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Abstract—How to average translations is the single most
difficult task in global structure-from-motion (SfM) to fully tap
its potentials in terms of reconstruction efficiency and accuracy
since usually only noisy translation directions can be factored out
from essential matrices due to the inevitable matching outliers.
To tackle this problem, this work proposes a two-step strategy.
Firstly, a “2-point method” is introduced to refine the epipolar
geometry by which a more accurate track set is generated.
Then, translation lengths are computed by solving a convex L1
optimization according to the adjacent triangles induced by the
selected tracks and translations. Extensive experiments show that
our method performs similarly or better than the state-of-art SfM
approaches in terms of the reconstruction accuracy, completeness
and efficiency. 1

I. INTRODUCTION

Structure-from-Motion (SfM) technique has been widely
used to reconstruct the 3D scene from a set of image
collections. Depending on the manner of computing initial
camera poses, the SfM pipeline is divided into two classes:
incremental and global. Incremental SfM methods [1], [2]
reconstruct the “seed” images first, then incrementally add
other images into the reconstruction system. This mode usually
suffers from scene drift due to the errors accumulation and
heavy computation load. Thus, many recent SfM approaches
[3]–[5] adopt the global mode, where all the camera poses are
computed at the same time.

The pipeline of global SfM consists of four main modules:
rotation averaging, translation averaging, triangulation and
bundle adjustment. For the rotation averaging, many literatures
[6]–[8] have a wide study on its computation and formula-
tion. For example, Chatterjee et al. [8] proposed a rotation
averaging method called ‘L1-IRLS’, which solved the rotation
averaging problem in the SO(3) Lie space first, then refined
by an IRLS(Iterative Re-weighed Least Square) optimization
method. For the translation averaging, the problem is more
difficult in the global SfM method due to the following two
main challenges. Firstly, the translation estimations are noisy
due to the features match outliers. Secondly, the pairwise
translations generated by factoring the essential matrices only
tell the direction of cameras motion, many methods degenerate
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at collinear camera motions [9], [10]. In the literatures [11]–
[13], these erroneous translations are filtered out from epipo-
lar geometry graph (EG) first based on various consistency
constraint. However, the filtering is still a non-trival problem,
and filtering edges may break the original parallel rigidity of
EG [10]. As a result, the reconstruction completeness cannot
be guaranteed. In this work, aiming to solve the translation
averaging problem, we refine the translations first and then
compute the translation scales.

Given the global camera rotations computed by [8], relative
rotations on the epipolar edges could be updated. Then, we
tackle the translation estimation problem by a robust “2-point”
method for each epipolar edge. We find that the translation
refining process is very fast and the resulting directions
are more accurate than the original directions generated by
factoring the essential matrices.

For the translation scale estimation, we solve it by importing
the tracks. In this way, the parallel rigidity [10] of EG are
enhanced without loss of any cameras. As the reconstruction
result is only up to a scale, thus we only need to calculate
the ratio between two translation scales. Then, by setting the
scale of anyone translation to a fixed constant, the whole
translation scales are obtained. To determine the ratio between
two translation scales (scale-ratio), we resort to the tracks and
translations to construct adjacent triangles. In this way, the
scale-ratio could be calculated by the basic triangle principle
and a median filtering strategy. Given the ratios of pairwise
translation scales, the translation averaging estimation problem
could be formulated as two convex L1 problems, which
could be rapidly optimized. Extensive results show that our
method performs similarly or better than the recent global
SfM methods and well-known incremental methods in terms
of computational cost and reconstruction accuracy.

II. RELATED WORK

The rotation averaging is a relatively matured problem in
the global SfM [6]–[8], [14]. Thus, we use the state-of-art
approach proposed in [8] to solve the rotation averaging task,
which was also adopted in several recent works [5], [10], [13],
[15]. Since our work is focused on the translation averaging,
the most relevant work are the following translation averaging
approaches.
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Fig. 1. Pipeline of our global SfM method.

Linear Translation Averaging Many linear methods [9],
[11], [15]–[17] are proposed for the translation averaging
problem solving. For example, Jiang et al. [11] proposed a
linear method where accurate pairwise geometries are required
to perform the SVD decomposition for camera positions
estimation, and Cui et al. [15] enforced it with feature tracks.
While efficient, such linear methods are rather sensitive to
outliers.
Triplet Translation Averaging To increase the reconstruc-
tion accuracy, many approaches [12], [18], [19] resort to
accurate triple geometries. For example, Moulon et al. [12]
proposed a contrario trifocal tensor estimation method to
extract accurate translations. While the accuracy could be
increased, such methods are likely to discard many useful
images since EG may be not accurate and dense enough.
As a result, the completeness of the reconstruction cannot be
guaranteed.
Outlier EG filtering To decrease the impact of noisy
translations factorized from poor essential matrices, many
methods [13], [20]–[22] adopt an epipolar edge filtering step
before the camera translation averaging. For example, for
densely matched images, Wilson et al. [13] proposed a hash-
like method, called 1DSfM, which projected the 3-dimensional
translation directions to multiple 1-dimensional subspaces.
Based on the orientation consistency on a 1-dimensional axis,
the translation outliers are filtered by a voting scheme. Howev-
er, as proved in [10], essential matrices only determine camera
positions in a parallel rigid graph. As a result, inaccurate
filtering rule may destroy the original parallel rigidity of EG
[10] and make the reconstruction incomplete.
EG refining Instead of filtering translation outliers, some
methods [3], [5], [10] prefer to refine the translations on
the epipolar edges. Sweeney et al. [3] improved the quality
of the relative geometries in the epipolar geometry graph
by enforcing loop consistency constraints with the epipolar
point transfer. Though this assumption works well for Internet
images, it fails in cases where the epipolar lines are parallel
or in a coincidence. In addition, in order to improve local
relative motion estimations, Cui et al. [5] performed a local
bundle adjustment (LBA) step on each epipolar edge before
the translation averaging.
Fusing Auxiliary Information Other work [4], [23]–[25]

utilize some auxiliary information to improve the transla-
tion accuracy. For example, Crandall et al. [23] proposed a
discrete-continuous optimization system, where noisy auxil-
iary info (GPS and vertical vanishing point) is incorporated
to the MRF formulation. Cui et al. [4] fused the auxiliary
imaging information to iteratively distinguish potential inliers.
However, since these auxiliary information are vital to the
reconstruction accuracy in such methods, they cannot be
extended to general cases.

In this work, a two-step translation averaging strategy is in-
troduced. Given the global camera rotations, the translation is
first refined by a “2-point” method under RANSAC paradigm.
With updated epipolar geometry graph, tracks are generated
for the translation scales computation. Then, by calculating
the ratio relationship on the adjacent triangles induced by
tracks and pairwise translations, we formulate the translation
averaging problem as convex L1 optimizing problems which
reach the global optimum rapidly [26].

III. PROPOSED TRANSLATION AVERAGING ALGORITHM

A. Overview

The input of our system is an epipolar geometry graph (EG),
where vertices correspond to images and edges link matched
image pairs. For each edge, its essential matrix is obtained by
5-point algorithm [27]. The essential matrix on an edge eij
encodes the relative rotation Rij and the relative translation tij .
We aim to estimate global camera locations ci and rotations
Ri for each view to satisfy following two constraints:

Rij = RjRT
i

λijtij = Rj(ci − cj)
(1)

Compared to the rotation averaging problem, translation
averaging problem is more difficult since the tij factorized
from essential matrix only gives the motion direction between
two cameras. In this case, only the parallel rigid subgraph of
EG could be determined, as demonstrated in [10]. Thus, we
utilize the tracks to enhance the parallel rigidity of epipolar
graph. In this way, all the camera poses in the epipolar
geometry graph could be determined.

With our proposed translation averaging method, Fig. 1
shows the pipeline of our global SfM. In particular, the rotation
averaging problem is solved by the L1-IRLS method proposed
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Fig. 2. Different configurations of translations scale-ratio computation.

in [8]. Given the global camera rotations, the translation
averaging problem is formulated as finding global camera
locations ci to satisfy:

λijcij = ci − cj
s.t. cij = RT

j tij
(2)

As a result, this formulation mainly relates to the estimated
translation tij and the scale factor λij . Our main Contribution
is to efficiently and accurately compute the tij and λij , which
is done by the following 3 steps:

• Translation Refining: Given global camera rotations,
the relative rotation on each epipolar edge could be
easily obtained by Rij = RjRT

i . With known Rij , tij
is re-calculated by two feature matches with RANSAC
technique.

• Translations scale-ratio Estimation: For λij , we cal-
culate the ratio between two translation scales (scale-
ratio) by two adjacent triangles induced by tracks and
translations. Since tracks are always redundant, we make
a feature tracks selection to accelerate the scale-ratios
computation. With scale-ratio estimations, λij is solved
as a convex L1 optimization problem.

When the tij and λij are known, then the global camera
locations are solved as a convex L1 optimization problem [5].

B. Translation Refining

Given image feature matches, the essential matrix E could
be calculated by the 5-point algorithm, where the normalized
feature match inlier p,p′ should satisfy:

p′T ∗ E ∗ p = p′T ∗ [tij ]× ∗ Rij ∗ p = 0 (3)

Then, with known Rij , let tij = {tx, ty, tz}, p′ =
{p′x, p′y, 1.0}, the above equation could be rewritten as:

[
p′x p′y 1.0

]  0 −tz ty
tz 0 −tx
−ty tx 0

 qx
qy
1.0

 = 0 (4)

where β∗[qx, qy, 1.0]T = Rij ∗p and β is a scale factor. Based
on this formulation, the translation tij computation could be
wrote as:

[
tx ty tz

]  p′y − qy
qx − p′x

p′x ∗ qy − p′y ∗ qx

 = 0 (5)

Since the translation is up to scale, we could assume tz = 1.
In this way, tij could be determined by only 2 feature matches.
Considering the robustness, a RANSAC technique is used here
to find the best tij which corresponds to the largest number
of consistent feature matches.

It is noted that sometimes the obtained translation may be
inverse since tz is set to positive. Thus, for each estimation,
this ambiguity could be solved according to the cheirality
[28] of some feature matches triangulation. In each RANSAC
iteration, we evaluate the translation estimation result by
the number of feature matches inliers. A feature match is
considered as an inlier when the distances between the feature
points and respectively corresponding epipolar lines are less
than a threshold. In our work, the RANSAC is performed 256
times and the inlier threshold is set to 0.4% of the maximum
image dimension.

C. Translations scale-ratio Computing

Given the refined EG, tracks are generated along the
matched image pairs. Note that a track is defined as a
collection of interest points across multiple images which have
similar feature descriptors, and each identifies a unique 3D
point in the real scene.

A 3D scene point could be viewed as the intersection of
multiple rays launched from its visible views. For each ray, it
also crosses the image projection of this scene point. Ideally,
when three or more views are visible in a track, the rays and
the translation estimations between the images could construct
many adjacent triangles. Based on these adjacent triangles, the
translations scale-ratio could be obtained.

Considering a configuration that a track with three visible
images {Ci, Cj , Ck; i < j < k}, there are three different
camera intersection cases between two translations. Note that
in the general case, the translation direction of an epipolar
edge is from small image index to large image index. Fig. 2
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illustrates these three configurations, and the main difference
among them is the different shared edge between two adjacent
triangles. Since not all of the pairs of visible images in a track
have pairwise translation estimations, here we only consider
those image pairs that have translation estimations. In fact, for
the images in any triplet, if they are connected by two or more
epipolar edges, the translations scale-ratio can be obtained.

For the three views Ci, Cj , Ck and a scene point Xw, the
projection equation is:

µiwxiw = Ki ∗ Ri ∗ (Xw − Ci)
µjwxjw = Kj ∗ Rj ∗ (Xw − Cj)
µkwxkw = Kk ∗ Rk ∗ (Xw − Ck)

(6)

Given known global camera rotations and initial camera in-
trinsic matrices, the directions of rays from the optical center
Ci, Cj , Ck to the scene point Xw are computed by (≃ denotes
up to scale):

Xw − Ci ≃ RT
i ∗ K−1

i ∗ xiw
Xw − Cj ≃ RT

j ∗ K−1
j ∗ xjw

Xw − Ck ≃ RT
k ∗ K−1

k ∗ xkw
(7)

For Fig.2a, we calculate the scale-ratio between translation
tij and tjk. According to the triangle principle, the ratio
between the length of edges is equal to the sine value of its
corresponding angle, i.e. ,

|λij |
|Xw − Cj |

=
sin(θ1)

sin(α1)
,

|λjk|
|Xw − Cj |

=
sin(θ2)

sin(α2)
(8)

Since the triangle {Ci−Cj−Xw} shares an edge {Cj−Xw}
with the triangle {Cj − Ck −Xw}, the scale-ratio sjkij could
be calculated by:

sjkij =
|λij |
|λjk|

=
sin(θ1) ∗ sin(α2)

sin(θ2) ∗ sin(α1)
(9)

Similarly, the scale-ratio sikij between translation tij and tik
(Fig.2b) is computed by:

sikij =
|λij |
|λik|

=
sin(θ1) ∗ sin(α4)

sin(θ3) ∗ sin(α3)
(10)

and the scale-ratio sjkik between translation tik and tjk (Fig.2c)
is computed by:

sjkik =
|λik|
|λjk|

=
sin(θ3) ∗ sin(α6)

sin(θ2) ∗ sin(α5)
(11)

For each track with three or more visible views, a group
of three views which has two or more epipolar edges inside
could construct one of the above functions. As a result, the
scale-ratio between two translations may have different values
which are generated by different tracks. However, since the
track outliers are inevitable, some of the estimations may
be erroneous. Considering the robustness, for the scale-ratio
estimations corresponding to the same pair of translations, we
set the median value of these estimations as the final scale-
ratio of these two translations.

Since the tracks are always redundant, we perform a tracks
selection for the sake of efficiency. To guarantee that all the

images in the epipolar geometry graph (EG) are involved in the
solving process, we sort all feature tracks by their lengths in
descending order, and then a compact set of tracks is selected
to cover γ spanning trees of EG. In our work, γ is set to
30 and the strategy of the construction of a spanning tree is
breadth-first with a random initial image vertex.

D. Camera location Estimation
As proposed in [5], given the translation scale factors, the

camera locations could be estimated by convex L1 optimiza-
tions. Given the scale-ratio sjkij between two epipolar edges
eij and ejk:

sjkij =
|eij |
|ejk|

(12)

by taking log of both sides, we have

log(|eij |)− log(|ejk|) = log(sjkij ) (13)

Collecting this equation from all the scale-ratio estimated
in the Sec III-C, we stack them into a linear equation system:

As ∗ xs = bs (14)

where xs and bs are the vectors by concatenating log(|eij |)
and log(sjkij ) respectively, and As is a sparse matrix where
nonzero values are only 1 and −1. As the translation length
estimation is up to scale, to remove the gauge ambiguity, we
set the first epipolar edge, for example e12, as unit, i.e. ,
log(e12) = 0. Then, the equation system is solved by the
following convex L1 optimization problem:

argmin ∥As ∗ xs − bs∥L1 (15)

After this optimization, the scale factor λij for the epipolar
edge eij is obtained. Thus, with the global camera rotations
calculated by [8], the right side of the following equation is
also known.

ci − cj = λij RT
j tij (16)

Each epipolar edge could construct such an equation. Since
the number of epipolar edge is far more than the number
of images in the epipolar geometry graph, thus an over-
determined equation system is obtained. Similarly, by collect-
ing this equations from all the edges in the epipolar geometry
graph, we have the following linear equation system:

Ac ∗ xc = bc (17)

where xc and bc are the vectors by concatenating ci and
λijRT

j tij , Similarly, we set the first camera location, for
example c1, as original, i.e. c1 = 0. Thus, all the camera
locations is solved by the following L1 optimization problem:

argmin ∥Ac ∗ xc − bc∥L1 (18)

IV. EXPERIMENT

We evaluate the whole global Structure-from-Motion system
on various image datasets, including the MVS benchmark
datasets in Strecha [29], and some Internet images, as well
as UAV images. The Ceres-solver [31] is used for our final
bundle adjustment.
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TABLE I
CAMERA CENTERS ACCURACY ON BENCHMARK DATASETS [29]. THE RESULTS OF OTHER METHODS ARE TAKEN THE RESULT OF [3] AS A REFERENCE.

Method Accuracy (mm)
VSFM [2] Jiang [11] Olsson [30] Cui et al. [15] Moulon [12] Sweeney [3] Ours

FountainP11 7.6 14 2.2 2.5 2.5 2.4 1.7
EntryP10 63.0 – 6.9 – 5.9 5.7 5.4

HerzJesuP8 19.3 – 3.9 – 3.5 3.5 3.8
HerzJesuP25 22.4 64 5.7 5.0 5.3 5.3 4.7

CastleP19 258 – 76.2 – 25.6 38.2 12.3
CastleP30 522 235 66.8 21.2 21.9 32.4 18.6

TABLE II
ACCURACY AND TIME-COST COMPARISON. ’NI’ AND ’NC’ RESPECTIVELY DENOTES THE NUMBER OF INPUT AND CALIBRATED IMAGES, ’X’ DENOTES
MEDIAN ERROR(METERS), ’T’ DENOTES TIME-COST(SECONDS). THE RESULTS OF OTHER METHODS ARE TAKEN THE RESULT OF [5] AS A REFERENCE.

Data 1DSfM [13] LUD [10] Jiang et al. [11] Cui et al. [5] Ours
Name Ni Nc x T Nc x T Nc x T Nc x T Nc x T
Alamo 627 529 1.1 910 547 0.4 750 478 0.6 191 574 0.5 578 577 0.4 530

Ellis Island 247 214 3.7 171 – – – 205 3.2 621 223 0.7 208 227 0.6 311
Notre Dame 552 507 10.0 1599 536 0.3 1047 518 0.4 1351 549 0.2 552 552 0.2 706

Fig. 3. This figure shows the translation accuracy comparison between local
bundle adjustment and our refining method.

A. Evaluation on Benchmark Datasets

We compare our method with a typical incremental method
VSFM [2], and several alternative global SfM pipelines. Table
I shows the accuracy comparison results on the Strecha MVS
benchmark datasets [29], from which we could see that our
method performs similarly or better than the other methods.
In particular, for the datasets “CastleP19” and “CastleP30”,
where the tracks and epipolar geometry graph are noisier than
the other datasets, our result has a significant improvement
on the camera locations accuracy, which mainly owes to the
effectiveness of our translation refining module.

To demonstrate the effectiveness of translation refining
module, we compare our method with LBA (Local Bundle
Adjustment [5]) on the dataset “CastleP30”. The translation
error is the angular distance(in degrees) between the unit-norm
vectors tij with ground-truth tgtij , i.e. terr = acos(tijT tgtij ).
The accuracy comparison is shown in Fig. 3, where ’x’ axis
denotes the angular distance and ’y’ axis denotes the number
of epipolar edges in the corresponding bin, from which we
could see our method outperforms the LBA, indicating our
method is more robust to feature match outliers.

B. Evaluation on unordered and ordered images

To further evaluate our translation averaging module, we
perform it on three public unordered Internet datasets “Alam-
o”, “Ellis Island” and “Notre Dame” [13].

Table II shows the comparison of camera centers accuracy
and time-cost among five global SfM approaches. As the
epipolar edge filtering step may weaken the parallel rigidity
of EG, we can see that many of images in the methods [11],
[13] are left uncalibrated. Compared to the methods [5], [10],
our method can not only calibrate the most images but have
the best accuracy on the dataset “Alamo” and “Ellis Island”. In
addition, for the dataset “Notre Dame”, the accuracy and time-
cost among these methods [5], [10] are basically comparable,
while the number of the calibrated images of our method is
larger than them. The reason is two-fold: on one hand, the
refined epipolar graph make the tracks more clean; on the
other hand, due to the median filtering strategy in the scale-
ratio estimations, our method is more robust to the feature
track outliers.

Besides, our method is also performed on several large
ordered image datasets, including a dataset with 1347 UAV
images. Some of the detailed reconstruction results are shown
in Fig. 4.

V. CONCLUSION

In this paper, we introduce a robust global translation
averaging method. Given global camera rotations, the local
translations are first computed by a “2-point” method. Then,
the ratio of translation scales are determined by utilizing
both tracks and refined translations. With accurate translations
and their scale-ratios, our translation averaging problem is
effectively solved by optimizing convex L1 problems. Ex-
tensive experiments show the global SfM approach with our
translation averaging module performs similarly or better than
the state-of-art SfM approaches in terms of reconstruction
accuracy, completeness and efficiency.
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