
Batched Incremental Structure-from-Motion

Hainan Cui1, Shuhan Shen1, 2, Xiang Gao1, 2, and Zhanyi Hu1, 2

1NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing , China
2University of Chinese Academy of Sciences, Beijing, China

{hncui, shshen, xiang.gao, huzy}@nlpr.ia.ac.cn

Abstract

The incremental Structure-from-Motion (SfM) technique
has advanced in both robustness and accuracy, but the effi-
ciency and scalability remain its key challenges. In this pa-
per, we propose a novel batched incremental SfM technique
to tackle these problems in a unified framework, where two
iteration loops are contained. The inner loop is a tracks tri-
angulation loop, where a novel tracks selection method is
proposed to find a compact subset of tracks for the bundle
adjustment (BA). The outer loop is a camera registration
loop, where a batch of cameras are simultaneously added
to alleviate the drifting risk and reduce the running times
of BA. By the tracks selection and batched camera registra-
tion, we find these two iteration loops converge fast. Ex-
tensive experiments demonstrate that our new SfM system
performs similarly or better than many of the state-of-the-
art SfM systems in terms of camera calibration accuracy,
while is more efficient, robust and scalable for large-scale
scene reconstruction.

1. Introduction

Structure-from-Motion (SfM) technique has been suc-
cessfully used for the reconstruction of large uncontrolled
image collections [1, 23]. A typical pipeline for SfM usu-
ally consists of four steps: image feature detection and
matching, camera poses initialization, tracks triangulation
and bundle adjustment. Based on the difference of camera
poses initialization manner, SfM could be roughly divided
into two categories: incremental and global.

Incremental SfM [32, 34, 35, 38, 42] usually begins from
two-view reconstruction, then iteratively registers cameras,
and performs bundle adjustment (BA) for each registration
to refine the camera poses and scene structure. While accu-
rate, it may suffer from drift, inefficiency and poor scalabil-
ity when it is used for large-scale scene reconstruction. In

(a) (b)

Figure 1. Our result on Quad [9], where 5971 images are regis-
tered out of 6514 images. (a) shows the result with tracks selec-
tion (257K points), (b) shows the result without tracks selection
(3048K points). The red cones show calibrated camera poses.

comparison, global SfM [9, 10, 11, 12, 14, 39] utilizes the
epipolar geometry graph (EG), where nodes correspond to
cameras and edges link matched camera pairs, to estimate
the camera poses simultaneously. While global rotation av-
eraging [7, 18, 19, 30] has been well studied in the litera-
tures, global translation averaging [13, 33, 39] suffers from
epipolar geometry outliers, which may leave many cameras
un-calibrated.

Arguably, the robustness and accuracy advantages in the
incremental SfM mainly benefits from RANSAC technique
to discard bad epipolar geometries and repeated bundle ad-
justment to refine camera poses. However, when the sys-
tem handles large-scale scene reconstruction, the incremen-
tal manner suffers from error accumulation, which is a main
factor to cause the scene drift [24]. In addition, the repeat-
ed time-consuming bundle adjustment makes both recon-
struction efficiency and scalability poor. Thus in this paper,
we propose a batched incremental SfM method (BSfM for
short), here the ‘batch’ means that a batch of cameras are
simultaneously registered and refined in each camera regis-
tration step, rather than adding cameras one by one in many
state-of-the-art incremental SfM systems [34, 38, 42]. In
this way, each camera registration step could be considered
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as using a global manner to reduce the drifting risk. Our
main contribution includes: (1) batched camera registra-
tion, (2) batched tracks selection.

The batched camera registration means that instead of
performing carefully next view selection [15, 34, 42], we
propose to simultaneously calibrate a batch of cameras in
each camera registration step, namely for these cameras
that have sufficient 2D-3D correspondence, we treat them
equally and compute their corresponding camera poses si-
multaneously. Since the error accumulation is the inherent
problem in the incremental manner, the camera pose regis-
tered by the scene points in former iteration is more accu-
rate than that registered by the points in latter ones. Thus,
our batched camera registration aims to make the cameras
utilize more accurate scene points for the registration. In ad-
dition, by registering multiple cameras in each iteration, the
times of camera registration will be reduced, and concomi-
tantly, the error accumulation problem will be alleviated.

The batched tracks selection means that in each camer-
a registration step, only a subset of tracks is selected and
refined, rather than considering all the visible tracks. For
large-scale scene reconstruction, the tracks are usually re-
dundant for camera calibration and memory-consuming for
BA, thus tracks selection is vital for both SfM efficiency
and scalability. To our best knowledge, we are the first to
fuse the tracks selection technique into incremental SfM.
To guarantee the success of next camera registration step,
our tracks selection considers two aspects: one is to cover
the calibrated cameras to refine their camera poses, the oth-
er is to cover the cameras that are going to be registered in
the next step. In the selection process, we prefer the longer
tracks because they have a larger consistency than those of
short ones. Furthermore, by using tracks selection, the num-
ber of constraint equations in BA is dramatically reduced
and the space scalability is greatly improved.

Note that instead of performing incremental SfM on the
image feature matches [34, 35, 38], we propose to use tracks
in our whole batched SfM pipeline. The reason contains
the following three aspects: (1) since the length of track
is usually long, using tracks could get more candidates in
the camera registration step, which benefits for our batched
camera registration; (2) in the tracks construction process,
many erroneous or ambiguous feature matches have been
filtered in advance [29, 31, 37]; (3) a track is a collection
of feature matches, its consistency is more convincing to
be a real inlier than that of a feature match, which is more
helpful for our tracks selection and batched BA.

Fig. 1 illustrates our reconstruction result on Quad [9].
To show the effectiveness of our tracks selection, we show
the result reconstructed by embedding our tracks selection
module in Fig. 1(a), and show that without tracks selec-
tion module in Fig. 1(b). Qualitatively, the scene struc-
tures are similar, and quantitatively, the median camera po-

sition accuracies in (a) and (b) are both 0.69m. The simi-
lar scene structure and similar calibration accuracy indicate
that the tracks are too redundant for the SfM task solving,
and from Fig. 1 we can see that our method only uses 8% of
the full tracks. For the reconstruction efficiency, benefiting
from batched camera registration and tracks selection, our
batched SfM is 7 times faster than COLMAP [9], and 80
times faster than Bundler [35].

2. Related Work
Initial Seed Reconstruction: Incremental SfM usually ini-
tializes the scene model with a carefully seed selection [4,
17, 35]. Bundler [35] aims to find an image pair with e-
nough feature match inliers but includes few homograph-
ic feature matches. Haner et al. [17] presents a selection
rule based on covariance propagation, and points out that
a well-determined camera should have both small estimat-
ed covariance and low re-projection error. However, such
methods do not consider the space distribution of camera
positions. To make more cameras be added in the batched
camera registration step, we utilize the epipolar geometry
graph to select a good image pair with more neighbors.
Image Registration: Based on a metric reconstruction, new
images are registered by solving the Perspective-n-Point (P-
nP) problem [16, 25, 26] using the 2D-3D correspondences.
Conventional incremental SfM methods [15, 34, 38, 42]
register one camera at each camera registration step, then
perform either local bundle adjustment or global bundle ad-
justment. For example, Bundler [35] registers the camera
with the most visible correspondences, and COLMAP [34]
simultaneously keeps track of the number of visible points
and their distribution in each candidate image. While accu-
rate, this ‘one by one’ manner accumulates the error con-
stantly, and usually performs BA too many times. Hence,
we propose a ‘batch by batch’ manner to improve the SfM
efficiency and alleviate the drifting problem.
Tracks Triangulation & Selection: After camera registra-
tion, a newly registered image could increase scene cov-
erage by extending 3D points through tracks triangula-
tion [3, 22, 27, 28]. Conventional incremental SfM meth-
ods [34, 38, 42] usually refine all the triangulated tracks in
BA, which suffers from both time-consuming and memory-
consuming. In fact, the tracks are usually redundant, es-
pecially for those high-resolution images, a mass of tracks
usually puts too much burden on the BA, while are not help-
ful for the camera calibration, and sometimes many tracks
outliers may impede the SfM task solving. Thus, we pro-
pose to make a tracks selection for the BA.
Bundle Adjustment: BA [8, 40] is a joint non-linear refine-
ment of camera parameters and point parameters that min-
imizes the discrepancy between scene structure and mea-
sured 2D image features. The LM [20] algorithm is usu-
ally used to solve this problem, and the special structure
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Figure 2. Pipeline of our batched incremental SfM system.

of parameters motivates the Schur complement trick [5].
As proposed in VSFM [42], by indirect algorithm – Pre-
conditioned Conjugate Gradient (PCG) [6, 43], the time-
complexity of large-scale BA could be close to linear. Based
on this approach, we propose to cluster the images first, then
truncate the LM optimization with a fixed maximum num-
ber of iterations to further speed-up the camera calibration.

3. Batched Incremental SfM
Fig. 2 shows the pipeline of our BSfM, where two loops

are included. The inner loop is to iteratively run the tracks
triangulation, selection and BA, and the outer loop is the
iterative camera registration. Note that only when the inner
loop converges, the next iteration of outer loop could begin.

Each edge of the epipolar geometry graph (EG) contains
corresponding feature matches and epipolar geometry, in-
cluding the relative rotation Rij and translation Tij , which
is obtained by essential matrix decomposition. Based on the
EG, tracks are constructed by the union-find algorithm [31].

3.1. Batched Seed Selection

To obtain a good initial scene reconstruction, the camer-
a seeds should have both accurate camera poses and wide
baselines. In addition, in order to make more cameras be
registered in the next step, the visible scene of a good cam-
era pair should be seen by as many cameras as possible.

Given the EG, global camera rotations R = {Ri, i =
1...N} could be estimated from relative rotations [7]. As
proposed in [14, 39, 41], these estimations are sufficient-
ly accurate to be an initial guess for camera orientations.
Thus to find a good camera pair, we filter the grossly er-
roneous epipolar edges first. For an epipolar edge Eij , the
geodesic error [19] is computed by acos(∥Rij − RjRT

i ∥F ).
Then, those epipolar edges with a large geodesic error
(e.g., >15deg), are filtered. To demonstrate the effective-
ness of this filtering step, we evaluate both the edges be-
fore and after filtering by computing the geodesic error
acos(∥Rij − Rgt

ij ∥F ), where Rgt
ij is the ground-truth of Rij .

Fig. 3 shows the cumulative distribution functions (CDF)
on the geodesic error of two public datasets Alamo and Ro-
manForum [41], where ‘EG’ and ‘EG Filter’ respectively

Figure 3. The cumulative distribution function (CDF) on the
geodesic rotation error of datasets Alamo and RomanForum [41].

denotes the CDF before and after filtering, from which we
can see that the ratio of edge inliers is increased by filtering.
Next, we replace the relative rotations Rij as: Rij = RjRT

i ,
the corresponding CDF is shown by the red curve in Fig. 3,
we can see that the ratio of real inliers increases further.

To achieve a robust reconstruction, selected camera seed-
s should also have a wide baseline. Given camera intrin-
sic parameters and global camera rotations, we get a ray
for each image feature, and then the triangulation angle be-
tween any pairwise feature matches is obtained. For each
epipolar edge, we use the median triangulation angle of its
feature matches to measure the length of baseline. Howev-
er, it is undesirable when the direction of baseline is nearly
parallel with the optical axis, i.e. moving the camera along
with the optical axis. Thus, when the normalized relative
translation on an epipolar edge has a large z-axis compo-
nent, the corresponding pair of cameras is ignored in the
seeds selection. Besides, in order to register more cameras
in the next step, camera seeds should have more neighbors.
To this end, EG are augmented by tagging each epipolar
edge with a property ρij to denote the density of neighbor-
ing cameras. Let ni be the number of neighbors of camera
i in the EG, then ρij is measured by min{ni, nj}.

Overall, a batch of camera seed candidates are selected
by the following steps. First, those epipolar edges that satis-
fy anyone of the following three conditions are filtered: (1)
a small median angle (e.g., smaller than 3.0 degrees); (2)
an erroneous relative rotations (e.g., geodesic error is larger
than 15.0 degrees); (3) a large z-axis component of relative
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Figure 4. An illustrative reconstruction process of our BSfM system, where the camera registration step (outer loop) consists of 3 iterations
. To show the sparsity of selected tracks, we triangulate the full tracks by the final calibrated camera poses and show the result in the last.
Note that this full triangulation step is not necessary in our system, it is only used to better show the scene structure.

translation (e.g., |Tz
ij | ≥ 0.9). By such a filtering step, we

get an initial batch of camera seeds. Then, the relative rota-
tion on each epipolar edge is replaced by the global camera
rotation estimations. Finally, by sorting ρij , a ranked batch
of camera seeds are obtained, and we reconstruct the camer-
a seeds along the ranking list. For each pair of cameras, the
relative translation is refined first by the inliers of epipolar
geometry, then we triangulate the feature matches and per-
form a two-view BA. When the ratio of scene point inliers is
larger than γ1 (e.g., 0.5) and the number of inliers is larger
than γ2 (e.g., 200), the seed reconstruction is considered as
a success, otherwise we check the next candidate.

3.2. Batched Camera Registration

In stead of performing carefully next view planning,
which has been studied in many literatures [15, 17, 34], we
propose to add a batch of cameras in the registration step to
reduce the error accumulation risk as much as possible.

Given reconstructed scene points, any cameras that ob-
serve sufficient triangulated points could be registered in
this step. In our work, to benefit from RANSAC technique,
all the cameras that could see more than 12 scene points are
considered as a candidate for the camera registration. For
each candidate Ci, we utilize the P3P algorithm [16] to get
its initial camera pose {Ri,Ti}. If the ratio of inliers is larg-
er than 0.5, we consider it is possibly right and perform the
following optimization.

By keeping both the camera intrinsic parameters Ki and
3D scene points inliers Xj fixed, the initial camera poses
{Ri,Ti} is further refined by minimizing the discrepancy
between the observed 2D image features xij and 3D recon-
structed scene points Xj :

min
Ri,Ti

N∑
i=1

M∑
j=1

∥xij − γ(Ki,Ri,Ti,Xj)∥huber, (1)

where γ() function is the projecting function. As the initial
camera poses estimation has already found the maximum
number of inliers, thus for the robustness concern, when the
geodesic rotation error between the initial estimation and af-
ter optimization is small (e.g., geodesic error is smaller than
5.0 degrees), we consider this camera registration is correc-

t, otherwise it is considered as failed. Since the registration
for different cameras is independent, the batched registra-
tion is performed in parallel, and we find its time-cost is
negligible when compared to that of BA.

3.3. Tracks Triangulation and Selection

After camera registration, a batch of newly registered
cameras could extend the scene by tracks triangulation.
Here we use a RANSAC-based triangulation method to
compute the 3D point position for each track covering two
or more calibrated views. For each iteration in RANSAC,
we randomly choose two visible views, and then compute
the angle between two projection rays. If the angle is
larger than 2.0 degrees, it is currently considered as well-
conditioned and use the DLT [20] to triangulate. Then, both
the number of its consistent measurements and the cheiral-
ity of corresponding views are checked. Note that all the
cheirality [21] of visible calibrated cameras in the track
should be positive. For each track, we find a best point
that has the largest number of consistent measurements, and
when the maximum projection error of its visible views is
smaller than δ, we consider it as a current track inlier. How-
ever, tracks are usually redundant and an extremely amount
of tracks usually makes BA time-consuming and memory-
consuming. To improve the SfM efficiency and scalability,
we propose to find a compact subset of tracks in the guar-
antee of keeping camera calibration accuracy.

Considering a conventional camera model, 3DOF (de-
gree of freedom) for camera rotation, 3DOF for camera
translation, 1DOF for camera focal length and 2DOF for
camera distortion, the minimum number of constraints in
BA to refine a camera is only 5. However in fact, the tracks
are usually cover each camera hundreds of times. Thus, in
order to reduce the number of constraints in BA, we propose
to find a subset of tracks to cover each camera K times. S-
ince the manner of SfM is incremental, we should not only
cover the cameras that have already been calibrated, but also
cover the cameras that are going to be registered in the next.
Let S be the camera set that we need to cover currently.

For each track, we check the number of its visible views
in S, and denote them as effective views. Based on the num-
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Figure 5. Four examples of the BA cost change, where Cam-
pus [14], Piccadilly and Trafalgar [41], ArtsQuad [9] has 1040,
2176, 4886 and 5971 images, respectively.

ber of effective views, current track inliers are ranked first
in a descending order. When some tracks with the same
number of effective views, they are re-ranked by their cor-
responding re-projection error. Then, we check each track
along the ranking list, and select it if one of its effective
views is not covered by K times. The iteration converges
when all effective views are covered by K times or all the
tracks have been checked. The reason of choosing longer
tracks first contains two-fold: one is the longer tracks cov-
er more views, which further reduces the number of tracks
in BA; the other is that a longer track has a larger consis-
tency than short ones, which is more likely be a real inli-
er. Fig. 4 shows an illustrative reconstruction result on the
dataset Building [44], from which we could see that only
3 iterations are needed in our batched camera registration
(outer loop), and the tracks selected in the iteration are ex-
tremely sparse when compared with the full tracks.

3.4. Batched Bundle Adjustment

To mitigate the impact of accumulated errors and refine
inaccurate camera pose estimations, we perform a batched
BA after each camera registration. To utilize the consis-
tency of camera models, the cameras are initially clustered
by the priori intrinsic parameters. If two cameras with the
same priori focal length, principle point, and the manufac-
turer, we consider them as a same model and only refine one
camera intrinsic model in BA.

Conventional BA [2] performs iterative LM in the op-
timization, and the convergence criterion is usually criti-
cal. Fig. 5 shows the change of BA cost on four large-scale
datasets, from which we could see all the BA processes have
intuitively converged in about 5–10 iterations, while actual-
ly, the critical convergence criterion is still not reached, and
lots of time are spent in the latter iterations. BA has already
adopt linear approximation to the non-linear problem solv-
ing, thus the convergence could not be considered as find
the real minimum. In our system, since a more accurate
subset of tracks is selected for BA, we find that the cost in

BA usually decrease very fast in the first several iterations,
while decreases slowly afterwards. Thus, in order to speed-
up BA, we truncate it by a fixed maximum number of LM
iterations (T ), and we find that it is practical in all of our
testing datasets (in our work, T is set to 10). Furthermore,
considering the potential outliers, the Huber function [20]
is further employed as the robust loss function in our BA:

min
Ks,Ri,Ti,Xj

S∑
s=1

N∑
i=1

M∑
j=1

δij∥xij − γ(Ks,Ri,Ti,Xj)∥huber,

(2)
where S is the number of camera intrinsic models, and
δij = 1 if camera i observes Xj , otherwise δij = 0.

3.5. Iterative Re­triangulation and Re­selection

After BA, the camera poses become more accurate, thus
we propose to perform a re-triangulation step for tracks to
decrease the accumulated error, and a further re-selection
step to speed-up the next BA. The convergence criterion on
this inner loop of our BSfM is set to evaluate the IoU (In-
tersection over Union) value on the selected tracks:

IoU =
Hi

∩
Hi−1

Hi
∪

Hi−1
, (3)

where Hi denotes the selected tracks in the ith iteration.
When the IoU is larger than 0.9, the inner loop is considered
as converged. In our work, we find this inner loop usually
converges in 2–4 iterations.

3.6. Cameras Filtering and Points Filtering

Since only a small fraction of points are used for camer-
a registration, sometimes the calibrated camera parameters
are not reliable. Considering the robustness, we filter them
by using some priori constraints. For the camera intrinsic
parameters, the refined focal length cannot be changed too
much, and the calibrated distortion parameters cannot be
too large. Thus, when the change of focal length over the
priori focal length is larger than 80%, or one of the distor-
tion parameters is larger than 1.0, the camera is considered
as a failed calibration. Those failed cameras are set unregis-
tered and could be re-registered in the following iterations.
Then, based on the refined camera poses, those points satis-
fying anyone of the following conditions are filtered: (1) the
maximum projection error is larger than 8.0 pixels; (2) the
maximum triangulation angle is smaller than 2.0 degrees;
(3) one of visible views has a negative cheirality.

4. Experiments
All the experiments are performed on a PC with an Intel

Xeon E5-2603 CPU and 32G RAM. For the fairness, all
methods in comparison use the same feature matches for
reconstruction. The parameter K in the tracks selection is
set to 100.
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Figure 6. Reconstruction results on three sequential image data: Building [44], Campus [14] and StreetView [12].

Table 1. Camera calibration accuracy on benchmark images [36].
Cerr denotes the median camera position errors in millimeters.
Rerr denotes the median camera rotation error in degrees.

Method

Accuracy (mm — deg)
FountainP11 HerzJesuP25 CastleP30
Cerr Rerr Cerr Rerr Cerr Rerr

Bundler [35] 7.0 0.28 21.9 0.25 206.1 0.36
VSFM [42] 36.0 0.28 55.0 0.29 264.0 0.40
Theia [38] 1.9 0.08 4.7 0.07 21.5 0.05

COLMAP [34] 4.9 0.30 23.6 0.40 99.3 0.34
our BSfM 1.9 0.06 4.7 0.04 20.6 0.06

4.1. Evaluation on Benchmark Data

To quantitatively evaluate our method, we perform our
method on three median-scale benchmark image dataset-
s [36], and show the results in Table 1. From this table, we
can see that for the camera positions accuracy, our method
achieves the best among the five methods in comparison.
For the camera rotation accuracy comparison, we utilize the
median geodesic error [19] as the evaluation criterion. From
the results, our method performs similar with Theia, while
is superior than the other three SfM approaches.

We also evaluate our method on the large-scale image
dataset Quad [9], where 348 camera positions are measured
by a survey-quality differential GPS (with an accuracy of
about 10cm). The reconstruction result is shown in Fig. 1,
and we achieve the best camera position accuracy: DIS-
CO [9] 1.16m, Bundler [35] 1.01m, VSFM [42] 0.89m,
COLMAP [34] 0.85m, and our BSfM 0.69m.

4.2. Evaluation on Sequential Data

We demonstrate our BSfM system on three sequen-
tial image datasets, including Building with 128 images
from [44], Campus with 1040 images from [14], and
StreetView with 2468 images from [12]. We compare our
method with four state-of-the-art incremental SfM method-
s: Bundler [35], VSFM [42], Theia [38], COLMAP [34].
Fig. 6 shows the reconstruction results on these datasets.
To qualitatively compare with other methods, we triangu-
late all tracks by our calibrated camera poses and show the
result in the last column.

For the Building, most methods successfully reconstruc-
t the scene, while VSFM fails in the left-bottom of scene.
In addition, we achieve the best efficiency: Bundler 3.6
hours, Theia 0.6 hours, COLMAP 0.5 hours and our B-
SfM 0.08 hours. Fig. 7 shows the IoU (Eq. 3) and the
number of selected tracks in the camera registration, from
which we could see that the inner loop converges fast (when
IoU ≥ 0.9) and for each new outer iteration, there is a large
drop of IoU because new tracks are selected by the newly
registered cameras. Furthermore, with the iterations in the
outer loop going on, we find the number of selected tracks
decreases, and the reason is that after each camera registra-
tion, we select much longer tracks. The median track length
for the three outer iterations is 17, 19, 21, respectively.

For the Campus, it is more challenging because many
trees exist in the scene and the camera motion trajectory is a
loop. As a result, many erroneous feature matches are easily
appeared in the matched trees. From the reconstruction re-
sults in Fig. 6, we can see that VSFM, Theia and COLMAP
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Temple

Piccadilly

Figure 8. Reconstruction results on unordered image data: Temple [12] and Piccadilly [41].

(a) graham-hall (d) Trafalgar(b) Gendarmenmarkt (c) Roman Forum

Figure 9. (a) graham-hall [34] is a sequential data with 1273 images, captured from outdoor to indoor; (b) [41] is an ambiguous dataset
with many symmetric textures; (c)-(d) [41] are unordered image datasets, with 1134 and 5433 images, respectively.

Figure 7. The left figure shows the change of IoU, and the right
shows the number of selected tracks in the camera registration.

fail on this dataset, while Bundler [35] and our BSfM suc-
cessfully reconstruct the scene and achieve the loop. Con-
sidering the SfM efficiency, the time-cost of Bundler is 61.0
hours, while only 0.4 hours is spent by our BSfM system.

For the StreetView, many symmetric textures exist in the
facade of buildings, hence the feature matches are easily
contaminated. From Fig. 6, we can see that both Bundler
and COLMAP fail on this dataset, and the reconstructed
scene is incomplete in the VSFM (marked by a blue ellipse),
while Theia and our BSfM could successfully reconstruc-
t the scene. By comparing the efficiency, the time-cost of
Theia is 3.5 hours, while our BSfM only needs 1.0 hours.

In conclusion, for these sequential testing datasets, our
method achieves the best efficiency and robustness.

4.3. Evaluation on Unordered Data

To further demonstrate the scalability of our method,
we evaluate it on two large-scale unordered internet image
datasets [41], including Piccadilly with 2508 images and
Trafalgar with 5433 images, and a challenging dataset Tem-
ple [12] with many symmetric textures and trees.

For the qualitative comparison, Fig. 8 shows the recon-
struction results on both Temple and Piccadilly, from which
we can see all the incremental SfM methods reconstruct the
Piccadilly successfully, while for the challenging dataset
Temple, VSFM, Theia and COLMAP fail. The reason for
this failure is that some feature matches outliers (e.g., sym-
metric textures) are considered as inliers in their SfM pro-
cesses, then many cameras use these points for the camera
poses estimation. With the accumulation of error, the drift-
ing problem became more and more severe. While instead
of using feature matches, we prefer to add cameras by us-
ing a subset of tracks with a larger consistency. The error
accumulation problem is alleviated by our batched camera
registration, and our tracks selection makes a further step to
select more track inliers into BA.
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Table 2. Camera calibration accuracy on the unordered image data. The median and mean position errors in meters are denoted by x̃ and x̄,
respectively. The number of cameras [41] is Ni, and the number of calibrated cameras is Nc. The time-cost in seconds is T . The number
of original tracks is Nt, and the number of selected tracks in the last iteration is Ns.

Dataset Theia [38] COLMAP [34] Our BSfM
Name Ni Nt Nc x̃ x̄ T Nc x̃ x̄ T Nc x̃ x̄ T Ns

Piccadilly 2508 624K 1824 0.6 1.1 3698 2132 0.3 1.3 105601 2176 0.3 1.2 3554 76K (12.9%)
Trafalgar 5433 1158K 3873 2.6 4.0 10210 4760 1.4 4.5 144840 4886 1.4 4.4 9579 121K (10.5%)

(a) without tracks selection (b) without batched registration

Figure 10. Reconstruction results on the dataset Temple.

To verify the importance of our tracks selection and
batched camera registration, we reconstruct the dataset
Temple in two other situations: (1) without selecting track-
s; (2) without batched camera registration. From Fig. 10,
we can see both reconstructions fail, indicating that these t-
wo modules are both important to tackle the SfM task on
scene with symmetric textures. For the SfM efficiency,
the time-cost of Bundler is 23.8 hours, while ours is only
0.4 hours. The reconstruction result on another ambiguous
dataset Gendarmenmarkt [41] is shown in Fig. 9(b).

The quantitative results comparison on the Piccadilly and
Trafalgar is shown in Table 2. Note that for these public in-
ternet datsets, 1DSfM [41] uses the calibration results of
the state-of-the-art incremental SfM system Bundler [35] as
the reference ground-truth, thus we do not show the result
of Bundler. In addition, since VSFM [42] does not support
that using ceres-solver [2] for the bundle adjustment, for
the fairness, we only show the comparison with Theia and
COLMAP. From this table, we can see that our method cal-
ibrates the most number of cameras in both datasets, while
achieves a similar accuracy, indicating that our method is
more robust than the others. Especially for the dataset
Trafalgar, our method calibrates 1000+ cameras more than
that of Theia. Comparing the SfM efficiency, our BSfM is
about 30 times faster than COLMAP in dataset Piccadilly,
while 15 times faster in dataset Trafalgar.

For both two datasets, the tracks used in our camera reg-
istration is only about 10% of the full tracks, namely about
90% memory footprint is saved in BA. The change of the
calibrated cameras number is shown in Fig. 11. At the be-
ginning of the camera registration, we have already recon-
structed the camera seeds, hence the number of calibrated

Figure 11. The number change of calibrated cameras in the outer
loop.

camera for all datasets is 2. Since the selected camera seeds
have many neighbors, we can see the number of calibrated
cameras significantly increases after the first iteration, espe-
cially for those internet image datasets, most cameras usual-
ly captured the same buildings. For example, more than 900
images are calibrated in the first iteration of Trafalgar, and
with the iterations going on, we can see the number of cal-
ibrated cameras increases fast, and more than 4500 images
are calibrated by only 6 iterations.

Overall, for these unordered image datasets, our method
performs more robust, efficient and scalable than many
state-of-the-art SfM methods. Fig. 9 shows four other large-
scale reconstruction results, where the full triangulation step
is performed for better visualization. More reconstruction
results are shown in our supplementary material.

5. Conclusion
In this paper, a batched SfM algorithm is proposed to

make a further step towards a robust, accurate and efficient
incremental system. With batched camera registration and
tracks selection, our method outperforms many of the state-
of-the-art SfM methods in terms of robustness and efficien-
cy. Especially for the tracks selection module, it makes a
large improvement on the saving of memory footprint. Ex-
tensive experiments demonstrate the efficiency, scalability
and versatility of our batched SfM system.

Acknowledgement
This work was supported by the Natural Science Foun-

dation of China under Grants 61333015, 61421004 and
61632003.

212



References
[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. Com-
munications of the ACM, 54(10):105–112, 2011. 1

[2] S. Agarwal, K. Mierle, and Others. Ceres solver.
http://ceres-solver.org. 5, 8

[3] C. Aholt, S. Agarwal, and R. Thomas. A qcqp approach to
triangulation. ECCV, pages 654–667, 2012. 2

[4] C. Beder and R. Steffen. Determining an initial image pair
for fixing the scale of a 3d reconstruction from an image se-
quence. In Joint Pattern Recognition Symposium, pages 657–
666. Springer, 2006. 2

[5] D. C. Brown. A solution to the general problem of multiple
station analytical stereotriangulation. D. Brown Associates,
Incorporated, 1958. 3
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[37] L. Svärm, Z. Simayijiang, O. Enqvist, and C. Olsson. Point
track creation in unordered image collections using gomory-
hu trees. In ICPR, pages 2116–2119. IEEE, 2012. 2

213



[38] C. Sweeney. Theia multiview geometry library: Tutorial &
reference. http://theia-sfm.org. 1, 2, 6, 8

[39] C. Sweeney, T. Sattler, T. Hollerer, M. Turk, and M. Polle-
feys. Optimizing the viewing graph for structure-from-
motion. In ICCV, pages 801–809. IEEE, 2015. 1, 3

[40] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-
bon. Bundle adjustment – a modern synthesis. In Vision
algorithms: theory and practice, pages 298–372. Springer,
2000. 2

[41] K. Wilson and N. Snavely. Robust global translations with
1dsfm. In ECCV, pages 61–75. Springer, 2014. 3, 5, 7, 8

[42] C. Wu. Towards linear-time incremental structure from mo-
tion. In 3DV, pages 127–134. IEEE, 2013. 1, 2, 3, 6, 8

[43] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore
bundle adjustment. In CVPR, pages 3057–3064. IEEE, 2011.
3

[44] C. Zach, M. Klopschitz, and M. Pollefeys. Disambiguat-
ing visual relations using loop constraints. In CVPR, pages
1426–1433, 2010. 5, 6

214


