SSD is a fully 
convolutional and end-to-end deep neural network. It produces 
a set of defaults boxes and makes detection predictions at multi-
scale feature layers. Defaults boxes in SSD are similar to the 
anchor boxes that used in Faster R-CNN. SSD is faster than 
Faster R-CNN and is more accurate than YOLO. 

Although significant process has been made by CNNs-
based object detection methods, they still have trouble with 
localizing smaller objects than larger objects. It mainly because 
most of object detection methods only use the output of the last 
layer of a feature extraction network as a feature representation. 
However, this representation is too coarse and detail 
representations which are importance to small object categories 
are lost in the early convolutional layers. To improve the 
detection accuracy especially for small-size human heads, 
outputs of low-level and high-level layers are combined as 
multi-scale representations. [23] combines features of different 
layers to improve accuracy for pedestrian detection, [3, 4] use 
fusion outputs of multi-scale layers for object detection and [5] 
combines features from two pooling layers and one 
convolutional layer for multi-task learning. Multi-scale 
representations contain both of global and local information and 
can improve overall accuracy for object detection and 
classification. 

III. PROPOSED PERSON HEAD DETECTOR 

The framework of our model is illustrated in Fig. 2. This 
section will describe our proposed head detection model based 
on multi-scale representation fusion of deep convolution neural 
networks (DCNN) and its effective training method. 

A. Head detection Model based on multi-scale representation 

fusion of DCNN 

Our head detection method is based on the Single Shot 
MultiBox Detector [1]. The early layers in the network are 
based on VGG16. This image classification architecture is pre-
trained on the ILSVRC dataset and then converted to a fully 
convolutional network. Dropout layers and the fc8 layer are 
discarded in our model. Then, a series of smaller convolutional 
layers are added after the base network. Each of the added 
feature layers is used to predict confidences and shape offsets 
for a fixed set of default boxes. 

Some human heads are very small in images so that they 
have little information at the very top layers. In this case, these 
small-size heads are more likely to be ignored at predicting time. 
In order to improve the overall detection accuracy, the multi-
scale representation fusion of DCNN is proposed. We fuse the 
Conv3_3, Conv4_3 and Conv5_3 layers of VGG16 using three 
separate networks as shown in Fig. 3. The information gained 
from multi-scale layers is important for accurate visual 
recognition and especially for small objects which require the 
higher spatial resolution that provided by lower convolutional 
layers. The dimensions of these fused layers are 75×75×256, 
38×38×512, 19×19×512. Because of the different dimensions,  



 

Fig. 2. The results of person head detection using our proposed model.

they can’t be concatenated directly. Therefore, various 
sampling strategies are applied to different layers. Unlike some 
existing methods [3,4,5], we add a convolutional layer to 
Conv3_3 to carry out subsampling. For Conv5_3, we add a 
deconvolutional layer [25] to conduct upsampling. And then L2 
normalization method [26] is adopted to normalize activations 
from multiple layers before combining them into a uniform 
space. Finally, we concatenate these layers along the channel 
axis. The architecture details of our proposed model are showed 
in Fig. 2. We use the Concatenation_layer as well as Conv7 
(FC7), Conv8_2, Conv9_2, Conv10_2 and Conv11_2 to predict 
location and confidence of human head and concatenate the 
outputs of these layers finally. Compare to the other layers to 
predict detections, Concatenation_layer has a larger feature 
scale. In order to enhance robustness we add an L2 
normalization layer after Concatenation_layer to scale the 

feature norm at each location in this feature map。 

 

Fig. 3. Concatenation of multi-scale layers. 

For a feature layer of size m×n with p channels, predictions 
are produced by two 3×3×p small convolutional filters. One 
filter is applied to predict confidences for person head and 
background and the other is used for offsets relative to some 
predefined default bounding boxes. Take conv8 as example, the 
details of predictions are showed in the Fig. 4.  

 

Fig. 4. Prediction Module. 

Before each added feature layers and Concatenation_layer 
predict confidences and shape offsets for the default bounding 
boxes, a batch normalization layer is added after each of them. 
As illustrated in [18], it’s important to normalize layers’ inputs 
to solve internal covariate shift phenomenon. For a layer with 
d-dimensional input x={x1, x2, …, xd}, the normalization is 
applied to each activation independently. So, one dimension is 
taken as example to show the process of BN Transform. Let the 
normalized value of x = {x1…m} over a mini-batch (B) is 
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ˆ ˆ
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where σB
2 is mini-batch variance, μB is the mini-batch mean and 

ε. is a constant for numerical stability. γ, β are the parameters to 
be learned during training. 

 

 

 

 

 

 

 

 

 

 

 

 



 

This methodology allows using of much higher learning 
rates to speed up training process and eliminates the need for 
dropout layers. 

B. Training 

Our proposed model can be trained end-to-end and only 
needs input images and ground truth boxes of human heads. 
Conv7, Conv8_2, Conv9_2, Conv10_2, Conv11_2 and the 
Concatenated layer are used for prediction. Each location in 
these feature maps is defined to produce a small set of default 
boxes of different aspect ratios.  

At training time, default boxes are matched to the ground 
truth firstly to determine which default boxes responding to 
ground truth bounding boxes. To be specific, for each ground 
truth bounding box, its matching boxes are picked from default 
boxes that vary over location, aspect ratio and scale. Default 
boxes with overlap higher than 0.5 correspond to this ground 
truth bounding box during training. Then, two small 
convolutional filters are applied to Conv7, Conv8_2, Conv9_2, 
Conv10_2, Conv11_2 and the Concatenated layer to predict 
category confidences and shape offsets for these default 
bounding boxes. The multi-task learning method is used for 
training the whole networks, and the total loss [1] is a weighted 
sum of the localization loss (Lconf) and the confidence loss (Lloc) 
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where x means the input sample and its class confidence is c. l 
means the predicted box which is matched to any ground truth 
box (g) with jaccard overlap higher than 0.5. N is the number of 
the matched default boxes (defined as Pos). 

The confidence loss is computed using softmax loss 
function and the weight parameter α is set to 1 by cross 
validation. The localization loss is a Smooth L1 loss [16] 
between l and g. A default bounding box can be characterized 
by {cx, cy, w, h}, where (cx, cy) are the coordinates of the center 
and w, h are width and height respectively. Offsets are regressed 
to adjust the default box to match the head shape better. Let xij 

= {0, 1} to represent whether i-th default box matches to j-th 
ground truth or not. 
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Hard negative mining and additional data augmentation 
strategies are also adopted at training time. The proposed head 
detection model is fine-tuned using SGD with initial learning 
rate 0.0001, 0.9 momentum, 0.0005 weight decay, and batch 
size 8. The weights of all the new layers are initialized with 
“Xavier” method [24]. 

IV. DATASETS AND EXPERIMENTS 

Our head detection model is evaluated on Casablance 
dataset [19] and HollywoodHeads dataset [20] respectively. 
This section will take a brief introduce of two datasets and 
present our experimental results. 

A. Datasets for evaluation 

Casablance dataset contains 1,466 frames. These frames 
were collected from the film “Casablance” and each of them is 
annotated with head bounding boxes. The original dataset has 
some disadvantages and was perfected by [20]. 

HollywoodHeads dataset contains 224,740 frames from 21 
Hollywood movies and 369,846 person heads annotated in total. 
The training set of this dataset is composed of 216,719 frames 
from 15 movies, the validation set contains 6,719 frames from 
3 movies and the test set has 1,302 frames that from the rest 
movies. Frames with poor quality such as low lighting 
conditions and strong occlusions are labeled by “difficult”. 

B. Results and Comparison 

The standard Average Precision (AP) [21] is used to 
evaluate the performance of our detection model. Detections 
having higher intersection-over-union score than 0.5 with the 
ground-truth bounding box are considered to be correct. We 
compare our model with other detectors: the DPM-base model 
(DPM) [22], R-CNN-based model (R-CNN) [12] and Contex-
aware CNNs model [20]. Fig. 6 and TABLE I present the results 
of detection performance and comparison with other methods. 
It can be seen that detection accuracy has an obvious 
improvement using our method. It achieves 81.0 AP compared 
to 72.7 AP in state-of-the-art method proposed in [10] on 
HollywoodHeads dataset and achieves 78.5 AP compared to 
72.6 AP in [10] on Casablance dataset.  

Some results of head detection using our model are showed 
in Fig. 1 and Fig. 5. Our model has good performance on small-
size human heads and achieves better results in complex 
conditions such as of body postures variation and strong partial 
occlusions. 

  

  
 

Fig. 5. The results of detection using our detector. Our model has good 

performance on small-size human heads, poor lighting conditions, body 
postures and strong partial occlusions conditions. 

 



 

 

TABLE I 
Preformance (% AP) of our detection model and results of our method compared with the other state-of-the-art methods on two datasets. 

 

 models DPM [22] R-CNN [12] Local [20] 
Context-aware 

CNNs [20] 
Our model 

Datasets 
HollywoodHeads 37.4 67.1 71.8 72.7 81.0 

 Casablance 51.6 68.6 71.8 72.6 78.5 

 

V. CONCLUSION 

In this paper, we presented an efficient and robust deep 
learning method to detect person heads on the real-time. Multi-
scale representations are used to improve the detection accuracy. 
We also add additional respect ratio according to the real shape 
of human heads. The experimental results show that our 
detector can achieve higher recall and accuracy in real scenes. 
Our method can extend to other networks such as AlexNet [27] 
and ResNet [28]. In the future, we will do some experiments 
using the presented person head detection method in real 
environment and make more improvement. 
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