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Abstract— Speech production knowledge has been used to
enhance the phonetic representation and the performance
of automatic speech recognition (ASR) systems successfully.
Representations of speech production make simple explanations
for many phenomena observed in speech. These phenomena can
not be easily analyzed from either acoustic signal or phonetic
transcription alone. One of the most important aspects of speech
production knowledge is the use of articulatory knowledge,
which describes the smooth and continuous movements in
the vocal tract. In this paper, we present a new articulatory
model to provide available information for rescoring the speech
recognition lattice hypothesis. The articulatory model consists
of a feature front-end, which computes a voicing feature based
on a spectral harmonics correlation (SHC) function, and a back-
end based on the combination of deep neural networks (DNNs)
and hidden Markov models (HMMs). The voicing features are
incorporated with standard Mel frequency cepstral coefficients
(MFCCs) using heteroscedastic linear discriminant analysis
(HLDA) to compensate the speech recognition accuracy rates.
Moreover, the advantages of two different models are taken into
account by the algorithm, which retains deep learning proper-
ties of DNNs, while modeling the articulatory context powerfully
through HMMs. Mandarin speech recognition experiments
show the proposed method achieves significant improvements in
speech recognition performance over the system using MFCCs
alone.

I. INTRODUCTION

In spontaneous speech, there is much variability that makes

a significant challenge to the performance of state-of-the-art

continuous automatic speech recognition (ASR) systems [1].

Such variability mainly origins from coarticulation [2] and it

has been proposed that coarticulation can be effectively cope-

d with by applying articulatory knowledge [3], [4]. In [5], [6],

articulatory based processing algorithms have been proposed

to model the acoustic-phonetic variations. In [7], articulatory

features are hypothesized to capture acoustic variation at

finer level than the phoneme-based representation. In [8],

representations of speech production are used to improve

automatic speech recognition (ASR).

Speech modelling generally occurs in the acoustic domain.

A speech recognition system must take acoustic signals as

input, however to take these without considering speech

production mechanism ignores a rich source of prior knowl-

edge [9]. Several studies have indicated that articulatory

input representation contains available information which is

complementary to that provided by standard MFCC features
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[10]. In [11], techniques based on acoustic-to-articulatory

feature codebooks are applied to accurate recovery of articu-

lator positions. In [12], a phone-based background model

(PBM) approach is presented to improve attribute detec-

tion accuracies. Methods based on artificial neural networks

(ANNs) are exploited to extract articulatory features from

the acoustic speech signal [13]. In the algorithm, articulatory

features can be estimated by multi-task learning (MTL)

multilayer perceptrons (MLPs) compactly and efficiently, and

the inter-feature dependencies are learned through a common

hidden layer representation. Furthermore, adding phoneme as

subtask while estimating articulatory features improves both

articulatory feature estimation and phoneme recognition. In

[14], a probabilistic framework for landmark-based speech

recognition that utilizes the sufficiency and context invariance

properties of acoustic cues for phonetic features is presented.

In [15], support vector machines (SVMs) are explored to

capture fine phonetic variation in speech using articulatory

features. In [16], a flexible stream architecture based on

Gaussian mixture models (GMMs) is used for automatic

speech recognition (ASR) with articulatory features. In [17],

the method determines articulatory movements from speech

acoustics using a hidden Markov model (HMM) based

speech production model. The model statistically generates

speech spectrum and articulatory parameters from a given

phonemic string. In [18], neural networks are trained to

map short-term spectral features to the posterior probability

of some distinctive features. These probabilities are then

used as features in a large vocabulary tied-state HMM-based

recognition. Considering factored models of the articulatory

state space with an explicit model of articulator asynchrony,

a factored conditional random fields (CRFs) are applied for

articulatory feature forced transcription [19]. In [20], [21],

dynamic Bayesian networks (DBNs) model articulatory-

acoustic context with an auxiliary variable that complements

the phonetic state variable. In [22], dynamic Bayesian net-

works (DBNs) are used to run articulatory feature recog-

nition in conjunction with an embedded training scheme

designed to learn asynchronous feature value changes. In

[23], applying articulatory features obtained by hierarchical

multilayer perceptron (MLP) improves the discrimination of

tone modeling effectively. In [1], a deep neural network

(DNN) is exploited to extract articulatory information from

the speech signal in a continuous speech recognition task and

demonstrated that with deeper networks the performance of

speech recognition systems can be improved.

As mentioned above, these methods only take advantages

of a single model. To fully exploiting the virtues of various
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models, the fusing of different models is received with

concern. In [24], algorithms based on discriminative model

combination (DMC) are used to integrating multilingual

articulatory features into speech recognition. The algorithm

enables us to better address the problem of non-native

speech recognition. In [25], the frame-level classification of

a set of articulatory features (AFs) inspired by the vocal

tract variables of articulatory phonology is studied. The

algorithm performs the incorporation of k nearest neighbors

and multilayer perceptrons (MLPs) for articulatory feature

classification. In [26], the combination of artificial neural

networks and dynamic Bayesian networks is made to perform

articulatory feature recognition. In [27], a hybrid hidden

Markov models (HMMs)/Bayesian networks (BNs) model

is proposed to effectively utilize the available articulatory

information for improving the performance of automatic

speech recognition (ASR).

For tonal languages such as Mandarin, it is widely known

that tone and voicing information can help to improve the au-

tomatic speech recognition (ASR) performance [28]. Voicing

feature extraction is a key method in finding discriminative

cues for Mandarin speech recognition. Previous work in in-

corporating voicing features into speech recognition systems

includes the following. In [29] methods with autocorrelation

based voicing features are presented in a HMM-based speech

recognition system. In [30] pitch and a voicing feature are

combined with standard MFCCs using linear discriminate

analysis (LDA). In [31] three alternative voicing features

are reported in combination with MFCCs features using

the LDA algorithm. They all show improvements in speech

recognition accuracy rates. In [32] the entropy of the high-

order cepstrum and the normalized autocorrelation peak

are combined with MFCCs using HLDA [33] to obtain

discriminative cues. In [34] voicing features and spectrum

derivative features are combined with MFCCs using LDA.

The method also achieves some improvements in speech

recognition accuracy rates.

In this work, we propose a method which formulates a

new voicing feature extraction algorithm using the spectral

harmonics correlation function in frequency domain and

build a articulatory model using hybrid deep neural networks

(DNNs) and hidden Markov models (HMMs) methods to

map both the acoustic and voicing features into articulatory

space. The method provides great discriminative cues for

Mandarin speech recognition. As for the voicing feature

extraction algorithm, firstly, nonlinear preprocessing is per-

formed for restoring the fundamental and enhancing the

voicedness in high frequency domain. Secondly, we obtain

a new voicing feature through arranging the formulation of

the SHC function. Then, the voicing feature is normalized

by cepstral variance normalization (CVN) to reduce the

residual mismatch in each utterance. Finally, the normalized

feature and its derivatives are incorporated with MFCCs

using HLDA to obtain the most relevant features. As will

be shown in the paper, we evaluate the resulting features on

a Mandarin speech recognition task. The experimental results

show the algorithm achieves significant CER reductions

for the task. It is relatively up to 20.73%. In addition,

the resulting features captured by HLDA are used to train

hybrid DNN/HMM models, which are used to incorporate

articulatory knowledge into speech recognition systems by

rescoring the speech recognition lattice hypotheses. Obser-

vation posterior probabilities, initial state probabilities and

state transition probabilities of articulatory models are incor-

porated into the speech recognition lattice rescoring process.

It is observed that applying articulatory knowledge based on

hybrid DNN/HMM models can improve speech recognition

rates on the Mandarin speech recognition tasks much further.

The best result is reported with a 22.75% relative reduction

of CER.

The outline of this work is as follows. In Section 2

we describe the formulation of voicing feature extraction

and the combination of voicing features and MFCCs using

the HLDA algorithm in detail. In the following Section

we show the articulatory modeling process using a hybrid

DNN/HMM framework and the lattice rescoring formulation

based on articulatory models. In Section 4 we show the

speech recognition task setups, the speech databases and

experimental results on evaluating our algorithm. Finally the

conclusions are drawn.

II. FEATURE DESCRIPTION

In this Section, firstly, we introduce how new voicing

features based on the SHC function are formulated in detail.

Secondly, we describe the combination of the proposed

voicing features and MFCCs using the HLDA algorithm.

A. Voicing feature extraction

Common inspiration of voicing feature extraction meth-

ods is to detect the quasi periodic oscillation of the vocal

chords and capture discriminative cues between voiced and

unvoiced sounds. Spectral harmonics correlation (SHC) func-

tions based methods measure the periodicity of a time frame

in the frequency domain. The specific steps are described as

follows:

First, nonlinear preprocessing is performed to compensate

the calculation of the SHC function by using the squared

value. The methods can be used to partially restore a missing

fundamental. The restoration of the fundamental by using the

squaring operation is also illustrated by using spectrograms

in Figure 1. The top panel (a) depicts the spectrogram of a

speech signal, for which the fundamental above 500 Hz is

not clearly apparent enough. In contrast, the fundamental is

more clearly apparent in the spectrogram of the nonlinearly

processed signal shown in the bottom panel (b).

Then, the nonlinearly processed speech signal is bandpass-

filtered for reducing the magnitude of the DC component.

The bandwidths (50-1500 Hz) and orders (150 points) of the

bandpass finite impulse response (FIR) filters are determined

empirically.
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Fig. 1. The spectrogram of a clean Mandarin speech signal, (a) before
applying nonlinear processing and (b) after applying nonlinear processing.

Next, the spectral harmonics correlation (SHC) function is

defined to use multiple harmonics in [35] as follows:

shc(t, f) =

n/2
∑

f ′=−n/2

h+1
∏

i=1

Y (t, i·f + f ′), (1)

where Y (t, f) is the magnitude spectrum for frame t at

frequency f , n is the spectral window length in frequency,

and h is the number of harmonics. f is a discrete variable

with a spacing dependent on fast Fourier transformation

(FFT) length Nf and sampling rate fs. For each frequency

f , Y (t, f) represents the extent to which the spectrum has

high amplitude at integer multiples of that f . Empirically,

n = 40 Hz and h = 3. Y (t, f) results in prominent peaks at

the fundamental frequency.

Figure 2 shows the spectrum and the corresponding spec-

tral harmonics correlation of a voiced speech frame. Com-

pared to the small peak at the fundamental frequency of

around 156 Hz in the spectrum, a very prominent peak is

observed in the spectral harmonics correlation function.

The aim of voicing feature extraction is to produce a

bounded value describing how voiced the current frame is,

we develop a new voicing feature that evaluates the peak

structure of SHC. Voiced frames exhibit a sharp maxima,

while unvoiced frames have no clear peak structure. The

feature vshc evaluates the maximum amplitude value of SHC.

It is defined as the ratio of the maximum amplitude value and

the algebraic mean of the neighboring amplitudes without the

maximum value.

fmax= argmax
F0 min≤f≤F0 max

shc(t, f), (2)
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Fig. 2. (a) The spectrum and (b) the corresponding spectral harmonics
correlation of a voiced speech frame.

vshc =
shc(t, fmax)

∑

f

shc(t, f)

/

2W

. (3)

Because an adult’s pitch frequency commonly ranges from

50 Hz to 400 Hz, the calculation is performed only for

the designated search range F0 min ≤ f ≤ F0 max, with

F0 min = 50 Hz and F0 max = 400 Hz. The algebraic mean

is calculated over the neighborhood of fmax. The size of the

neighborhood is set to W =
⌊

F0 min

/

fs
Nf

⌋

to avoid peaks

of the neighboring harmonics being included in the average.

f runs from fmax −W · fsNf
to fmax +W · fsNf

excluding fmax.

Typically we have 1 ≤ vshc ≤ 12.

Figure 3 depicts distributions of vshc on voiced and

unvoiced sounds. The histogram of a given phoneme has

been estimated on values aligned to the given phoneme on

the “863” train set. The distributions of vshc reveals the

distinction of voiced and unvoiced sounds.

B. The combination of voicing features and MFCCs

Linear discriminant analysis (LDA) is broadly applied to

reduce dimensionality and a powerful method to preserve

discriminative information. LDA assumes each class has the

same class covariance. However, this assumption does not

necessarily hold for a real data set. In order to remove this

limitation, heteroscedastic linear discriminant analysis (HL-

DA) has been presented. Heteroscedastic linear discriminant

analysis (HLDA) can deal with unequal class covariances

because the maximum likelihood estimation is used to esti-

mate parameters for different Gaussians with unequal class

covariances. Here, the combination of voicing features and

MFCCs using the HLDA algorithm are described as follows:
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Fig. 3. Histograms of the feature vshc estimated on “863” corpus. The solid
line corresponds to vshc of voiced initial ‘l’ and the dot line corresponds to
the unvoiced initial ‘h’.

Firstly, the extracted voicing feature vshc is normalized

as v̂shc in each utterance so that each value has zero mean

and unit variance. The normalized feature v̂shc and its time

derivatives are added into the standard acoustic feature vector

(MFCCs). Then, HLDA is used to project 42 dimension to

39 dimension with reserving the most relevant classification

information. Finally, the resulting 39 dimension features are

used as the input features of the subsequent articulatory

modeling.

III. ARTICULATORY MODELING USING DNN/HMM

In this Section, firstly, we introduce deep neural networks

briefly. Secondly, we describe hidden Markov models shortly.

Next, articulatory modeling are elaborated using the hybrid

DNN/HMM framework. Finally, the lattice rescoring process

based on articulatory models is described.

A. Deep neural networks

The DNN framework has become the dominant techniques

in acoustic modelling in speech recognition [36]. This acous-

tic modeling technique differs from the earlier ANN systems

in that there are more hidden layers and more hidden nodes

in each hidden layer in the DNN topology.

Given an input observation vector o, DNNs pass it through

multiple hidden layers hi, where i = 1, · · · , L and L is the

number of hidden layers. This procedure can be formulated

as follows:

h1 = σ(W1 ∗ o+ b1), (4)

hi+1 = σ(Wi ∗ hi + bi), i = 1, · · · , L, (5)

where Wi and bi are the weight matrix and bias vector for

the hidden layer respectively. σ is the sigmoid function. For

the output layer, the softmax function

p(y = a|hL) =
exp(Wa

L ∗ hL + b
a
L)

∑

y′

exp(Wy′

L ∗ hL + b
y′

L )
, (6)

is used to estimate the label posterior probability p(y = a|o)

where a represents the articulatory class label, W
y′

L and b
y′

L

are the y′th row of the weight matrix WL and the y′th

element of bias vector bL.

B. Hidden Markov models

A hidden Markov model (HMM) is a statistical Markov

model in which the system being modeled is assumed to be

a Markov process with hidden states. A HMM, defined as

λ = {A,B, π}, consists of the following elements:

• The number of states in the model denoted as N , the

set of states denoted as S = {s1, s2, · · · , sN} and qt
the state at time t.

• A = {aij}, the state transition probability with

aij = P (qt = sj |qt−1 = si), 1≤i, j≤N. (7)

• B = {bi(ot)}, the observation probabilities, where

bi(ot) represents the probability of observation ot at

state si.

• π = {πi}, the initial state probabilities, where πi =
P (q1 = si), 1≤i≤N .

To make the HMM available, there are two problems that

one should solve: [37]

• Learning problem: Given the observation sequence O =
o1o2· · ·oT , the learning procedure is to find the set

of model parameters λ∗ = {A∗, B∗, π∗}, such that

λ∗ = argmaxλ P (O|λ). The Baum-Welch algorithm

is employed to solve the learning problem.

• Decoding problem: Given a model λ and a sequence

of new observations O = o1o2· · ·oT , the decoding

procedure is defined as the problem of finding the

hidden state sequence that have most likely produced

that observation q1q2· · ·qT . The solution of this problem

is given by the Viterbi algorithm [37] as

P (O|λ) = max
q1q2···qT

πq1

T
∏

t=2

P (qt|qt−1)bqt(ot). (8)

C. DNN/HMM for articulatory modeling

In the case of articulatory modeling, we need to understand

articulatory knowledge. For Mandarin speech, Chinese sylla-

ble pertains to the Initial-Final structure. Both the initials and

finals can be further divided into several detailed categories

according to the manner and the place of articulation. The

categories are described in Table I. We assume that class

labels consists of 19 articulatory categories, a pseudo initial

class and a silence class. For each phoneme, the mean of

the input features is used for articulatory modeling in its

corresponding duration. In the training stage, the training

speech data is aligned and its corresponding labels is used

to train a universal DNN whose output layer has N output

nodes where N = 21 is the number of class labels. In the

testing stage, the testing speech data is passed to the resulting

DNN to compute the posterior probability of each phoneme.

After calculating the posterior probabilities for a phoneme,

the label of the phoneme is determined as the articulatory

label which has the maximum posterior probability.
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TABLE I

ARTICULATORY CATEGORIES OF INITIALS AND FINALS.

Categories Description

1 m n l r y w Voiced

Initial
2 b p d t g k Stop

3 z c zh ch j q Fricative

4 f s sh x h Affricate

5 a ia ua

Simple vowel

and

tail-dominant

Final

6 e ie üe

7 o uo

8 i

9 u

10 ü

11 er

12 ai uai
head-dominant

and

centre-dominant

13 ei uei

14 ao iao

15 ou iou

16 an ian üan uan

Nasal
17 in en uen üen

18 ang iang uang

19 eng ong ing iong

Taking the context of articulatory information into account,

we build a HMM model with 21 states symbolizing articula-

tory categories. The HMM model is ergodic. The key point

in the DNN/HMM framework is using the DNN’s posterior

probability to represent the observation probabilities bi(ot).
According to [37], the estimation formulas of the initial

state probabilities and the state transition probability can be

derived as

π̄i = γ1(i), (9)

āij =

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(i)

, (10)

where ξt(i, j) is the probability of being in state si at time t

and state sj at time t−1 and γt(i) is the probability of being

in state si at time t, given the model λ and the observation

sequence O.
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Fig. 4. The lattice rescoring process of articulatory models based on the
hybrid DNN/HMM framework.

D. Integrating articulatory models into the speech recogni-

tion

Figure 4 shows the flow diagram of the lattice rescoring

process of articulatory models based on hybrid DNN/HMM

models. The articulatory models are integrated into the

continuous speech recognition system by rescoring the lattice

hypotheses. The lattice hypotheses are generated by the

first pass recognition, and are reranked with the articulatory

scores integrated. The total score of a hypothesis can be

defined as:

Φ =
I

∑

i=1

[ΦAM(pi) + αΦLM(pi) + βΦDNN(pi) + δΦHMM(pi)],

(11)

where α is the language model weight, β is the weight

correspond to the DNN’s posterior probability of articulatory

models, δ is the weight corresponding to the HMM’s initial

state probability or the HMM’s state transition probability

of articulatory models, and I is the phoneme number of the

hypothesis for a candidate path. Thus, the hypothesis with

the highest path score is regarded as the best hypothesis.

IV. EXPERIMENTS AND RESULTS

The details of generation of the new voicing feature vshc

are summarized in this section. For every 10 ms, a 40 ms

long window is applied to the speech signal. The window

is longer than for MFCCs to increase the possible number

of periods in a time frame. Before computing the SHC,

nonlinear preprocessing is performed and Kaiser window is

used. To increase the frequency resolution, an 8192-point

FFT is computed with zero padding. The SHC-based voicing

features for a waveform extracted from the Mandarin speech

corpus are shown as Figure 5, where the curves of vshc

reveal the discrimination of voiced and unvoiced sounds. In

addition, it is observed that different syllables with the same

tone have different vshc contour and different tones with the

same syllable make vshc contour different in shape.
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Fig. 5. (a) The waveform and (b) the corresponding SHC-based voicing
features for a clean Mandarin speech signal.
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Experiments are performed on the “863” corpus, which

is provided by Chinese National Hi-Tech Project “863” for

Mandarin large vocabulary continuous speech recognition.

83 male speakers’ data is employed for training (48373

sentences, 55.6 hours) and 6 male speakers’ for test (240

sentences, 17.1 minutes). For “863” speech data, the acoustic

models are trained as triphone HMMs with decision tree-

based state clustering and each state is modeled by a 16-

component Gaussian mixture model. The model uses three

states (left-to-right) per phone. The system uses a bigram

language model with 48188 words. Training and decoding

are performed using HTK tools [38].

In the baseline system, acoustic features (MFCCs) are 12

dimension MFCC plus 1 normalized energy and their 1st and

2nd order derivatives and cepstral mean normalization (CM-

N) is applied. Acoustic models are trained with maximum

likelihood estimation (MLE).

In the following subsection, experimental results are giv-

en to illustrate the performance of the proposed voicing

features. Besides, the voicing features are combined with

tone features, which are similar to those described in [39],

including the general spline interpolation, moving window

normalization and 5-point moving average smoothing.

TABLE II

CER (%) ON THE “863” SPEECH CORPUS.

Acoustic features Dim. CER

MFCCs 39 12.88

MFCC+vhps 40 12.46

MFCCs+vshc 40 12.43

MFCCs+v̂shc 40 11.63

MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc) 42 11.07

MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA 39 10.21

MFCCs+(F0,∆F0,∆∆F0)+HLDA 39 13.16

MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+(F0,∆F0,∆∆F0)+HLDA 39 12.85

A. speech recognition using voicing features

The results of the experiments for the systems are given

in Table II. Firstly, it can be easily observed that the

single feature vshc is catenated with the standard MFCCs to

improve recognition rates directly. In frequency domain, the

SHC-based methods give better results over the HPS-based

methods [31]. After vshc is normalized to reduce the residual

mismatch, recognition rates rise much further. Adding time

derivatives of the normalized feature is also useful in recog-

nition rates. Then, the HLDA transform is used to project 42

dimension to 39 dimension with reserving the most relevant

classification information. The resulting feature vector has

same size to ensure comparable recognition results. In this

case, we make continuous progress and obtain a relative

implements in character error rate (CER) of 20.73%. Besides,

in contrast with tone features, our algorithm show greater

advantages in recognition rates. The possible reason is that

SHC-based features are continuous naturally while tone-

based features are interpolated by force at unvoiced regions.

Finally, HLDA makes the combination of voicing features

and tone features and projects 45 dimension to 39 dimension.

However, no improvements are found in this case.

B. Articulatory recognition

Using the baseline recognition system, we perform the

force alignment, which is applied to train the articulatory

model. For the DNN training, the training data is randomly

divided into the train and validation set. The articulatory

recognizers are tested on 240 utterances from the test set.

The statistics of data used in the experiments is listed in

Table III. For the DNN-based system, we examine different

configurations of the DNNs. The number of hidden layers

varies from 3 to 4 and the number of nodes in each hidden

layer increases from 512 to 1024. The input layer has 39

visible units and the output layer has 21 nodes. The networks

are trained by the method proposed in [40], [41]. DNNs are

trained using mini-batch stochastic gradient descent with the

batch size being 1000. During the discriminative pretraining,

the initial learning rate is set to 0.5. Momentum is used

to speed up learning. The momentum starts off at 0.5 and

increases linearly to 0.97 over the 50 epochs.

TABLE III

STATISTICS OF DATA USED IN OUR EXPERIMENTS.

Data set No of samples

train 1266458

dev 6165

test 6165

The experimental results based on DNN are shown in

Table IV. It can be seen that the accuracies are improved

when the proposed voicing features are fused with traditional

MFCCs. When the DNN models have 4 hidden layers which

has 1024 nodes in each hidden layer, the classifier achieves

the best performance. Thus, we choose the configure for the

lattice rescoring.

TABLE IV

ARTICULATORY RECOGNITION RATES (%) OF DNN.

Features No of layers
No of hidden layer nodes

512 1024

MFCCs
3 87.98 88.71

4 88.94 89.16

MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA
3 88.71 89.27

4 88.86 89.29

Besides, we perform the articulatory classification based

multilayer perceptrons (MLPs) that is shallow models. The

result is shown in Table V. Also, It can be seen that the accu-

racies are improved when the proposed voicing features are

combined with traditional MFCCs. Compared to Table IV,

the performance of the DNN-based method has significant

improvement in comparison with the MLP-based algorithm.

TABLE V

ARTICULATORY RECOGNITION RATES (%) OF MLP.

Features Results (%)

MFCCs 86.49

MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA 86.83
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C. Rescoring the lattice hypotheses

As can be seen in Table VI, when using MFCCs, the

DNN-based method is better than the MLP-based method.

However, the improvement is not obvious. When using

the proposed features, the performance of the DNN-based

method is equivalent to that of the MLP-based method.

Compared to the baseline system, when the articulatory

model based on the hybrid DNN/HMM framework is merged

with the weights (β = 2 and δ = 2), a 6.91% relative

reduction is gained. When voicing features are incorporated

into systems also, the best results are achieved with a 22.75%

relative reduction. Besides, we can see that the role of the

DNN’s posteriori probability ΦDNN is greater than that of the

HMM’s state transition probability ΦHMM in the experiments.

The base 10 logarithm of these probability value is taken.

TABLE VI

CER (%) WITH ARTICULATORY MODELS.

Systems CER

MFCCs + ΦMLP (with MFCCs only) 12.15

MFCCs + ΦDNN (with MFCCs only) 12.08

MFCCs + ΦHMM (with MFCCs only) 12.59

MFCCs + (ΦDNN + ΦHMM) (with MFCCs only) 11.99

(MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA)

+ ΦMLP (with (MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA))
10.05

(MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA)

+ ΦDNN (with (MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA))
10.05

(MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA)

+ ΦHMM (with (MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA))
10.17

(MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA)

+ (ΦDNN + ΦHMM) (with (MFCCs+(v̂shc,∆v̂shc,∆∆v̂shc)+HLDA))
9.95

V. CONCLUSIONS

In this work, the integration of articulatory knowledge and

voicing features based on hybrid DNN/HMM architectures is

presented for Mandarin speech recognition. In this method,

a SHC-based normalized feature and its time derivatives are

combined with standard MFCCs using HLDA and the hybrid

DNN/HMM models with articulatory knowledge are built

using the proposed feature set. Experiments performed on

large vocabulary Mandarin speech recognition tasks achieve

a 22.75% relative reduction of CER. The results demonstrate

that the combination of voicing features and articulatory

models help in improving Mandarin speech recognition per-

formance.
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