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a b s t r a c t 

Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment 

planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel 

brain tumor segmentation method is developed by integrating fully convolutional neural networks (FC- 

NNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results with 

appearance and spatial consistency. We train a deep learning based segmentation model using 2D image 

patches and image slices in following steps: 1) training FCNNs using image patches; 2) training CRFs as 

Recurrent Neural Networks (CRF-RNN) using image slices with parameters of FCNNs fixed; and 3) fine- 

tuning the FCNNs and the CRF-RNN using image slices. Particularly, we train 3 segmentation models 

using 2D image patches and slices obtained in axial, coronal and sagittal views respectively, and combine 

them to segment brain tumors using a voting based fusion strategy. Our method could segment brain 

images slice-by-slice, much faster than those based on image patches. We have evaluated our method 

based on imaging data provided by the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 

2013, BRATS 2015 and BRATS 2016. The experimental results have demonstrated that our method could 

build a segmentation model with Flair, T1c, and T2 scans and achieve competitive performance as those 

built with Flair, T1, T1c, and T2 scans. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Accurate brain tumor segmentation is of great importance in

cancer diagnosis, treatment planning, and treatment outcome eval-

uation. Since manual segmentation of brain tumors is laborious

( Bauer et al., 2013 ), an enormous effort has devoted to the de-

velopment of semi-automatic or automatic brain tumor segmenta-

tion methods. Most of the existing brain tumor segmentation stud-

ies are focusing on gliomas that are the most common brain tu-

mors in adults and can be measured by Magnetic Resonance Imag-

ing (MRI) with multiple sequences, such as T2-weighted fluid at-

tenuated inversion recovery (Flair), T1-weighted (T1), T1-weighted

contrast-enhanced (T1c), and T2-weighted (T2). The segmentation

of gliomas based on MRI data is challenging for following reasons:
∗ Corresponding authors. 
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1) gliomas may have the same appearance as gliosis and stroke

n MRI data ( Goetz et al., 2016 ); (2) gliomas may appear in any

osition of the brain with varied shape, appearance and size; (3)

liomas invade the surrounding brain tissues rather than displac-

ng them, causing fuzzy boundaries ( Goetz et al., 2016 ); and (4) in-

ensity inhomogeneity of MRI data further increases the difficulty. 

The existing automatic and semi-automatic brain tumor seg-

entation methods can be broadly categorized as either gen-

rative model based or discriminative model based methods

 Menze et al., 2015 ). The generative model based brain tumor

egmentation methods typically require prior information, which

ould be gained through probabilistic image atlases ( Gooya et al.,

012 ; Cuadra et al., 2004 ; Menze et al., 2010 ). Based on probabilis-

ic image atlases, the brain tumor segmentation problem can be

odeled as an outlier detection problem ( Prastawa et al., 2004 ). 

On the other hand, the discriminative model based methods

olve the tumor segmentation problem in a pattern classification

etting, i.e., classifying image voxels as tumor or normal tissues

https://doi.org/10.1016/j.media.2017.10.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.10.002&domain=pdf
mailto:yhwu@nlpr.ia.ac.cn
mailto:yong.fan@uphs.upenn.edu
mailto:yong.fan@ieee.org
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ased on image features. The performance of discriminative model

ased segmentation methods are hinged on the image features and

lassification algorithms. A variety of image features have been

dopted in tumor segmentation studies, including local histograms

 Goetz et al., 2014 ), image textures ( Reza and Iftekharuddin, 2014 ),

tructure tensor eigenvalues ( Kleesiek et al., 2014 ), and so on. The

ost commonly adopted pattern classification algorithms in brain

umor segmentation studies are support vector machines (SVMs)

 Ruan et al., 2007 ; Li and Fan, 2012 ; Li et al., 2010 ) and ran-

om forests ( Goetz et al., 2014 ; Reza and Iftekharuddin, 2014 ;

leesiek et al., 2014 ; Meier et al., 2014 ). 

More recently, deep learning techniques have been adopted

n brain tumor segmentation studies following their success

n general image analysis fields, such as images classification

 Krizhevsky et al., 2012 ), objects detection ( Girshick et al., 2014 ),

nd semantic segmentation ( Long et al., 2015 ; Zheng et al.,

015 ; Liu et al., 2015 ). Particularly, Convolutional Neural Networks

CNNs) were adopted for brain tumor image segmentation in the

ultimodal Brain Tumor Image Segmentation Challenge (BRATS)

014 ( Zikic et al., 2014 ; Davy et al., 2014 ; Urban et al., 2014 ). More

eep learning based brain tumor segmentation methods were pre-

ented in the BRATS 2015 and different deep learning models were

dopted, including CNNs ( Dvorak and Menze, 2015 ; Havaei et al.,

015 ; Pereira et al., 2015 ), convolutional restricted Boltzman ma-

hines ( Agn et al., 2015 ), and Stacked Denoising Autoencoders

 Vaidhya et al., 2015 ). 

Among the deep learning based tumor segmentation methods,

he methods built upon CNNs have achieved better performance.

articularly, both 3D-CNNs ( Urban et al., 2014 ; Kamnitsas et al.,

017 ; Yi et al., 2016 ) and 2D-CNNs ( Zikic et al., 2014 ; Davy et al.,

014 ; Dvorak and Menze, 2015 ; Havaei et al., 2015 ; Pereira et al.,

015 ; Havaei et al., 2017 ; Pereira et al., 2016 ) models were adopted

o build tumor segmentation methods. Although 3D-CNNs can po-

entially take full advantage of 3D information of the MRI data, the

etwork size and computational cost are increased too. Therefore,

D-CNNs have been widely adopted in the brain tumor segmenta-

ion methods. Davy et al. proposed a deep learning method with

wo pathways of CNNs, including a convolutional pathway and a

ully-connected pathway ( Davy et al., 2014 ). Dvorak et al. mod-

led the multi-class brain tumor segmentation task as 3 binary

egmentation sub-tasks and each sub-task was solved using CNNs

 Dvorak and Menze, 2015 ). Very deep CNNs ( Simonyan and Zis-

erman, 2014 ) were adopted to segment tumors by Pereira et al.

2015 ). Most of these brain tumor segmentation methods train

NNs using image patches, i.e., local regions in MR images. These

ethods classify each image patch into different classes, such as

ealthy tissue, necrosis, edema, non-enhancing core, and enhanc-

ng core. The classification result of each image patch is used to la-

el its center voxel for achieving the tumor segmentation. Most of

he above CNN brain tumor segmentation methods assumed that

ach voxel’s label is independent, and they didn’t take the appear-

nce and spatial consistency into consideration. To take the local

ependencies of labels into account, Havaei et al. constructed a

ascaded architecture by taking the pixel-wise probability segmen-

ation results obtained by CNNs trained at early stages as addi-

ional input to their following CNNs ( Havaei et al., 2015, 2017 ). To

ake into consideration appearance and spatial consistency of the

egmentation results, Markov Random Fields (MRFs), particularly

onditional Random Fields (CRFs), have been integrated with deep

earning techniques in image segmentation studies, either used as

 post-process step of CNNs ( Kamnitsas et al., 2017 ; Chen et al.,

014 ) or formulated as neural networks ( Zheng et al., 2015 ;

iu et al., 2015 ). In the latter setting, both CNNs and MRFs/CRFs can

e trained with back-propagation algorithms, tending to achieve

etter segmentation performance. 
Multiple 2D CNNs could be integrated for segmenting 3D med-

cal images. In particular, Prasoon et al. proposed a triplanar CNN

 Prasoon et al., 2013 ) for knee cartilage segmentation. The tripla-

ar network used 3 CNNs to deal with patches extracted from

y, yz and zx planes and fused them using a softmax classifier

ayer. Fritscher et al. proposed a pseudo 3D patch-based approach

 Fritscher et al., 2016 ), consisting of 3 convolutional pathways for

mage patches in axial, coronal, and sagittal views respectively

nd fully connected layers for merging them. Setio et al. used

ulti-view convolutional networks for pulmonary nodule detec-

ion ( Setio et al., 2016 ). Their proposed network architecture com-

osed multiple streams of 2D CNNs, each of which was used to

eal with patches extracted in a specific angle of the nodule can-

idates. The outputs of the multiple streams of 2D CNNs were fi-

ally combined to detect pulmonary nodules. However, all these

ethods built CNNs upon image patches, not readily extendable

or building FCNNs. 

Preprocessing of MRI data plays an important role in the dis-

riminative model based tumor segmentation methods that as-

ume different MRI scans of the same modality have comparable

mage intensity information. The intensities of different MRI scans

an be normalized by subtracting their specific mean values and

ividing by their specific standard deviation values or by matching

istograms ( Kleesiek et al., 2014 ; Urban et al., 2014 ). However, the

ean values of intensities of different MRI scans do not necessarily

orrespond to the same brain tissue, and the histogram matching

ight not work well for tumor segmentation studies ( Goetz et al.,

014 ). A robust intensity normalization has been adopted in tumor

egmentation studies by subtracting the gray-value of the high-

st histogram bin and normalizing the standard deviation to be 1

 Goetz et al., 2014 ). 

Inspired by the success of deep learning techniques in med-

cal image segmentation, we propose a new brain tumor seg-

entation method by integrating Fully Convolutional Neural Net-

orks (FCNNs) and CRFs in a unified framework. Particularly, we

ormulate the CRFs as Recurrent Neural Networks ( Zheng et al.,

015 ), referred to as CRF-RNN. The integrative model of FCNNs

nd CRF-RNN is trained in 3 steps: (1) training FCNNs using im-

ge patches; (2) training CRF-RNN using image slices with pa-

ameters of FCNNs fixed; and (3) fine-tuning the whole network

sing image slices. To make use of 3D information provided by

D medical images, we train 3 segmentation models using 2D

mage patches and slices obtained in axial, coronal and sagit-

al views respectively, and combine them to segment brain tu-

ors using a voting based fusion strategy. The proposed method is

ble to segment brain images slice-by-slice, which is much faster

han the image patch based segmentation methods. Our method

ould achieve competitive segmentation performance based on

 MR imaging modalities (Flair, T1c, T2), rather than 4 modal-

ties (Flair, T1, T1c, T2) ( Menze et al., 2015 ; Goetz et al., 2014 ;

eza and Iftekharuddin, 2014 ; Kleesiek et al., 2014 ; Meier et al.,

014 ; Zikic et al., 2014 ; Davy et al., 2014 ; Urban et al., 2014 ;

vorak and Menze, 2015 ; Havaei et al., 2015 ; Pereira et al., 2015 ;

gn et al., 2015 ; Vaidhya et al., 2015 ; Kamnitsas et al., 2017 ;

i et al., 2016 ; Havaei et al., 2017 ; Pereira et al., 2016 ), which

ould help reduce the cost of data acquisition and storage. We

ave evaluated our method based on imaging data provided by the

ultimodal Brain Tumor Image Segmentation Challenge (BRATS)

013, the BRATS 2015, and the BRATS 2016. The experimental re-

ults have demonstrated that our method could achieve promising

rain tumor segmentation performance. Preliminary results have

een reported in a conference proceeding paper of the BRATS 2016

 Zhao et al., 2016 ). 
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2. Methods and materials 

2.1. Imaging data 

All the imaging data used in this study were obtained from

the BRATS 2013, 1 the BRATS 2015 2 and the BRATS 2016. 3 The

BRATS 2013 provided clinical imaging data of 65 glioma patients,

including 14 patients with low-grade gliomas (LGG) and 51 pa-

tients with high-grade gliomas (HGG). The patients were scanned

with MRI scanners from different vendors at 4 different centers,

including Bern University, Debrecen University, Heidelberg Univer-

sity, and Massachusetts General Hospital. Each patient had multi-

parametric MRI scans, including T2-weighted fluid attenuated in-

version recovery (Flair), T1-weighted (T1), T1-weighted contrast-

enhanced (T1c), and T2-weighted (T2). All the MRI scans of the

same patient were rigidly co-registered to their T1c scan and re-

sampled at 1 mm isotropic resolution in a standardized axial ori-

entation with a linear interpolator ( Menze et al., 2015 ). All im-

ages were skull stripped. Ground truths were produced by man-

ual annotations. The cases were split into training and testing sets.

The training set consists of 20 HGG and 10 LGG cases. The testing

set consists of Challenge and Leaderboard subsets. The Challenge

dataset has 10 HGG cases and the Leaderboard dataset contains 21

HGG and 4 LGG. 

The imaging dataset provided by BRATS 2015 contains imag-

ing data obtained from the BRATS 2012, 2013, and the NIH Can-

cer Imaging Archive (TCIA). Each case has Flair, T1, T1c, and T2

scans aligned onto the same anatomical template space and inter-

polated at 1 mm 

3 voxel resolution. The testing dataset consists of

110 cases with unknown grades, and the training dataset consists

of 220 HGG and 54 LGG cases. In the testing dataset, the ground

truth of each case was produced by manual annotation. In the

training dataset, all the cases from the BRATS 2012 and 2013 were

labeled manually, and the cases from the TCIA were annotated by

fusing segmentation results obtained using top-ranked methods of

the BRATS 2012 and 2013. The annotations were inspected visually

and approved by experienced raters. The tumor labels of the train-

ing cases are provided along with their imaging scans, while only

imaging data are provided for the testing cases for blind evaluation

of the segmentation results. 

BRATS 2016 shares the same training dataset with BRATS 2015,

which consists of 220 HGG and 54 LGG. Its testing dataset consists

of 191 cases with unknown grades. The ground truth of each test-

ing case was produced by manual annotation, not released to the

competition participants. 

2.2. Brain tumor segmentation methods based on FCNNs trained 

using image patches 

Deep learning techniques, particularly CNNs, have been suc-

cessfully adopted in image segmentation studies. A deep learn-

ing model of CNNs usually has millions or even billions of pa-

rameters. To train the deep CNNs with sufficient training sam-

ples, image patch-based techniques are adopted ( Zikic et al., 2014 ;

Davy et al., 2014 ; Urban et al., 2014 ; Dvorak and Menze, 2015 ;

Havaei et al., 2015, 2017 ; Pereira et al., 2015 ; Kamnitsas et al.,

2017 ; Pereira et al., 2016 ; Zhang et al., 2015 ; Moeskops et al., 2016 ;

de Brebisson and Montana, 2015 ). With the image patch based rep-

resentation, the image segmentation problem can be solved as a

classification problem of image patches. 

An image patch is a local region extracted from an image to

characterize its central pixel/voxel in 2D/3D, and has the same la-
1 https://www.virtualskeleton.ch/BRATS/Start2013 . 
2 https://www.virtualskeleton.ch/BRATS/Start2015 . 
3 https://www.virtualskeleton.ch/BRATS/Start2016 . 

 

 

 

 

 

el as its center pixel/voxel’s label in the classification problem.

n the training phase, a large number of image patches can be

xtracted to train the CNNs. In the testing phase, image patches

xtracted from a testing image are classified one by one by the

rained CNNs. Then, the classification results of all image patches

ake up a segmentation result of the testing image. However, FC-

Ns can segment a testing image slice by slice with improved

omputational efficiency ( Havaei et al., 2017 ), even though the

odel is trained using image patches. Since the number and lo-

ation of training image patches for each class can be easily

ontrolled by changing the image patch sampling scheme, image

atch-based deep learning segmentation methods can avoid the

raining sample imbalance problem. However, a limitation of im-

ge patch-based segmentation methods is that relationship among

mage patches is typically lost. Integrating CRF-RNN with FCNNs

ends to overcome such a limitation in tumor segmentation. 

.3. The proposed brain tumor segmentation method 

The proposed brain tumor segmentation method consists of 4

ain steps: pre-processing, segmenting image slices using deep

earning models with integrated FCNNs and CRF-RNN from axial,

oronal and sagittal views respectively, fusing segmentation results

btained in the three different views, and post-processing. 

.3.1. Pre-processing of the imaging data 

Since MRI scans typically have varied intensity ranges and are

ffected by bias fields differently, we adopted a robust intensity

ormalization method to make MRI scans of different patients

omparable, besides correcting the bias field of MRI data using

4ITK ( Tustison et al., 2010 ). Our normalization method is built

pon the image mode based method ( Goetz et al., 2014 ), which

ormalizes image intensity by subtracting the image mode (e.g. the

ray-value of the highest histogram bin) and normalizing the stan-

ard deviation to be 1. As almost half of the brain is the whiter

atter ( Fields, 2010 ), the gray-value of the highest histogram bin

ypically corresponds to the gray-value of the white matter, and

herefore matching intensity values of the white matter across

RI scans and normalizing the intensity distributions accordingly

ould largely make different MRI scans comparable. However, the

tandard deviation calculated based on intensity mean value does

ot necessarily have a fixed tissue meaning. Therefore, in our study

 robust intensity deviation is adopted to replace the standard de-

iation used in Goetz et al. (2014 ). The robust deviation is com-

uted based on the gray-value of the highest histogram bin, rep-

esenting the discreteness of intensity to the gray-value of white

atter. Besides, the intensity mean is more sensitive to noise than

he gray value of the highest histogram bin. Thus the standard de-

iation calculated based on intensity mean is more sensitive to

oise than the robust deviation. 

Given an MRI scan V with voxels { v 1 , v 2 , ���, v N }, and each

oxel v k has intensity I k , k = 1 , 2 , · · · , N, the robust deviation ˜ σ =
 ∑ N 

k =1 ( ̂
 I − I k ) 

2 
/N , where ˆ I denotes the gray-value of the highest

istogram bin. Our intensity normalization procedure is following: 

Step 1. Transform the intensity range to 0–255 linearly. 

Step 2. Calculate the intensity histogram, with 256 bins. 

Step 3. Subtract the gray-value of the highest histogram bin Î 

and divide the robust deviation . 

Step 4. Multiply each voxel’s intensity by a constant σ and plus

a constant I 0 . Then, set the intensities that are below 0 or

above 255 to 0 and 255 respectively. In the present study,

we set σ and I 0 equal to the gray-value of the highest his-

togram bin and robust deviation of NO. 0 0 01 HGG clinical

training image data of BRATS 2013, which has been pre-

https://www.virtualskeleton.ch/BRATS/Start2013
https://www.virtualskeleton.ch/BRATS/Start2015
https://www.virtualskeleton.ch/BRATS/Start2016
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Fig. 1. T2 scans before (top row) and after (bottom row) the proposed intensity normalization. (a-1)-(a-3) and (b-1)-(b-3) are randomly selected subjects from the BRATS 

2013, and (a-4)-(a-6) and (b-4)-(b-6) are randomly selected subjects from the BRATS 2015. (a-1)-(a-6): before normalization; (b-1)-(b-6): after normalization. All the scans 

were preprocessed by N4ITK and the proposed normalization step 1. 

Fig. 2. Image intensity histograms of T2 scans of 30 subjects from the BRATS 2013 training dataset before (left) and after (right) the intensity normalization. All the scans 

were preprocessed by N4ITK and the proposed normalization step 1. 
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processed by N4ITK and the Step 1. For the Flair, T1c, and

T2 scans, σ = 30, 31, 37 and I 0 = 75, 99, 55 respectively. 

The image intensity normalization effect is illustrated with T2

cans in Fig. 1 . Particularly, we randomly selected 3 subjects from

he BRATS 2013 and 3 subjects from the BRATS 2015. The results

hown in Fig. 1 clearly demonstrated that the image intensity nor-

alization could improve comparability of different scans. The im-

rovement is further confirmed by image intensity histograms of

0 subjects from the BRATS 2013 training dataset, as shown in

ig. 2 . 

.3.2. A deep learning model integrating FCNNs and CRFs 

The proposed deep learning model for brain tumor segmenta-

ion integrates Fully Convolutional Neural Networks (FCNNs) and

onditional Random Fields (CRFs), as illustrated by Fig. 3 . We for-

ulated CRFs as Recurrent Neural Networks (RNNs), referred to as

RF-RNN ( Zheng et al., 2015 ). The proposed method could segment

rain images slice by slice. 

.3.2.1. FCNNs. The structure of our proposed FCNNs is illus-

rated by Fig. 4 . Similar to the network architectures proposed in

amnitsas et al. (2017 ) and Havaei et al. (2017 ), the inputs to our

etwork are also in 2 different sizes. Passing through a series of

onvolutional and pooling layers, the larger inputs turn into feature

aps with the same size of smaller inputs. These feature maps

nd smaller inputs are sent into following networks together. In

his way, both local image information and context information in

 larger scale can be taken into consideration for classifying im-

ge patches. Different from the cascaded architecture proposed in

avaei et al. (2017 ), the two branches in our FCNNs are trained si-

ultaneously, rather than trained in different steps. Furthermore,

ur model has more convolutional layers. 
Our deep FCNNs are trained using image patches, which are ex-

racted from slices of the axial view, coronal view or sagittal views

andomly. Equal numbers of training samples for different classes

re extracted to avoid data imbalance problem. There are 5 classes

n total, including healthy tissue, necrosis, edema, non-enhancing

ore, and enhancing core. 

As shown in Fig. 4 , in our deep FCNNs, the kernel size of each

ax pooling layer is set to n × n , and the size of image patches

sed to train FCNNs is proportional to the kernel size. Different

ettings of the kernel size or equivalently the image patch size may

ffect the tumor segmentation performance. The max pooling lay-

rs of our FCNNs are used to capture image information in large

cales with a relatively small number of network parameters. We

et the stride of each layer to be 1. Therefore, in the testing stage,

ur model can segment brain images slice by slice. 

.3.2.2. CRF-RNN. CRF-RNN formulates 2D fully connected Condi-

ional Random Fields as Recurrent Neural Networks ( Zheng et al.,

015 ). Given a 2D image I , comprising a set of pixels { I i | i =
 , . . . , M} , the image segmentation problem is solved as an opti-

ization problem using fully connected CRFs by minimizing an en-

rgy function ( Krahenbuhl and Koltun, 2011 ): 

 ( Y ) = 

M ∑ 

i =1 

�
(
y u i 

)
+ 

∑ 

∀ i, j,i< j 

�
(
y u i , y 

v 
j 

)
, (1) 

here Y is a certain label assignment to I , i, j ∈ { 1 , . . . , M } , y u 
i 

de-

otes the assignment of label u to pixel I i , y v 
j 

denotes the assign-

ent of label v to pixel I j , u, v ∈ L = { l 1 , l 2 , · · · , l C } are segmentation

abels, the unary term �( y u 
i 
) measures the cost of assigning label

 to pixel I i , and the pairwise term �( y u 
i 
, y v 

j 
) measures the cost of

ssigning label u and v jointly to I i and I j . According to Liu et al.
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Fig. 3. Flowchart of the proposed deep learning model integrating FCNNs and CRFs for brain tumor segmentation. 

Fig. 4. The network structure of our deep FCNNs. 
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(2015 ), minimizing E ( Y ) equals to minimizing an energy function: 

F ( Q ) = 

∑ 

∀ i 

∑ 

∀ u ∈ L 
q u i �

(
y u i 

)
+ 

∑ 

∀ i, j,i< j 

∑ 

∀ u ∈ L 

∑ 

∀ v ∈ L 
q u i q 

v 
j �

(
y u i , y 

v 
j 

)
+ 

∑ 

∀ i 

∑ 

∀ u ∈ L 
q u i lnq u i , (2)

where q u 
i 

denotes the probability of assigning label u to pixel I i ,

which is the variable that we aim to estimate. 

Differentiating Eq. (2) with respect to q u 
i 

and setting the differ-

entiation result equal to 0, we have 

q u i ∝ exp 

{ 

−�
(
y u i 

)
−

∑ 

j, j � = i 

∑ 

∀ v ∈ L 
q v j �

(
y u i , y 

v 
j 

)} 

, (3)

The unary term �( y u 
i 
) can be obtained from the FCNNs, and

the pairwise potential �( y u 
i 
, y v 

j 
) is defined as 

�
(
y u i , y 

v 
j 

)
= μ( u, v ) 

K ∑ 

m =1 

w 

( m ) k ( m ) 
(

f i , f j 
)
, (4)

where K = 2 is the number of Gaussian kernel; k ( m ) is a Gaussian

kernel, k (1) = exp ( −| s i −s j | 
2 θ2 

α
− | e i −e j | 

2 θ2 
β

) and k (2) = exp( −| s i −s j | 
2 θ2 

γ
) ( e i and
 j denote the intensity of I i and I j respectively, s i and s j denote spa-

ial coordinates of I i and I j , θα , θβ and θγ are parameters of the

aussian kernels); w 

( m ) is a weight for the Gaussian kernel k ( m ) ; f i 
nd f j denote image feature vectors of I i and I j respectively, encod-

ng their intensity ( e i , e j ) and spatial position information ( s i , s j );

( u, v ) indicates the compatibility of labels u and v . Substituting

4) into (3) , we get: 

 

u 
i ∝ exp 

{ 

−�
(
y u i 

)
−

∑ 

∀ v ∈ L 
μ( u, v ) 

K ∑ 

m =1 

w 

( m ) 
∑ 

∀ j � = i 
k ( m ) 

(
f i , f j 

)
q v j 

} 

. (5)

Fully connected CRF predicts the probability of assigning label

 to pixel I i according to Eq. (5) , and q u 
i 

can be calculated using

 mean field iteration algorithm formulated as Recurrent Neural

etworks so that CNNs and the fully connected CRF are integrated

s one deep network and can be trained using a back-propagation

lgorithm ( Zheng et al., 2015 ). Fig. 5 shows the network structure

f CRF-RNN. G1 and G2 in Fig. 5 are two gating functions: 

 in = 

{
P norm 

= sof t max ( P ) , init ializat ion, t = 0 

Q out = one mean f ield interation ( Q in ) , 0 < t ≤ T 
, (6)
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Fig. 5. The network structure of CRF-RNN. 
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 f inal = 

{
0 , 0 < t < T 
Q out , t = T 

, (7) 

here Q = { q u 
i 
|∀ i ∈ [ 1 , 2 , . . . , M ] , ∀ u ∈ L } , Q in denotes the input Q of

ne mean-field iteration; Q out denotes the output Q of one mean-

eld iteration; Q final denotes the final prediction results of CRF-

NN; P denotes the output of FCNNs, and P norm 

denotes the P

hat after softmax operation; t represents the t th mean-field iter-

tion, and T is the total number of mean-field iterations. In our

tudy, the unary term −�( y u 
i 
) is the output of FCNNs, and the

airwise potential �( y u 
i 
, y v 

j 
) are computed based on pixel features

 i and f j with information provided by Flair, T1c and T2 slices with

α = 160 , θβ = 3 , θγ = 3 while w and μ are learned in the train-

ng phase ( Zheng et al., 2015 ). By integrating FCNNs and CRF-RNN

n one deep network, we are able to train the network end-to-end

ith a typical back-propagation algorithm ( Zheng et al., 2015 ). 

.3.2.3. The integration of FCNNs and CRF-RNN. The proposed brain

umor segmentation network consists of FCNNs and CRF-RNN. The

CNNs predict the probability of assigning segmentation labels to

ach pixel, and the CRF-RNN takes the prediction results and im-

ge information as its input to globally optimize appearance and

patial consistency of the segmentation results according to each

ixel’s intensity and position information. 

The proposed deep learning network of FCNNs and CRF-RNN is

rained in 3 steps: (1) training FCNNs using image patches; (2)

raining CRF-RNN using image slices with parameters of FCNNs

xed; and (3) fine-tuning the whole network using image slices. 

Once the fine-tune of deep learning based segmentation model

s done, the model can be applied to image slices one by one

or segmenting tumors. Given an w × h image slice with 3 chan-

els, i.e., pre-processed Flair, T1c, and T2 scans respectively, we

rst pad the image slice with zeros to create 2 larger images with

izes of ( w + 17 + 3 n ) × ( h + 17 + 3 n ) × 3 and ( w + 34 + 6 n ) ×
( h + 34 + 6 n ) × 3 respectively. Using these 2 larger images as in-

uts of the FCNNs, we obtain 5 label predication images P u , u =
 , 2 , 3 , 4 , 5 , P u = { p u 

i, j 
| i ∈ [ 1 , 2 , . . . , w ] , j ∈ [ 1 , 2 , . . . , h ] } , with the

ame size of the original image slices. p u 
i, j 

represents one pixel’s

redicted probability of brain tissue labels, such as healthy tis-

ue, necrosis, edema, non-enhancing core or enhancing core. Then,

hese label predication images P = { P u | u = 1 , 2 , 3 , 4 , 5 } along with

he image slice I = { I F lair , I T 1 c , I T 2 } are used as inputs to the CRF-

NN. Finally, the CRF-RNN obtains a globally optimized segmenta-

ion result of the original image slice. Fig. 3 shows the flowchart of
he proposed deep learning model integrating FCNNs and CRF-RNN

or brain tumor segmentation. 

In the training Steps 2 and 3, we first calculate softmax loss ac-

ording to the current segmentation results and the ground truth,

nd then the loss information is back-propagated to adjust network

arameters of the integrated FCNNs and CRF-RNN. In the training

tep 2, we fix FCNNs and adjust the parameters in CRF-RNN. In

he training Step 3, we set a small learning rate and fine-tune the

arameters of the whole network. In our experiments, the initial

earning rate was set to 10 −5 and the learning rate was divided by

0 after each 20 epoches in the training Step 1, and the learning

ate was set to 10 −8 and 10 −10 respectively in the training Steps 2

nd 3. 

.3.3. Fusing segmentation results obtained in axial, coronal and 

agittal views 

We train 3 segmentation models using patches and slices of ax-

al, coronal and sagittal views respectively. During testing, we use

hese 3 models to segment brain images slice by slice in 3 different

iews, yielding 3 segmentation results. A majority voting strategy

s adopted to fuse the segmentation results. Let r a , r c , and r s de-

ote the segmentation results of one voxel gotten in axial, coronal

nd sagittal views respectively, let r denote the segmentation re-

ult after fusion, let 0, 1, 2, 3, 4 denote a voxel labeled as healthy

issue, necrosis, edema, non-enhancing core, and enhancing core

espectively, the fused segmentation result is obtained by follow-

ng voting procedure: 

Step 1. If two or more than two of r a , r c , and r s are above 0, let

r = 2 . 

Step 2. If two or more than two of r a , r c , and r s equal to 1, let

r = 1 . 

Step 3. If two or more than two of r a , r c , and r s equal to 3, let

r = 3 . 

Step 4. If two or more than two of r a , r c , and r s equal to 4, let

r = 4 . 

.3.4. Post-processing 

To further improve the brain tumor segmentation performance,

 post-processing method is proposed. Hereinafter, V Flair , V T 1 c , V T 2 

enote pre-processed Flair, T1c, T2 MR images respectively, Res

enotes the segmentation result obtained by our integrated deep

earning model, V Flair ( x, y, z ), V T 1 c ( x, y, z ), V T 2 ( x, y, z ), and Res ( x, y,

 ) denote the value of voxel ( x, y, z ) in V Flair , V T 1 c , V T 2 , and Res re-

pectively, Res ( x, y, z ) = 0 , 1 , 2 , 3 , 4 indicates that the voxel ( x, y, z )
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is labeled as healthy tissue, necrosis, edema, non-enhancing core,

and enhancing core respectively, Mean Flair and Mean T 2 denote the

average intensity of the whole tumor region indicated by Res in

V Flair and V T 2 scans. For a segmentation result Res with N 3D con-

nected tumor regions, mean flair ( n ) and mean t 2 ( n ) denote the av-

erage intensity of the n th 3D connected tumor area in V Flair and

V T 2 respectively. The post-processing method consists of following

step: 

Step 1. If mean flair ( n ) > θ11 and mean t 2 ( n ) > θ12 , set all voxels in

the n th 3D connected tumor area in Res to be 0 so that the

n th 3D connected tumor region is removed from Res , taking

into consideration that isolated local areas with super high

intensities are usually caused by imaging noise rather than

tumors. In the present study, θ11 = θ12 = 150 . 

Step 2. If a voxel ( x, y, z ) satisfies the following conditions at

the same time: 

1 © V Flair ( x, y, z ) < θ21 × Mean Flair , 2 © V T 1 c ( x, y, z ) < θ22 , 3 ©
V T 2 ( x, y, z ) < θ23 × Mean T 2 , 4 © Res ( x, y, z ) < 4, set Res ( x, y, z ) =
0 . 

In general, tumor tissues have high signal in at least one

modality of Flair, T1c, and T2. Voxels with low signal in Flair,

T1c, and T2 at the same time are generally not tumor tis-

sues. Thus, this step removes those segmented tumor re-

gions whose intensities in Flair, T1c, T2 are below 3 thresh-

olds respectively. However, enhancing core is an exception.

In the present study, θ21 = 0 . 8 , θ22 = 125 , θ23 = 0 . 9 . 

Step 3. Let volume ( n ) denote the volume of the n th 3D

connected tumor area in Res. Volume max is the volume

of the maximum 3D connected tumor area in Res . If

volume ( n )/ Volume max < θ31 , remove the n th 3D connected

segmented tumor region in Res . In the present study, θ31 =
0 . 1 . 

Step 4. Fill the holes in Re s with necrosis. Holes in Res are very

likely to be necrosis. 

Step 5. If V T 1 c ( x, y, z ) < θ41 and Res ( x, y, z ) = 4 , set Res ( x, y, z ) =
1 . Our model may mistakenly label necrosis areas as enhanc-

ing core. This step corrects this potential mistake through a

threshold in T1c. In the present study, θ41 = 100 . 

Step 6. Let vol e denote the volume of enhancing core repre-

sented in Res , and vol t denote the volume of the whole

tumor. If vol e / vol t < θ61 , V T 1 c ( x, y, z ) < θ62 , and Res ( x, y, z ) =
2 , set Res ( x, y, z ) = 3 . Our tumor segmentation model is

not sensitive to non-enhancing core. In our model, non-

enhancing regions might be mistakenly labeled as edema,

especially when the enhancing core region is very small. In

the present study, θ61 = 0 . 05 , θ62 = 85 . 

The parameters were set based on the BRATS 2013 dataset.

Since the number of training cases of the BRATS 2013 is small, we

did not cross-validate the parameters, therefore they are not nec-

essarily optimal. We used the same parameters in all of our exper-

iments, including our experiments on BRATS 2013, 2015 and 2016.

In addition to the aforementioned post-processing steps, we could

also directly use CRF as a post-processing step of FCNNs as did in

a recent study ( Kamnitsas et al., 2017 ). 

3. Experiments 

Our experiments were carried out based on imaging data pro-

vided by the BRATS 2013, 2015 and 2016 on a computing server

with multiple Tesla K80 GPUs and Intel E5-2620 CPUs. However,

only one GPU and one CPU were useable at the same time for

our experiments. Our deep learning models were built upon Caffe

( Jia et al., 2014 ). 

Based on the BRATS 2013 data, a series of experiments were

carried out to evaluate how different implementation of the pro-
osed method affect tumor segmentation results with respect to

RF, post-processing, image patch size, number of training image

atches, pre-processing, and imaging scans used. We also present

egmentation results obtained for the BRATS 2013. The segmenta-

ion model was built upon the training data and then evaluated

ased on the testing data. Since no ground truth segmentation re-

ult for the testing data was provided, all the segmentation re-

ults were evaluated by the BRATS evaluation website. The tumor

egmentation performance was evaluated using the BRATS seg-

entation evaluation metrics for complete tumor, core region, and

nhancing region, including Dice, Positive Predictive Value (PPV),

nd Sensitivity. Particularly, the complete tumor includes necrosis,

dema, non-enhancing core, and enhancing core; the core region

ncludes necrosis, non-enhancing core, and enhancing core; and

he enhancing region only includes the enhancing core. The tumor

egmentation evaluation metrics are defined as follows: 

Dice ( P ∗, T ∗) = 

| P ∗ ∩ T ∗| 
( | P ∗| + | T ∗| ) / 2 

, P P V ( P ∗, T ∗) = 

| P ∗ ∩ T ∗| 
| P ∗| , 

Sensit i v it y ( P ∗, T ∗) = 

| P ∗ ∩ T ∗| 
| T ∗| 

here ∗ indicates complete, core or enhancing region, T ∗ denotes

he manually labeled region, P ∗ denotes the segmented region,

 P ∗ ∩ T ∗| denotes the overlap area between P ∗ and T ∗ , and | P ∗ | and

 T ∗ | denote the areas of P ∗ and T ∗ respectively. 

.1. Experiments on BRATS 2013 dataset 

The BRATS 2013 training dataset contains 10 LGG and 20 HGG.

ts testing dataset consists of two subsets, namely Challenge and

eaderboard. The Challenge dataset has 10 HGG cases and the

eaderboard dataset contains 21 HGG and 4 LGG. 

A number of experiments were carried out based on the BRATS

013 dataset, including (1) comparing the segmentation perfor-

ance of FCNNs with and without post-processing, and the per-

ormance of the proposed deep learning network integrating FC-

Ns and CRF-RNN (hereinafter referred to as FCNN + CRF) with

nd without post-processing, in order to validate the effective-

ess of CRFs and post-processing; (2) evaluating the segmenta-

ion performance of FCNN + CRF with 5 post-processing steps (6

ost-processing steps in total), in order to test the effectiveness of

ach post-processing step; (3) evaluating the segmentation perfor-

ance of FCNNs trained using different sizes of patches; (4) eval-

ating the segmentation performance of FCNNs trained using dif-

erent numbers of patches; (5) comparing the segmentation per-

ormance of segmentation models built upon scans of 4 imaging

equences (Flair, T1, T1c, and T2) and 3 imaging sequences (Flair,

1c, and T2); and (6) evaluating how the image preprocessing step

ffect the segmentation performance. All the above experiments

ere performed in axial view. Apart from these experiments de-

cribed above, we show the effectiveness of fusing segmentation

esults of three views in Section 3.1.7 and summarize comparison

esults with other methods in Section 3.1.8 . 

.1.1. Evaluating the effectiveness of CRFs and post-processing 

Table 1 shows the evaluation results of FCNNs with and with-

ut post-processing, and FCNN + CRF (our integrated network of

CNNs and CRF-RNN) with and without post-processing on the

RATS 2013 Challenge dataset and Leaderboard dataset. These re-

ults demonstrated that CRFs improved the segmentation accuracy

nd so did the post-processing. With respect to both Dice and

PV, FCNN + post-process and FCNN + CRF improved the segmen-

ation performance in all complete tumor, core region, and en-

ancing region. However, CRFs and post-process reduced Sensitiv-

ty. It is worth noting that CRFs improved Sensitivity of the en-

ancing region. In summary, CRFs improved both the Dice and PPV
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Table 1 

Evaluation results of FCNNs with and without post-processing, FCNN + CRF with and without post-processing, and FCNN + 3D-CRF with and without post- 

processing. (The sizes of image patches used to train FCNNs were 33 ∗33 ∗3 and 65 ∗65 ∗3 respectively, n = 5, and the number of patches used to train FCNNs 

was 50 0 0 ∗5 ∗20. FCNN + CRF is short for the integrated network of FCNNs and CRF-RNN). 

Dataset Methods Dice PPV Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Challenge FCNNs 0.74 0.72 0.67 0.62 0.63 0.60 0.94 0.86 0.77 

FCNN + post-process 0.81 0.75 0.73 0.73 0.70 0.73 0.94 0.85 0.74 

FCNN + CRF 0.85 0.80 0.70 0.87 0.80 0.63 0.84 0.81 0.80 

FCNN + CRF + post-process 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

FCNN + 3D-CRF 0.85 0.80 0.73 0.84 0.78 0.69 0.88 0.83 0.80 

FCNN + 3D-CRF + post-process 0.87 0.83 0.78 0.89 0.85 0.78 0.86 0.83 0.79 

Leaderboard FCNNs 0.70 0.61 0.54 0.58 0.57 0.49 0.96 0.74 0.67 

FCNN + post-process 0.81 0.65 0.61 0.74 0.63 0.62 0.94 0.78 0.66 

FCNN + CRF 0.83 0.66 0.57 0.85 0.71 0.50 0.85 0.69 0.71 

FCNN + CRF + post-process 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68 

FCNN + 3D-CRF 0.84 0.65 0.61 0.81 0.71 0.57 0.90 0.71 0.71 

FCNN + 3D-CRF + post-process 0.87 0.71 0.63 0.88 0.74 0.63 0.88 0.79 0.70 

Fig. 6. Example segmentation results on the BRATS 2013 Challenge dataset. The first and second rows show the segmentation results of the 50th and 80th slice of the axial 

view of Subject 0301. The third and fourth rows show the segmentation results of the 40th and 70th slice of the axial view of Subject 0308. From left to right: Flair, T1c, 

T2, segmentation results of FCNNs, segmentation results of FCNN + CRF, and segmentation results of FCNN + CRF + post-process. In the segmentation results, each gray level 

represents a tumor class, from low to high: necrosis, edema, non-enhancing core, and enhancing core. 
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nd decreased the Sensitivity on the complete and core regions,

CNN + CRF + post-process obtained the best performance with re-

pect to Dice and PPV, but degraded the performance with respect

o the Sensitivity, especially on the complete tumor region. 

We also adopted a 3D CRF based post-processing step as did

n a recent study ( Kamnitsas et al., 2017 ). Particularly, the param-

ters of the 3D CRF were optimized by grid searching based on

he training dataset of BRATS 2013. Table 1 summarizes segmenta-

ion scores obtained by our method with different settings. These

esults indicated that 3D CRF as a post-processing step could im-

rove the segmentation performance as 3D information was taken

nto consideration. However, our proposed post-processing proce-

ure could further improve the segmentation performance. 

Fig. 6 shows representative segmentation results on the BRATS

013 Challenge dataset. These segmentation results demonstrated

hat FCNN + CRF could improve the spatial and appearance con-

istence of segmentation results, and FCNN + CRF + post-process

ould reduce false positives. 

.1.2. Evaluating the effectiveness of each post-processing step 

To investigate the effectiveness of each post-processing step,

e obtained segmentation results of FCNN + CRF + post- x, x = 1, 2,
, 6. In particular, FCNN + CRF + post- x indicates FCNN + CRF with

ll other post-processing steps except the step x . As described in

ection 2.3.4 , our post-processing consists of 6 steps in total. All

he evaluation results are summarized in Table 2 . These results in-

icated that the post-processing Step 3 played the most important

ole in the tumor segmentation, although all these post-processing

teps might contribute the segmentation. 

.1.3. Evaluating the impact of image patch size 

We used different kernel sizes in all the pooling layers to train

ifferent FCNNs. The training image patch size changed with the

ernel size, as shown in Fig. 4 , while the number of parameters

n FCNNs was unchanged. We evaluated the segmentation per-

ormance of our segmentation models with n = 1,3,5, as summa-

ized in Table 3 . When n = 1,3,5, the corresponding sizes of train-

ng patches are 21 ∗21 ∗3 (small input patch) and 41 ∗41 ∗3 (large in-

ut patch), 27 ∗27 ∗3 and 53 ∗53 ∗3, 33 ∗33 ∗3 and 65 ∗65 ∗3. Bar plots

f the Dice of complete regions on the Challenge dataset with dif-

erent training patch sizes are shown in Fig. 7 . These segmenta-

ion results indicated that (1) a bigger patch provided more infor-

ation and helped improve FCNNs’ performance; (2) the CRF-RNN

ould reduce the performance differences caused by patch size as
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Table 2 

The evaluation results of FCNN + CRF with 5 of 6 post-processing steps (FCNN + CRF + post- x indicates FCNN + CRF with all other post-processing steps 

except the step x , the sizes of patches used to train FCNNs were 33 ∗33 ∗3 and 65 ∗65 ∗3 respectively, n = 5, and the number of patches used to train FCNNs 

was 50 0 0 ∗5 ∗20.). 

Dataset Methods Dice PPV Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Challenge FCNN + CRF + post-process 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

FCNN + CRF + post-1 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

FCNN + CRF + post-2 0.86 0.83 0.76 0.90 0.87 0.77 0.84 0.81 0.77 

FCNN + CRF + post-3 0.85 0.80 0.72 0.88 0.80 0.69 0.83 0.81 0.77 

FCNN + CRF + post-4 0.86 0.82 0.76 0.92 0.88 0.77 0.82 0.78 0.77 

FCNN + CRF + post-5 0.87 0.83 0.74 0.92 0.87 0.70 0.83 0.81 0.79 

FCNN + CRF + post-6 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

Leaderboard FCNN + CRF + post-process 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68 

FCNN + CRF + post-1 0.84 0.71 0.62 0.88 0.75 0.64 0.82 0.77 0.68 

FCNN + CRF + post-2 0.86 0.73 0.62 0.88 0.76 0.64 0.86 0.77 0.68 

FCNN + CRF + post-3 0.85 0.70 0.59 0.87 0.73 0.57 0.84 0.75 0.68 

FCNN + CRF + post-4 0.85 0.71 0.62 0.89 0.77 0.64 0.82 0.74 0.68 

FCNN + CRF + post-5 0.86 0.72 0.59 0.89 0.76 0.57 0.84 0.76 0.71 

FCNN + CRF + post-6 0.86 0.70 0.62 0.89 0.76 0.64 0.84 0.71 0.68 

Table 3 

Evaluation results of our segmentation model with n = 1,2,3 (The number of patches used to train FCNNs was 50 0 0 ∗5 ∗20.). 

Dataset n Methods Dice PPV Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Challenge 1 FCNNs 0.70 0.62 0.64 0.57 0.50 0.55 0.94 0.87 0.79 

FCNN + CRF 0.83 0.78 0.69 0.85 0.79 0.63 0.83 0.79 0.79 

FCNN + CRF + post-process 0.86 0.83 0.76 0.92 0.88 0.77 0.82 0.80 0.77 

3 FCNNs 0.71 0.67 0.65 0.58 0.56 0.57 0.95 0.86 0.78 

FCNN + CRF 0.83 0.77 0.69 0.83 0.74 0.63 0.85 0.82 0.79 

FCNN + CRF + post-process 0.86 0.82 0.76 0.91 0.84 0.78 0.84 0.82 0.76 

5 FCNNs 0.74 0.72 0.67 0.62 0.63 0.60 0.94 0.86 0.77 

FCNN + CRF 0.85 0.80 0.70 0.87 0.80 0.63 0.84 0.81 0.80 

FCNN + CRF + post-process 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

Leaderboard 1 FCNNs 0.64 0.54 0.49 0.50 0.45 0.42 0.96 0.76 0.71 

FCNN + CRF 0.82 0.65 0.57 0.83 0.70 0.51 0.85 0.69 0.72 

FCNN + CRF + post-process 0.85 0.72 0.61 0.88 0.76 0.59 0.84 0.76 0.70 

3 FCNNs 0.67 0.57 0.52 0.54 0.50 0.45 0.96 0.75 0.70 

FCNN + CRF 0.83 0.66 0.57 0.82 0.67 0.51 0.87 0.72 0.71 

FCNN + CRF + post-process 0.86 0.72 0.62 0.88 0.74 0.60 0.86 0.79 0.69 

5 FCNNs 0.70 0.61 0.54 0.58 0.57 0.49 0.96 0.74 0.67 

FCNN + CRF 0.83 0.66 0.57 0.85 0.71 0.50 0.85 0.69 0.71 

FCNN + CRF + post-process 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68 

Fig. 7. Bar plots for the Dice of complete regions on the Challenge dataset with 

different training patch sizes. 
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work. 
CRF-RNN could optimize the segmentation results according to the

information in a whole image slice; and (3) the post-processing

could further reduce the performance difference caused by patch

size. 

3.1.4. Evaluating the impact of the number of image patches used to 

train FCNNs 

The BRATS 2013 training dataset contains 10 LGG and 20 HGG.

In our experiments, we trained our segmentation model using the

20 HGG cases, and our model worked well for segmenting LGG
ases. To investigate the impact of the number of training patches

n the segmentation performance, we trained FCNNs with var-

ed numbers of image patches. In particular, we sampled training

maging patches randomly from each subject and kept the number

f training samples for different classes equal (5 classes in total,

ncluding normal tissue, necrosis, edema, non-enhancing core, and

nhancing core). We generated 3 sets of image patches by sam-

ling, consisting of 10 0 0 ∗5 ∗20, 30 0 0 ∗5 ∗20, and 50 0 0 ∗5 ∗20 patches

espectively, and used them to train different segmentation mod-

ls. The evaluation results are summarized in Table 4 . Bar plots of

he Dice of complete regions on the Challenge dataset with differ-

nt numbers of training patches are shown in Fig. 8 . 

The results shown in Table 4 and Fig. 8 indicated that the brain

umor segmentation accuracy of FCNNs increased with the increas-

ng of the number of training patches. However, both CRFs and

ost-processing could reduce the performance difference. 

In summary, all the experimental results demonstrated that

oth CRFs and the post-processing method can narrow the perfor-

ance difference caused by training patch sizes and training patch

umbers, indicating that CRFs and the post-processing method

ight be able to narrow the performance difference caused by

ther training tricks. We will confirm this inference in our future
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Table 4 

Evaluation results of the segmentation models trained using different numbers of training image patches (the sizes of image patches used to train FCNNs were 33 ∗33 ∗3 and 

65 ∗65 ∗3 respectively, n = 5). 

Dataset No. of patches Methods Dice PPV Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Challenge 10 0 0 ∗5 ∗20 FCNNs 0.71 0.68 0.62 0.57 0.58 0.54 0.95 0.86 0.76 

FCNN + CRF 0.84 0.78 0.68 0.84 0.78 0.61 0.85 0.81 0.79 

FCNN + CRF + post-process 0.87 0.82 0.76 0.91 0.86 0.77 0.84 0.81 0.77 

30 0 0 ∗5 ∗20 FCNNs 0.73 0.70 0.66 0.60 0.61 0.59 0.94 0.86 0.76 

FCNN + CRF 0.84 0.80 0.69 0.86 0.79 0.62 0.84 0.82 0.80 

FCNN + CRF + post-process 0.86 0.83 0.77 0.92 0.86 0.77 0.83 0.82 0.77 

50 0 0 ∗5 ∗20 FCNNs 0.74 0.72 0.67 0.62 0.63 0.60 0.94 0.86 0.77 

FCNN + CRF 0.85 0.80 0.70 0.87 0.80 0.63 0.84 0.81 0.80 

FCNN + CRF + post-process 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

Learderboard 10 0 0 ∗5 ∗20 FCNNs 0.66 0.58 0.51 0.53 0.53 0.45 0.96 0.74 0.67 

FCNN + CRF 0.83 0.65 0.56 0.82 0.71 0.51 0.86 0.69 0.70 

FCNN + CRF + post-process 0.86 0.72 0.61 0.88 0.76 0.63 0.85 0.77 0.68 

30 0 0 ∗5 ∗20 FCNNs 0.69 0.60 0.52 0.57 0.56 0.47 0.96 0.74 0.67 

FCNN + CRF 0.83 0.65 0.56 0.84 0.70 0.49 0.85 0.69 0.71 

FCNN + CRF + post-process 0.85 0.72 0.61 0.89 0.75 0.59 0.84 0.77 0.68 

50 0 0 ∗5 ∗20 FCNNs 0.70 0.61 0.54 0.58 0.57 0.49 0.96 0.74 0.67 

FCNN + CRF 0.83 0.66 0.57 0.85 0.71 0.50 0.85 0.69 0.71 

FCNN + CRF + post-process 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68 

Table 5 

Performance comparison of segmentation models built upon scans of 4 imaging modalities and 3 imaging modalities (the sizes of patches used to train FCNNs were 33 ∗33 ∗4 

and 65 ∗65 ∗4, or 33 ∗33 ∗3 and 65 ∗65 ∗3 respectively, n = 5, and the number of patches used to train FCNNs was 50 0 0 ∗5 ∗20). 

Dataset No. of modalities Methods Dice PPV Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Challenge 4 FCNNs 0.74 0.72 0.67 0.61 0.64 0.60 0.95 0.86 0.77 

FCNN + CRF 0.85 0.80 0.71 0.85 0.79 0.67 0.87 0.82 0.78 

FCNN + CRF + post-process 0.87 0.83 0.76 0.91 0.85 0.78 0.84 0.82 0.76 

3 FCNNs 0.74 0.72 0.67 0.62 0.63 0.60 0.94 0.86 0.77 

FCNN + CRF 0.85 0.80 0.70 0.87 0.80 0.63 0.84 0.81 0.80 

FCNN + CRF + post-process 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

Learderboard 4 FCNNs 0.69 0.59 0.55 0.57 0.56 0.49 0.95 0.72 0.68 

FCNN + CRF 0.82 0.64 0.58 0.82 0.70 0.55 0.85 0.67 0.68 

FCNN + CRF + post-process 0.85 0.74 0.62 0.89 0.75 0.62 0.83 0.79 0.66 

3 FCNNs 0.70 0.61 0.54 0.58 0.57 0.49 0.96 0.74 0.67 

FCNN + CRF 0.83 0.66 0.57 0.85 0.71 0.50 0.85 0.69 0.71 

FCNN + CRF + post-process 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68 

Fig. 8. Bar plots for the Dice of complete regions on the Challenge dataset with 

different numbers of training image patches. 
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.1.5. Performance comparison between segmentation models built 

pon 4 and 3 imaging modalities 

We also built a segmentation model using all available 4 imag-

ng modalities, i.e., Flair, T1, T1c, and T2, and compared its seg-

entation performance with that of the segmentation model built

pon 3 imaging modalities, i.e., Flair, T1c, and T2. The segmen-

ation results of these segmentation models are summarized in

able 5 . These results demonstrated that these two segmentation

odels achieved similar performance, indicating that a segmenta-

ion model built upon Flair, T1c, and T2 could achieve competitive

erformance as the model built upon 4 imaging modalities. 
.1.6. Evaluation of different pre-processing strategies on the tumor 

egmentation 

We preprocessed the imaging data using our robust deviation

ased intensity normalization and the standard deviation based in-

ensity normalization ( Goetz et al., 2014 ), and then evaluated seg-

entation models built on them separately. As the results shown

n Table 6 indicated, the robust deviation based intensity normal-

zation could slightly improve the segmentation performance. 

.1.7. Evaluating the effectiveness of fusing the segmentation results 

otten in three views 

We trained 3 segmentation models using patches and slices ob-

ained in axial, coronal and sagittal views respectively. During test-

ng, we used these three models to segment brain images from 3

iews and got three segmentation results. The results of different

iews were fused and the evaluation results are shown in Table 7 . 

Evaluation results in Table 7 indicated that, for both Challenge

nd Leaderboard datasets, fusing the segmentation results typi-

ally led to better segmentation performance without the post-

rocessing procedure. However, the improvement became insignif-

cant after the post-processing procedure was applied to the seg-

entation results. 

.1.8. Comparison with other methods 

Comparison results with other methods are summarized in

able 8 . In particular, evaluation results of the top ranked methods
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Table 6 

Performance comparison of segmentation models built upon images normalized by the robust deviation and the standard deviation (the sizes of patches used to train 

FCNNs were 33 ∗33 ∗3 and 65 ∗65 ∗3 respectively, n = 5, and the number of patches used to train FCNNs was 50 0 0 ∗5 ∗20). 

Dataset Deviation Methods Dice PPV Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Challenge standard FCNNs 0.73 0.69 0.67 0.61 0.60 0.61 0.94 0.86 0.75 

FCNN + CRF 0.84 0.80 0.71 0.87 0.79 0.68 0.82 0.82 0.75 

FCNN + CRF + post-process 0.86 0.83 0.76 0.93 0.86 0.80 0.81 0.81 0.74 

robust FCNNs 0.74 0.72 0.67 0.62 0.63 0.60 0.94 0.86 0.77 

FCNN + CRF 0.85 0.80 0.70 0.87 0.80 0.63 0.84 0.81 0.80 

FCNN + CRF + post-process 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

Learderboard standard FCNNs 0.69 0.60 0.54 0.57 0.55 0.50 0.97 0.75 0.67 

FCNN + CRF 0.83 0.66 0.58 0.85 0.71 0.56 0.85 0.70 0.67 

FCNN + CRF + post-process 0.86 0.73 0.61 0.89 0.75 0.66 0.84 0.78 0.66 

robust FCNNs 0.70 0.61 0.54 0.58 0.57 0.49 0.96 0.74 0.67 

FCNN + CRF 0.83 0.66 0.57 0.85 0.71 0.50 0.85 0.69 0.71 

FCNN + CRF + post-process 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68 

Table 7 

Evaluations of segmentation results obtained in axial, coronal, sagittal views before and after post-processing, and evaluations of fusion results before and after post- 

processing (the sizes of patches used to train FCNNs were 33 ∗33 ∗3 and 65 ∗65 ∗3 respectively, n = 5, and the number of patches used to train FCNNs was 50 0 0 ∗5 ∗20). 

Dataset Methods Dice PPV Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Challenge FCNN + CRF axial 0.85 0.80 0.70 0.87 0.80 0.63 0.84 0.81 0.80 

coronal 0.82 0.80 0.70 0.77 0.78 0.62 0.90 0.83 0.82 

sagittal 0.83 0.80 0.71 0.80 0.79 0.64 0.87 0.83 0.82 

fusing (FCNN + CRF) 0.85 0.83 0.74 0.85 0.84 0.68 0.88 0.82 0.82 

FCNN + CRF + post-process axial 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

coronal 0.87 0.82 0.76 0.86 0.83 0.74 0.89 0.83 0.79 

sagittal 0.87 0.82 0.77 0.88 0.83 0.75 0.86 0.82 0.79 

fusing (FCNN + CRF) + post-process 0.88 0.84 0.77 0.90 0.87 0.76 0.86 0.82 0.80 

Learderboard FCNN + CRF axial 0.83 0.66 0.57 0.85 0.71 0.50 0.85 0.69 0.71 

coronal 0.80 0.65 0.56 0.75 0.69 0.50 0.90 0.69 0.70 

sagittal 0.80 0.66 0.55 0.78 0.69 0.49 0.86 0.69 0.70 

fusing (FCNN + CRF) 0.84 0.67 0.60 0.84 0.74 0.54 0.87 0.68 0.72 

FCNN + CRF + post-process axial 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68 

coronal 0.86 0.73 0.62 0.86 0.73 0.60 0.89 0.79 0.67 

sagittal 0.84 0.71 0.60 0.85 0.74 0.59 0.84 0.74 0.67 

fusing (FCNN + CRF) + post-process 0.86 0.73 0.62 0.89 0.77 0.60 0.85 0.77 0.69 

Table 8 

Comparisons with other methods on BRATS 2013 dataset. 

Dataset Methods Dice Positive Predictive Value Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Challenge Nick Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83 

Raphael Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73 

Syed Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76 

Havaei et al. (2017) 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80 

Pereira et al. (2016) 0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81 

Our method(axial) 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77 

Our method(coronal) 0.87 0.82 0.76 0.86 0.83 0.74 0.89 0.83 0.79 

Our method(sagittal) 0.87 0.82 0.77 0.88 0.83 0.75 0.86 0.82 0.79 

Our method(fusing) 0.88 0.84 0.77 0.90 0.87 0.76 0.86 0.82 0.80 

Leaderboard Nick Tustison 0.79 0.65 0.53 0.83 0.70 0.51 0.81 0.73 0.66 

Liang Zhao 0.79 0.59 0.47 0.77 0.55 0.50 0.85 0.77 0.53 

Raphael Meier 0.72 0.60 0.53 0.65 0.62 0.48 0.88 0.69 0.64 

Havaei et al. (2017) 0.84 0.71 0.57 0.88 0.79 0.54 0.84 0.72 0.68 

Pereira et al. (2016) 0.84 0.72 0.62 0.85 0.82 0.60 0.86 0.76 0.68 

Our method(axial) 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68 

Our method(coronal) 0.86 0.73 0.62 0.86 0.73 0.60 0.89 0.79 0.67 

Our method(sagittal) 0.84 0.71 0.60 0.85 0.74 0.59 0.84 0.74 0.67 

Our method(fusing) 0.86 0.73 0.62 0.89 0.77 0.60 0.85 0.77 0.69 
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participated in the BRATS 2013, shown on the BRATS 2013 website,

are summarized in Table 8 , along with the results of our method

and other two state of art methods. Particularly, the method pro-

posed by Sergio Pereira et al ( Pereira et al., 2016 ) ranked first on

the Challenge dataset and second on the Leaderboard dataset right

now, while our method ranked second on the Challenge dataset
nd first on the Leaderboard dataset right now. In general, it took

–4 min for one of the three views of our method to segment one

ubject’s imaging data. We do not have an accurate estimation of

he training time for our segmentation models since we used a

hared GPU server. On the shared GPU server, it took ∼12 days to

rain our segmentation models. 
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Table 9 

Evaluation results of 110 testing cases in BRATS 2015 testing dataset (the sizes of image patches used to train FCNNs were 33 ∗33 ∗3 and 65 ∗65 ∗3 respectively, n = 5). Models 

2013: models trained based on the BRATS 2013 training dataset; Models 2015: models trained based on the BRATS 2015 training dataset. 

Methods Dice PPV Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

Models 2013 FCNN + CRF axial 0.77 0.56 0.52 0.85 0.71 0.46 0.74 0.53 0.67 

coronal 0.74 0.53 0.48 0.70 0.69 0.44 0.84 0.50 0.65 

sagittal 0.74 0.54 0.49 0.74 0.67 0.43 0.78 0.52 0.66 

fusing (FCNN + CRF) 0.79 0.56 0.56 0.82 0.78 0.52 0.79 0.50 0.68 

FCNN + CRF + post- 

process 

axial 0.78 0.64 0.58 0.87 0.75 0.57 0.73 0.61 0.65 

coronal 0.78 0.61 0.57 0.77 0.68 0.58 0.84 0.63 0.63 

sagittal 0.77 0.62 0.57 0.80 0.71 0.56 0.78 0.60 0.63 

fusing (FCNN + CRF) 

+ post-process 

0.81 0.65 0.60 0.87 0.79 0.60 0.78 0.61 0.65 

Models 2015 FCNN + CRF axial 0.78 0.64 0.54 0.78 0.76 0.48 0.81 0.62 0.71 

coronal 0.77 0.66 0.56 0.73 0.73 0.52 0.86 0.67 0.67 

sagittal 0.76 0.63 0.47 0.75 0.71 0.38 0.80 0.63 0.75 

fusing (FCNN + CRF) 0.80 0.66 0.57 0.81 0.79 0.50 0.83 0.64 0.72 

FCNN + CRF 

+ post-process 

axial 0.80 0.68 0.61 0.82 0.75 0.59 0.81 0.71 0.68 

coronal 0.80 0.69 0.61 0.77 0.70 0.61 0.87 0.76 0.65 

sagittal 0.78 0.69 0.57 0.80 0.74 0.51 0.80 0.71 0.72 

fusing (FCNN + CRF) 

+ post-process 

0.82 0.72 0.62 0.84 0.78 0.60 0.83 0.73 0.69 

Table 10 

Comparisons with other methods on BRATS 2015 testing dataset. 

Methods Dice Positive Predictive Value Sensitivity 

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing 

DeepMedic + CRF ( Kamnitsas et al., 2017 ) 0.847 0.67 0.629 0.85 0.848 0.634 0.876 0.607 0.662 

Our method(axial) 0.80 0.68 0.61 0.82 0.75 0.59 0.81 0.71 0.68 

Our method(coronal) 0.80 0.69 0.61 0.77 0.70 0.61 0.87 0.76 0.65 

Our method(sagittal) 0.78 0.69 0.57 0.80 0.74 0.51 0.80 0.71 0.72 

Our method(fusing) 0.82 0.72 0.62 0.84 0.78 0.60 0.83 0.73 0.69 

Our FCNN(axial) + 3D CRF 0.84 0.72 0.62 0.88 0.75 0.62 0.82 0.76 0.67 

Our FCNN(coronal) + 3D CRF 0.83 0.72 0.62 0.88 0.75 0.62 0.82 0.75 0.66 

Our FCNN(sagittal) + 3D CRF 0.82 0.72 0.60 0.88 0.75 0.59 0.81 0.76 0.67 

Our FCNN + 3D CRF (fusing) 0.84 0.73 0.62 0.89 0.76 0.63 0.82 0.76 0.67 
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.2. Segmentation performance on the BRATS 2015 

The BRATS 2015 training dataset contains 54 LGG and 220 HGG,

nd its testing dataset contains 110 cases with unknown grades. All

he training cases in BRATS 2013 are reused in BRATS 2015 as a

ubset of its training dataset. As what we have done in our exper-

ments with BRATS 2013 dataset, we just used HGG training cases

o train our segmentation models in this section. We extracted

0 0 0 ∗5 patches from each of 220 HGG to train FCNNs and initialed

he CRF-RNN by the CRF-RNN trained by BRATS 2013 dataset. The

hole network was fine-tuned using slices in BRATS 2013 training

ataset, which is a subset of BRATS 2015 training dataset. The eval-

ation results of BRATS 2015 testing dataset are shown in Table 9 ,

ncluding evaluations of segmentation results that were segmented

y the models trained by BRATS 2013 training dataset and evalua-

ions of segmentation results that were segmented by the models

rained in this section. 

The results shown in Table 9 indicated that fusing the segmen-

ation results of multi-views could improve the segmentation ac-

uracy. These results also indicated that a larger training dataset

ight improve the segmentation performance. 

There were only 53 testing cases available during the BRATS

015, but now there are 110 testing cases. Therefore, we are not

ble to directly compare our method with the methods that par-

icipated in the BRATS 2015. We are aware that K. Kamnitses et al

 Kamnitsas et al., 2017 ) have published their evaluation results

ith 110 BRATS 2015 testing cases. The comparisons with K. Kam-
itses et al’s method are shown in Table 10 . 
(  
.3. Segmentation performance on the BRATS 2016 

We also participated in the BRATS 2016. However, during the

ompetition we just segmented brain images in axial view. Since

he BRATS 2016 shares the same training dataset with BRATS 2015,

e used the same segmentation models trained based on the

RATS 2015 training dataset. The BRATS 2015 training dataset has

een pre-processed with rigid registration, bias field correction

nd skull stripping. However, the BRATS 2016 test dataset con-

ains a number of unprocessed or partially pre-processed images

 Le Folgoc et al., 2016 ), as shown in Fig. 9 . To reduce false pos-

tives caused by incomplete pre-processing, apart from the post-

rocessing steps described in Section 2.3.4 , we manually placed

ectangular bounding boxes around tumors in images and applied

he post-processing Step 2 to the segmentation results. Among

9 teams participated in the BRATS 2016, we ranked first on the

ulti-temporal evaluation. The ranking details of our method are

hown in Table 11 . 

. Discussions and conclusion 

In this study, we proposed a novel deep learning based brain

umor segmentation method by integrating Fully Convolutional

eural Networks (FCNNs) and Conditional Random Fields (CRFs) in

 unified framework. This integrated model was designed to ob-

ain tumor segmentation results with appearance and spatial con-

istency. In our method, we used CRF-RNN to implement CRFs

 Zheng et al., 2015 ), facilitating easy training of both FCNNs and
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Fig. 9. An example of partial skull stripping case in BRATS 2016 testing dataset. From left to right: Flair, T1c, T2. 

Table 11 

The ranking details of our method on different items on BRAST 2016 (including tie). 

Items Tumor Segmentation Multi-temporal evaluation 

Dice Hausdorff

complete core enhancing complete core enhancing 

Ranking 4 3 1 7 6 2 1 
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CRFs as one deep network, rather than using CRFs as a post-

processing step of FCNNs. Our integrated deep learning model was

trained in 3 steps, using image patches and slices respectively. In

the first step, image patches were used to train FCNNs. These im-

age patches were randomly sampled from the training dataset and

the same number of image patches for each class was used as

training image patches, in order to avoid the data imbalance prob-

lem. In the second step, image slices were used to train the follow-

ing CRF-RNN, with parameters of FCNNs fixed. In the third step,

image slices were used to fine-tune the whole network. Partic-

ularly, we train 3 segmentation models using 2D image patches

and slices obtained in axial, coronal and sagittal views respec-

tively, and combine them to segment brain tumors using a vot-

ing based fusion strategy. Our experimental results also indicated

that the integration of FCNNs and CRF-RNN could improve the seg-

mentation robustness to parameters involved in the model train-

ing, such as image patch size and the number of training image

patches. Our experimental results also demonstrated that a tumor

segmentation model built upon Flair, T1c, and T2 scans achieved

competitive performance as those built upon Flair, T1, T1c, and

T2 scans. 

We also proposed a simple pre-processing strategy and a sim-

ple post-processing strategy. We pre-processed each MR scan using

N4ITK and intensity normalization, which normalized each MR im-

age’s intensity mainly by subtracting the gray-value of the highest

frequency and dividing the robust deviation. The results shown in

Figs. 1 and 2 demonstrated that the proposed intensity normal-

ization method could make different MRI scans com parable, i.e.,

similar intensity values characterize similar brain tissues across

scans. We post-processed the segmentation results by removing

small 3D-connected regions and correcting false labels by simple

thresholding method. Our experimental results have demonstrated

that these strategies could improve the tumor segmentation

performance. 

Our method has achieved promising performance on the BRATS

2013 and BRATS 2015 testing dataset. Different from other top

ranked methods, our method could achieve competitive perfor-

mance with only 3 imaging modalities (Flair, T1c, and T2), rather

than 4 (Flair, T1, T1c, and T2). We also participated in the BRATS

2016 and our method ranked first on its multi-temporal evaluation.

Our method is built upon 2D FCNNs and CRF-RNN to achieve

computational efficiency. For training CRF-RNN and fine-tuning the

integrated FCNNs and CRF-RNN, we use image slices as training

data. However, in image slices, the numbers of pixels for different
lasses are different, which may worsen the segmentation perfor-

ance of the trained network. To partially overcome the imbal-

nced training data problem, we trained CRF-RNN with the param-

ters of FCNNs were fixed so that the CRF-RNN are trained to op-

imize the appearance and spatial consistency of segmentation re-

ults. Such a strategy in conjunct with a fine-tuning of the whole

etwork with a small learning rate improved the tumor segmen-

ation performance. However, 2D CNNs are not equipped to take

ull advantage of 3D information of the MRI data ( Kamnitsas et al.,

017 ; Yi et al., 2016 ). Our experimental results have demonstrated

dopting 3D CRF as a post-processing step could improve the tu-

or segmentation performance. Our ongoing study is to build

 fully 3D network to further improve the tumor segmentation

erformance. 
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