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Abstract
In this paper, we propose a method that use i-vectors and mod-
el adaptation techniques to improve the performance of deep
neural networks(DNNs) based multi-accent Mandarin speech
recognition. I-vectors which are speaker-specific features have
been proved to be effective when used in accent identification.
They can be used in company with conventional spectral fea-
tures as the input features of DNNs to improve the discrimina-
tion for different accents. Meanwhile, we adapt DNNs to dif-
ferent accents by using an accent-specific top layer and shared
hidden layers. The accent-specific top layer is used to adap-
t to different accents while the share hidden layers which can
be seen as feature extractors can extract discriminative high-
level features between different accents. These two techniques
are complementary and can be easily combined together. Our
experiments on the 400-hours Intel Accented Mandarin Speech
Recognition Corpus show that our proposed method can signifi-
cantly improve the performance of DNNs-based accented Man-
darin speech recognition.
Index Terms: Accented speech recognition, deep neural net-
works, model adaptation, i-vectors, KL-divergence regulariza-
tion

1. Introduction
Accent is one of the key factors in worsening the performance
of practical speech recognition system [1]. We can classify ac-
cents into two kinds: accents caused by foreign or non-native
speakers and accents caused by native speakers who speak the
dialects of the language. In this paper, we focus on the accent-
ed Mandarin speech recognition task in which the speakers are
from different regions of China.

For accented speech recognition, lexicon adaptation
methods[1, 2, 4, 5, 6] and model adaptation methods [3, 7]
have been used to improve the performance in the GMM-HMM
based system. It has been also reported that model adaptation
methods is typically found to be more effective than the lexicon
adaptation[1, 8]. Recently, deep neural networks(DNNs) have
become dominant techniques for acoustic modelling in auto-
matic speech recognition(ASR) [9, 10, 11]. DNNs as powerful
feature extractors can mitigate the degradation of performance
of recognizing accented-speech. Nevertheless, there are stil-
l large performance gap between the accented speech and the
native speech in the DNN-HMM based ASR system[8]. Some
studies[8, 18] have conducted on adapting DNNs to improve the
performance of recognizing accented speech. In [8], they pro-
pose a multi-accent deep neural network acoustic model with

an accent-specific top layer and shared bottom hidden layers.
This method has been proved very effective for foreign accent-
ed speech recognition and is similar to the method that adapts
top layers for different languages in the DNNs-based multilin-
gual speech recognition[12].

Besides adaptation methods, much work conducted on the
accented speech recognition task has adopted features beyond
acoustic features to supply more discriminative information
between different accents[1, 2]. In recent years, i-vectors
features[13, 19] which are speaker-specific features have been
used to adapt deep neural networks to the target speaker[14]. It
has been reported that using i-vectors as additional features can
not only improve the the performance of speaker-independent
speech recognition system but also speaker-dependent sys-
tem. Furthermore, i-vectors has been used to identify na-
tive accents[15] and proved to be useful features for accent
identification[16]. Therefore, it is sensible to use i-vectors as
complementary input features in accented speech recognition.

In this paper, we propose a method combining i-vectors
and model adaptation to improve the performance of deep neu-
ral networks based native accented Mandarin speech recogni-
tion. We use i-vectors in parallel with acoustic features to sup-
ply accent-specific information for accented mandarin speech
recognition. For model adaptation method, we use the method
proposed in [8] which uses deep neural networks with bottom
shared hidden layers and accent-specific top layer. Our ex-
periments on the 400-hours Intel Accented Mandarin Speech
Recognition Corpus show that our proposed method achieves a
11.8% relative improvement in word error rate over the DNN-
based baseline system.

The reminder of this paper is organized as follows. In sec-
tion 2, we introduce i-vectors used in our paper. We show the
details of the model adaptation method in Section 3. Section 4
presents the framework of our proposed method. Experiments
and results are presented in Section 5. We conclude the paper
in Section 6.

2. I-vectors
I-vectors[7] are a popular technique for speaker recognition
and speaker verification because they can encapsulate all the s-
peaker’s relevant information in a low-dimensional fixed-length
representation[19]. In this paper, we use i-vectors to supply
accent-specific information. I-vectors are used in parallel with
acoustic features(such as MFCC, PLP features) as the input fea-
tures to deep neural networks. The details of i-vectors technique
is introduced below.
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Figure 1: I-vectors extraction and intergration with a neural net-
work. Note: I-vectors is extracted by utterance, spectral features
in an uttrerance have same i-vectors features.

I-vectors are low-dimensional features used in speaker
recognition which can characterizes speaker-relevant informa-
tion. In this paper, we extract the i-vectors for each utterance
and stack it with acoustic features as the input of a DNN-based
accented Mandarin ASR system.

I-vectors approach was originally motivated by the Joint
Factor Analysis(JFA) framework introduced in [13]. For the
speaker recognition tasks, factor analysis is used to generate a
low-dimensional subspace which is called the total variability
space. This space includes factors of both speaker and channel
variability. Unlike JFA, all the variability is constrained in a s-
ingle subspace in the I-vector representation whereas each kind
of variability is modelled in an explicitly separate subspace in
JFA. They utilize an effective and elegant way of decreasing
the large-dimensional input data to a small-dimensional feature
vector. The resulting feature vector retains most of the useful
information of speaker entity.

In the framework of i-vectors approach, given a univer-
sal background model(UBM) trained on data from multiple
speakers, we can adapt it to a given utterance and generate
an utterance-dependent Gaussian mixture model(GMM). The
eigenvoice adaptation technique used in the i-vectors extraction
assumes that there is a matrix T contains speaker and channel
variability information. The utterance GMM supervector M is
obtained as

M = m+ T ∗ i; (1)

where m is the segment-independent component of the
mean supervector taken from a GMM-UBM trained on a large
number of speakers; T is a low-rank rectangular matrix span-
ning the subspace covering the relevant variability; i is a low-
dimensional latent variable representing coordinates in the sub-
space and has normally distributed prior N(0,I). After iterative-
ly estimating matrix T on a large training corpus, we can use
the lower-dimensional vectors i as a speaker model to replace a
large GMM. i is referred to as an i-vector. More details of the
i-vector algorithm are fully described in [13].

The procedure of using i-vectors as complementary input
features in a neural network is shown in Figure 1. In the proce-
dure, we first use i-vectors extractor to extract each utterances’
i-vectors features , then they are concatenated to each frame in
the utterance to form the input features for neural network.

Figure 2: Framework of model adaptation method for DNN-
based accented speech recognition. Note: The set of language
senones is same for different kinds of accented speech.

3. Model Adapation Method
In this paper, we use the model adaptation method which
adapt the top layer of conventional DNNs to accent-specific
top layer[8]. This method is motivated by the shared hid-
den layers of deep neural networks in the multilingual speech
recognition[12]. In multilingual speech recognition, shared-
hidden-layers multilingual deep neural networks(SHL-MDNN)
can extract high-level cross-lingual features through hierarchi-
cal shared hidden layers while using language-dependent top
softmax layers to recognize different languages. Compared to
multilingual speech recognition, multi-accented speech recog-
nition can use the similar method to improve the performance
of accented speech, furthermore, we can use the same set of
language senones for different accented speech, we just need
to adapt the same set of language senones to different accent-
ed speech. The framework of the model adaptation method for
accented speech is shown in Figure 2.

In this method, the bottom hidden layers are shared between
different accents while extract high-level cross-accent features
between different accented speech through multiple hidden lay-
ers. This process can allow maximal knowledge sharing be-
tween different accented speech and can be seen as a type
of regularization[8]. When using this architecture in decod-
ing phase, the computation of hidden layers can be shared be-
tween different accented speech and we only need to evaluate
the accent-specific top layer separately for each accent.

4. Framework of the proposed method
In this section, we introduce the framework of our proposed
method. The method can be seen as the combination of two
parts: (1) using i-vectors as the complementary features for the
input of DNNs and (2) using accent-specific top layer for the
output layer of DNNs. For the i-vectors part, we first extract i-
vectors for each utterance and then concatenate the i-vectors to
the acoustic features for each frame, then we use the concatenat-
ed features as the input features of DNNs. For model adaptation
part, we adapt the top layer to different accented speech to gen-
erate accent-specific top layers. The framework of the proposed
method is depicted in Figure 3.

Our proposed method has two advantages: 1) compared to
the previous methods[5, 8], it combines the accent-specific in-
formation from the input layer and the top layer of deep neu-
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Figure 3: Framework of our proposed method.

ral networks which can improve the discrimination of DNNs-
based acoustic model between different accented speech; 2) the
combination of the two techniques is very straight and easy, we
can first train DNNs using acoustic features and i-vectors as in-
put features, then just adapt the parameters in the top layer to
accent-specific layer leaving the input layer and hidden layers
unchanged.

5. Experiments and Results
We used the open source Kaldi speech recognition toolkit[17]
in all experiments and conducted our experiments on the 400+
hours Intel Accented Mandarin Speech Recognition Corpus.
The corpus consists of six different kinds of accented Man-
darin speech. The speakers of different accents are native resi-
dents from Beijing, Shanghai, Guangdong, Haerbin, Wuhan and
Chengdu respectively. Accented Mandarin speech spoken by
speakers from Beijing and Haerbin is close to Standard Man-
darin(Putonghua) speech while accented Mandarin speech spo-
ken by residents living in Shanghai, Guangzhou, Chengdu and
Wuhan is strongly affected by Wu dialects, Cantonese, Cheng-
du dialects and Wuhan dialects which were much different from
Standard Mandarin.

The statistics of the train data in the Corpus we used is listed
in Table 1.

Table 1: Statistics of training data in Intel Accented Mandarin
Speech Recognition Corpus used in our experiments.

Accent # speakers # utterances # hours
Beijing 225 88176 88.2
Haerbin 115 44565 44.3

Shanghai 219 84911 85.1
Chengdu 120 45881 45.9
Wuhan 116 45917 46.0

Guangzhou 243 93965 94.0
Total 1038 403415 403.5

In our experiments, we selected 100 utterances from two s-
peakers as developing data and 1000 utterances from ten speak-
ers as testing data in each accented speech. Speakers in train,
developing and test set were mutually exclusive. Therefore, we
had 600 utterances(∼ 1 hour) in the developing set and 6000(∼

10 hours) utterances in the test set.

5.1. Frontend processing

We code the speech data into 25 milliseconds(ms) frames with
a frame-shift of 10 ms. Each frame is represented by a fea-
ture vector of 39 dimensional MFCC features (static plus first
and second order delta features) which are mean normalized per
utterance. In our experiments, every 11 consecutive cepstral
frames are spliced together to be the input features of DNNs.

5.2. I-vectors extraction

We use the Kaldi online i-vectors extraction script to extract i-
vectors for each utterance [17]. The extraction process is as fol-
lows: 1) train a diagonal covariance UBM on the features which
are extracted by apply LDA and MLLT transformation on the
13-dimensional static MFCC features. The number of mixtures
in the UBM was set to 1024. 2) convert the resulting diagonal
covariance UBM trained in phase 1) to full covariance UBM as
initial extractor model. 3) use the same features in phase 1) to
estimate the parameters in the initial extractor model and gen-
erate an i-vectors extrator when the parameters converged. As
stated in [14], for an 300 hours speech recognition tasks, it is
reasonable to use 100-dimensional i-vectors to get a good per-
formance. Therefore, we use 100-dimensional i-vectors in our
experiments. If there were more training data including a larg-
er numbers of speakers, it may need to use higher-dimensional
i-vectors.

5.3. DNN training

In our experiments, we trained four deep neural network-
s and they all had 6 hidden layers with p-norm activation
functions[21]. The definition of p-norm activation function is
:

y = ||x||p =

(∑
i

|xi|p
) 1

p

(2)

The value of p can be set to different values; we use p=2
in our experiments. In our experiments, for each hidden layers,
the input dimension was set to 2500 and the output dimension
was 250, that is to say, i in equation (2) is 10.

The four DNNs we trained were different in whether using
i-vectors and accent-specific top layer in DNNs or not. We show
the details of four models in Table 2.

Table 2: Four deep neural networks trained in our experiments.

Models usage of usage of
i-vectors accent-specific top layer

DNN Baseline No No
DNN model I Yes No
DNN model II No Yes
DNN model III Yes Yes

All four kinds of DNN models use consecutive 11 frames
of spectral features as their input. The softmax output layer has
4983 units which correspond to the context-dependent HMM
states generated by the procedure of decision tree clustering in
GMM-HMM framework.

The training recipes and methods outlined in [21] are used
in our experiments. We first randomly split the training data into
blocks each containing 1000000 frames and then train the net-
works with stochastic gradient descent(SGD) on mini-batches
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of 256 frames and a cross-entropy criterion. The initial learning
rate is set to 0.01 and the final rate is 0.001. In the mix-up pro-
cedure, we mix the 4963 output layer units up to 10000 units.

When using accent-specific top layer in DNN model II and
III, we first trained a DNN model using the training data of all
six kinds of accents before the mix-up procedure, then mixed up
the top layer and adapted the top layer of the model to accent-
specific top layer for each accent using training data of the cor-
responding kind of accented Mandarin speech. The adaptation
procedure usually took 1 or 2 iterations before the parameters
in the accent-specific top layer converged.

5.4. Hybrid DNN-HMM decoding

In the decoding phase, for DNN Baseline and Model I, we used
the trained model to compute DNN output scores for all the ut-
terances in the test set; for DNN Model II and III, we used DNN
model with different accent-specific top layers to compute the
output scores for the corresponding accented test speech data.
The vocabulary used has 60K words and the decoding language
model is a 3-gram LM with 80M n-grams.

5.5. Experimental results and analysis

After we trained these four DNN models described above, we
used them to recognize the test set separately. We list the word
error rates(WER) for these models on the test set in Table 3.

Table 3: Word error rates for these four DNN models on the test
set.

Accent Baseline Model I Model II Model III
Beijing 12.44% 10.89% 11.90% 10.85%
Haerbin 15.02% 14.53% 14.70% 14.36%

Shanghai 18.01% 16.12% 17.07% 15.70%
Guangzhou 25.70% 23.51% 24.04% 22.69%
Chengdu 18.28% 16.12% 17.21% 15.74%
Wuhan 19.80% 17.98% 18.42% 17.13%
Average 18.21% 16.52% 17.22% 16.07%

For all the four DNN models, we use the pronunciation dic-
tionary of Standard Mandarin. The pronunciation dictionaries
of Wu Dialects, Cantonese, Chengdu Dialects and Wuhan Di-
alects are much different from that of Standard Mandarin, there-
fore accented Mandarin speech in these regions had much dif-
ference with Standard Mandarin speech. Dialects used in Bei-
jing and Haerbin are similar with Standard Mandarin, then ac-
cented speech from these two regions sounds similarly to Stan-
dard Mandarin.

From Table 3, we can see that for Baseline model which on-
ly use MFCC features as input and no accent-specific top layer,
test data from Beijing and Haerbin get much lower word error
rates than these from other regions which imply that accented
speech from these two regions are weaker than those from other
regions.

For Model I, we use MFCC features concatenated with 100-
dimensional i-vectors as the input features to deep neural net-
works which had no accent-specific top layer. From Table 3,
we can conclude that using i-vectors as complementary features
can significantly improve the performance of accented Man-
darin speech recognition task which achieves 9.3% relative im-
provement in word error rate. Furthermore, we can see that
except for the test data from Haerbin, significant improvements
on other test data have been achieved. For the accented speech

from Haerbin, we think relatively small amount of training data
and weak accent is one of the reason for the relatively small im-
provement. The other reason we think is accented speech from
Beijing and Haerbin had much similarity and the trained model
was bias to Beijing accented speech according to the imbalance
of the amount of data.

For Model II, we use MFCC features as the input features
to DNNs which had accent-specific top layer. By using accent-
specific top layer, we achieve about 5.4% relative improvement
over the Baseline model. The improvement is moderate, how-
ever, we can see from the result that accented speech strong-
ly affected by local dialects achieve higher improvements than
others.

For Model III which is trained by method we proposed,
we achieved about 11.8% relative improvements in word er-
ror rates than the Baseline Model. Compared to the results of
Model I and II, we find that i-vectors features play a dominant
roles in improving the the performance of accented Mandarin
speech recognition. Furthermore, our proposed method com-
bine i-vectors with accent-specific top layer to obtain the com-
plementary information from the two techniques. The experi-
mental results prove the effectiveness of our method.

6. Conclusions
We have presented an effective way to improve the performance
of native accented Mandarin speech recognition system. In our
proposed method, we use i-vectors as additional input features
to DNNs which also have accent-specific top layer. I-vectors
containing speaker information have been proved effective in
accent identification task. Accent-specific top layer which can
be seen as model adaptation method for DNNs to accented
speech have been used to improve the performance of accented
English speech recognition. These two techniques can be easi-
ly combined in the DNNs-based speech recognition system and
can further improve the performance of the system. In this pa-
per, we find that use these above two techniques separately can
boost the performance of multi-accent Mandarin speech recog-
nition; furthermore, the performance is further improved when
we combine these two techniques. For future work, we plan
to use the KL-regularized model adaptation method to improve
the performance of the model adaptation part in our proposed
method and try higher-dimensional i-vectors to test its perfor-
mance.
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