IMAGE SUPER-RESOLUTION VIA DEEP DILATED CONVOLUTIONAL NETWORKS

Zehao Huang'?, Lingfeng Wang'?, Gaofeng Meng* and Chunhong Pan?

1. Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Police Academy
2. NLPR, Institute of Automation, Chinese Academy of Sciences
{zehaohuang18 @gmail.com, Ifwang @nlpr.ia.ac.cn, gfmeng @nlpr.ia.ac.cn, and chpan@nlpr.ia.ac.cn}

ABSTRACT

Deep learning techniques have been successfully applied in single
image super-resolution (SR). Recently, researches have shown that
increasing the depth of network can significantly improve SR per-
formance. Very deep networks for SR achieved a large improvement
than former methods. However, simply increasing depths basically
introduce more parameters and this lead to cumbersome computa-
tional cost. In this paper, we present a general and effective method
to accelerate very deep networks for single image SR. Our method
is based on dilated convolution operation, which support exponential
expansion of the receptive field without increasing filter size. With
the help of dilated convolution, shallow networks can achieve large
receptive field and exploit contextual information in an efficient way.
Based on a very deep network, we propose a 12 layers dilated con-
volutional network for SR (DCNSR). While accelerating 2x speed,
our shallow network achieves better performance than original deep
networks and shows state-of-the-art reconstructed results.

Index Terms— Super-Resolution, Deep Networks, Dilated
Convolution, Acceleration

1. INTRODUCTION

As a classical problem in computer vision, single image super-
resolution (SR) aims at recovering a visually pleasing high-resolution
(HR) image from a given low-resolution (LR) one. Since multiple
HR image patches could correspond to the same LR image patches,
SR is an inherently ambiguous and highly ill-posed problem. To
address this problem, a large number of single image SR methods
have been proposed, such as interpolation-based methods [, 2, 3],
reconstruction-based methods [4, 5, 6] and learning-based meth-
ods [7, 8,9, 10, 11, 12, 13, 14, 15]. Among them, learning-based
methods have attracted more attention from the community recently.
Through learning a mapping function from corresponding pairs of
LR-HR image patches, learning-based methods delivered superior
performance in image SR. More recently, inspired by the great suc-
cess achieved by deep learning, deep convolutional neural networks
(CNNs) have been successfully used for image SR and obtained
large improvements in accuracy [9, 10, 11, 12, 13, 14].

To the best of our knowledge, Dong er al. [9] first pro-
posed super-resolution convolutional neural network (SRCNN) and
demonstrated that CNNs can be used to learn a mapping from LR
to HR space in an end-to-end manner. Lately, in order to investigate
whether domain expertise can be used to design better deep network
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architectures, Wang et al. [10] proposed sparse coding based net-
work (SCN). Based on a set of sparse coding sub-networks, they
successfully added sparse prior into deep network and their SCN
outperforms SRCNN with a smaller model size. Furthermore, deep-
er structures have been explored in [1 1, 12]. Inspired by VGG-net
used for ImageNet classification [16], Kim er al. [11] proposed
a 20 weight layers CNN termed VDSR and obtained a significant
improvement in accuracy. Benefited from larger image contextual
information and stronger learning capacity, deeper network signifi-
cantly boosts performance in image SR. However, increasing depth
basically introduces more parameters and this will cause two prob-
lems. First, expensive computation will slow down the speed of
reconstruction. Second, more training data is required to prevent
over-fitting. To handle the problem of increasing parameters while
keeping performance, Kim et al [12] used a deeply-recursive convo-
lutional network (DRCN). Nonetheless, the computation of DRCN
is as costly as VDSR. Therefore, the speed of SR is still slow for
real time application.

Recently, there are a number of CNN acceleration studies. How-
ever, the exploration of accelerating deep networks for SR is very
limited. The general procedure of SR consists of two decoupled
steps: upsampling the original LR image to the desired size using
bicubic interpolation; taking the upscaled LR image as input and re-
constructing the HR image by learned mapping function. Because of
the first step, the computation cost grows quadratically with the spa-
tial size of the HR image. Thus, handling the upsampling operation
at the end of network is an effective way for acceleration. Inspired
by this idea, Shi ef al. [13] proposed a sub-pixel convolution layer
to store the information of HR image into smaller size feature maps
with multiple channels. Similarly, Dong et al. [14] adopted decon-
volutional layer to replace the bicubic interpolation. Besides, they
re-design the original SRCNN structure into a more compact one.
Their new fast SRCNN achieves a significant speed up. However,
much domain knowledge and cumbersome experiments are needed
for designing a faster architecture. A simple and adaptive method to
accelerate standard CNN networks for image SR is still absent.

In this work, we propose a simple yet effective way to accel-
erate very deep convolutional networks for SR without losing per-
formance. In [11], they compared the SR performance of different
networks with depth ranging from 5 to 20 and indicated that deep-
er networks produced better performance because of large receptive
field and high nonlinearities. Besides this, we further argue that the
size of receptive filed is more important than the depth of network.
In SR problem, high receptive filed means more contextual informa-
tion used for reconstruction. While holding the same size of recep-
tive filed, networks with different depths will produce similar recon-
structed results. So we introduce dilated convolution operation into
the framework of deep learning based SR methods. Compared to
normal convolution, dilated convolution support exponential expan-



sion of the receptive field without increasing filter size. Therefore,
shallower networks with less parameters can obtain the same size of
receptive field as very deep networks. With the help of dilated con-
volution, we show a 12 layers CNN can produce better results than
VDSR, with nearly half parameters and computations.
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Fig. 1. Dilated convolution operation supports larger receptive filed
than traditional convolution. The receptive field of (c) is the same as
(b), but filter size in (c) is only 3 x 3.

Specifically, the details and contributions of this work are mainly
in three aspects:

o We firstly introduce dilated convolution into deep learning
based SR methods and proposed a state-of-the-art dilated con-
volutional network for SR (DCNSR).

e We demonstrate receptive filed is a significant important fac-
tor in SR task. While keeping the same size of receptive field,
networks with different depths will produce similar results.

e With the help of dilated convolution, DCNSR yields better
performance with less parameters and faster speed. The idea
of network design can be easily applied into existing SR ar-
chitectures and this strategy benefits other accelerating ap-
proaches.

In the following, we will first review the related work of VDSR.
Then, in Section 3 we will describe dilated convolution in detail and
present the new DCNSR. Section 4 shows our implementation de-
tails and experiments, in which we compare the performance of our
method with the state-of-the-art approaches. Finally, we conclude
this paper in Section 5.

2. REVIEW OF VERY DEEP CONVOLUTIONAL
NETWORKS FOR SR

Inspired by the successful of deep and thin network in image
classification task [16], Kim et al. [11] designed a very deep con-
volutional networks for SR (VDSR). Compared to 3 weight layers
in SRCNN [9], VDSR used 20 layers and achieved significant im-
provement. All layers except the first and the last are of the same
type: 64 filters of the size 3 x 3 x 64. Both of the first and last
layer consisted of a single filter of size 3 x 3 x 64. Rectified linear
unit (ReLu) is used as activation function. The receptive filed size
of VDSR is 41 x 41, which is much large than SRCNN (13 x 13
in SRCNN). With larger receptive filed size, VDSR can use more
context information to predict image details.

In addition, for speeding up training convergence, they suggest-
ed a residual learning network structure. Instead of reconstructing
HR results directly, they used VDSR to learn the residual of HR and
LR images. The advantage of residual learning can be explained in
two sides. For SR problem, LR images and HR images are largely
similar. Modelling the difference between HR and LR images can
reserve the information of LR images more effectively. This idea is
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similar to former classical SR methods [7] which aimed at recover-
ing the high-frequency information of HR images. For deep neural
networks, residual learning make very deep networks easier to opti-
mize [17]. With the help of this strategy and high learning rate, they
trained VDSR over 80 epochs and achieved a new state-of-the-art
performance in single image SR. Unfortunately, increasing depth ba-
sically introduces more parameters and this will cause to slow down
the speed of reconstruction. In this work, we mainly focus on this
problem, and propose the new DCNSR model.

3. THE PROPOSED MODEL

In this section, we first introduce dilated convolution operation.
Then, we describe the importance of receptive field in CNN based
single image SR. Due to these analyses, we proposed DCNSR by
introducing dilated convolution operation into VDSR, and ensure the
receptive field is same with VDSR.

3.1. Dilated Convolution

Let f : Z* — R be a discrete function. Let Q, = [—r,7]* N Z?
and let k : Q, — R be a discrete filter of size (2r+1)2. The discrete
(full) convolution operator * can be defined as

(fxk)(P)= > f(s)k(t). 0]

s+t=p

Recently, Yu et al. [18] generalized this operator and proposed a new
one named dilated convolution:

(fxk)P)= D f(e)k(). (@)

s+lt=p

where [ is a dilation factor and *; is referred as a dilated convolution
or an [-dilated convolution. The familiar full convolution * can be
regarded as a specific version of [-dilated convolution when [ = 1.

Compared to traditional convolution, the dilated convolution op-
eration can apply the same filter at different ranges using different
dilation factors. Thus, it can support exponential expansion of the
receptive filed without increasing filters size or network depth. For
example, Fig. 1 illustrates the receptive field of different filter size
and dilation. As shown in this figure, the receptive field of 2-dilated
convolution is same with 5 X 5 convolution, while its parameters are
same with the 3 X 3 convolution.

3.2. The Importance of Receptive Field

Yu et al. [18] had demonstrated the effectiveness of dilated con-
volution for dense prediction. Similarly, we argue that image SR can
benefit from dilated convolution operation since receptive filed is al-
so an important factor in SR problem. In the task of SR, the size of
receptive field means the amount of contextual information that can
be exploited to infer high-frequency components. As SR is a highly
ill-posed problem, collecting and analyzing more context can afford
the network more clues to predict image details. Thus, we consider
networks with different depths but the same size of receptive field
will produce similar reconstructed results. There are three strategies
to raise the size of receptive field: (1) holding on filters size, adding
more weight layers; (2) using large filters and (3) replacing tradi-
tional convolution by [/-dilated convolution, where [ > 1. In order
to show the importance of receptive filed and the effectiveness of di-
lated convolution, strategy (2) and (3) are used to get large receptive
field. While holding the same size of receptive field, we compare the
performances of different network settings.
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Fig. 2. Network architectures of VDSR (top) and VDSR_12_Dilated (bottom). VDSR has 20 layers, and VDSR_12_Dilated has 12 layers.

Table 1. Network architecture of VDSR_12_Dilated. Benefiting from dilated convolution operation, VDSR_12_Dilated can achieve 41 x 41

receptive field with 12 layers and 3 x 3 filters.

Layer 1 2 3 4 5 6 7 8 9 10 11 12
Convolution 3x3 | 3x3 | 3x3 3 x3 3x3 3 x3 3 x3 3x3 3 x3 3x3 3 x3 3x3
Dilation 1 1 2 2 2 2 2 2 2 2 1 1
Receptive Filed 3x3 [ 5x5 | 9x9 | 13x13 | 17x17 | 21 x21 | 25 x25 | 29x29 | 33x33 | 37 x37 | 39 x39 | 41 x 41

Output Channels 64 64 64 64 64 64 64 64 64 64 64 1

3.3. DCNSR Model

VDSR achieves the new state-of-the-art and it does not need spe-
cific network structure design, therefore, we choose it as our base-
line network. Holding on the same size of receptive field as VDSR
(41 x 41), we design five networks with different filters size or dila-
tions for comparison. (1) VDSR_20 is the baseline 20 layers network
from [11]. The filter size of all layers is 3 X 3. (2) VDSR_12isa 12
layers network with filter size 3 x 3 and 5 x 5. (3) VDSR_12_Dilated
is also a 12 layers network but with filter size 3 x 3. All layers with
filter size 5 x 5 in (2) are replaced by 3 x 3 filters and 2-dilated con-
volution. (4) VDSR_10 and (5) VDSR_10_Dilated are similar to (2)
and (3) respectively. Fig. 2 illustrates the difference between VDSR
and VDSR_12 Dilated in detail. Table 1 explains how a 12 layers
network achieves 41 x 41 receptive filed.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our method on
several datasets. We first describe datasets used for training and test-
ing. Next, we describe implementation details. Finally, we evalu-
ate different dilated convolution based SR models, and compare our
method with several state-of-the-art SR methods.

4.1. Datasets

Training Dataset: The 91-image dataset from Yang et al. [7] is
widely used as the training set in learning-based SR methods. How-
ever, 91 images are not enough for deep network to gain best perfor-
mance because of the increasing parameters and complexity of deep
model. Therefore, following Kim er al. [11], we used 200 images

from Berkeley Segmentation Dataset [ 19] additionally. Thus 291 im-
ages are used for benchmark with other methods. Data augmentation
technique is used to getting more training data. Scale augmentation
used in [1 1] is also adopted in our training. So we can handle multi-
ple scales SR task with only one model.

Notedly, for results in Section 4.3, we only used 91 images to
train networks fast, so performances can be slightly different be-
tween Section 4.3 and Section 4.4.

Testing Dataset: For a fair comparison, we use Set5 [20], Set14
[21] and BSD100 [19] for testing. The original images are first
down-sampled by bicubic interpolation and then up-sampled to de-
sired size to generate LR-HR image pairs for both training and eval-
uation. Zero padding is applied in all convolutional layers to keep
the size of output maps as the same as input.

4.2. Implementation Details

The network structure and parameters setting are described in
Table 2. We use Adam [22] with a mini-batch size of 64. 31 and
weight dacay are set to 0.9 and 0.0001, respectively. Following [11],
we initialize the weights by the method described in He et al. [23].
All experiments are trained over 80 epochs (11698 iterations with
batch size 64) with a learning rete of 10~*. Gradient clipping used
in [1 1] is not necessary in our training since we use Adam instead of
SGD.

In testing, we only process the luminance channel with our
method. After reconstructing, we shave the image border in the
same way as [9] for objective evaluations to ensure fair comparison.
In our implementation, all the experiments are implemented using
the caffe package [24] on a GTX 980Ti GPU. Since dilated con-
volution operation has not been supported by CuDNN [25], all the




Table 2. Performance of different network settings. All the five networks have 41 x 41 receptive field and scale factor is 2.

VDSR_20 VDSR_12 VDSR_12_Dilated VDSR_10 VDSR_10_Dilated
First Part Conv(3,64,1,D1) Conv(3,64,1,D1) Conv(3,64,1,D1) Conv(3,64,1,D1) Conv(3,64,1,D1)
Conv(3,64,64,D1)- | Conv(3,64,64,D1)-
Conv(3,64,64,D1)- Conv(3,64,64,D1)- Conv(5,64,64,D1)- Conv(3,64,64,D2)-
Mid Part 18Conv(3,64,64,D1) | 8Conv(5,64,64,D1) | 8Conv(3,64,64,D2) | 4Conv(7,64,64,D1) | 4Conv(3,64,64,D3)
-Conv(3,64,64,D1) -Conv(3,64,64,D1) -Conv(5,64,64,D1) -Conv(3,64,64,D2)
-Conv(3,64,64,D1) | -Conv(3,64,64,D1)
Last Part Conv(3,1,64,D1) Conv(3,1,64,D1) Conv(3,1,64,D1) Conv(3,1,64,D1) Conv(3,1,64,D1)
PSNR(Set5) 37.46 dB 37.45 dB 37.44 dB 37.40 dB 37.38 dB
PSNR(Set14) 32.83 dB 32.80 dB 32.87 dB 32.65dB 32.80 dB
PSNR(BSD100) 31.65dB 31.62dB 31.72 dB 31.45dB 31.65dB
Parameters 665921 895873 370368 1082496 296064
Speedup 1.0x 1/13.2x 2.0x 1/10.4x 2.6
Table 3. PSNR and SSIM comparison on three test datasets among different SR methods.
Dataset | Scale Bicubic A+ SRCNN CSCN VDSR_ 20 DCNSR
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM PSNR/SSIM
X2 33.66/0.9299 | 36.57/0.9545 | 36.48/0.9542 | 36.93/0.9552 | 37.58/0.9591 37.46/0.9585
Set5 x3 30.39/0.8682 | 32.67/0.9093 | 32.57/0.9090 | 33.10/0.9144 | 33.68/0.9218 33.74/0.9219
x4 28.42/0.8104 | 30.36/0.8617 | 30.31/0.8628 | 30.86/0.8732 | 33.33/0.8828 31.37/0.8831
X2 30.23/0.8688 | 32.47/0.9063 | 32.45/0.9067 | 32.56/0.9074 | 33.00/0.9125 32.91/0.9116
Set14 x3 27.54/0.7742 | 29.29/0.8203 | 29.30/0.8215 | 29.41/0.8231 | 29.75/0.8305 29.76/0.8312
x4 26.00/0.7027 | 27.47/0.7514 | 27.50/0.7513 | 27.64/0.7578 | 27.95/0.7647 27.99/0.7661
X2 29.56/0.8431 | 30.77/0.8756 | 31.36/0.8879 | 31.40/0.8884 | 31.86/0.8956 31.81/0.8947
BSD100 x3 27.21/0.7385 | 28.18/0.7791 | 28.41/0.7863 | 28.50/0.7875 | 28.80/0.7964 | 28.80/0.7972
x4 25.96/0.6675 | 26.74/0.7065 | 26.90/0.7103 | 27.03/0.7161 | 27.24/0.7230 | 27.26/0.7241

experiments are tested without CuDNN acceleration for comparing
pure computational loads.

VDSR_20

Fig. 3. The ‘8023’ image from BSD100 dataset (4 x upscaling).

4.3. Evaluation of Different Dilated Convolution Based Models

In Table 2, we give the architectures and performances of these
5 networks. All these networks expect VDSR_10 achieve similar
PSNR performance. This is corresponding to our assumption that
different networks with the same size of receptive filed will produce
similar results. With the same depths, dilated networks (3) and (5)
show better performance, less parameters and faster speed than (2)
and (4). This is caused by the drawback of large filter size. While fil-
ters with bigger size can obtain large receptive field, they also brings
more noisy into the network learning procedure. In addition, com-
pared to 3 x 3 filters, there are much redundance in learned 5 x 5
and 7 x 7 kernels because the values in these big kernels are highly
correlated. Lastly, we find that the speed of (2) and (4) are much

slower than (3) and (5), even slower than (1). To sum up, receptive
field is an important factor in SR task and dilated convolution is a
better techniques for achieving large receptive field.

4.4. Comparisons with State-of-the-Art Methods

Since VDSR_12_Dilated achieves the best result with fast speed,
we compare VDSR_12_Dilated with other state-of-the-art SR meth-
ods and named it as dilated convolutional network for SR (DCN-
SR). Compared methods are A+[8], SRCNN [26], CSCN [10] and
our VDSR_20 implementation. The implementations are all from
the publicly available codes provided by the authors. In Table 3,
we provide a summary of quantitative evaluation on testing dataset-
s. Our DCNSR yields the highest average PSNR and SSIM in all
these datasets. In Fig. 3, the reconstructed images of our DSNSR
is much sharper and clearer than other results. Reconstructed results
obtained with DCNSR are available online for all three datasets'.

5. CONCLUSION

In this paper, we introduce dilated convolution to accelerate the
speed of very deep networks for SR. We first show that receptive
field is an important factor in image SR. Networks with different
depths but the same receptive field will produce similar HR results.
Second, we propose dilated convolution to replace full convolution
operation. Dilated convolution operation is a much better technique
for gathering large receptive field. Based on a 20 layers very deep
network, we design five different networks setting and show the ef-
fectiveness of dilated convolution operation both in performance and
speed. Without specific network design, our strategy is a general
method for deep learning based SR acceleration and it benefits other
accelerating approaches.

Thttps://drive.google.com/open?id=0ByMcIJq30j8peGplamJQNjM1TIU
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