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Abstract—Handwritten Chinese text recognition based on
over-segmentation and path search integrating contexts has been
demonstrated successful, where language models play an impor-
tant role. Recently, neural network language models (NNLMs)
have shown superiority to back-off N-gram language models
(BLMs) in handwriting recognition, but have not been studied
in Chinese text recognition system. This paper investigates the
effects of NNLMs in handwritten Chinese text recognition and
compares the performance with BLMs. We trained character-
level language models in 3-, 4- and 5- gram on large scale corpora
and applied them in text line recognition system. Experimental
results on the CASIA-HWDB database show that NNLM and
BLM of the same order perform comparably, and the hybrid
model by interpolating NNLM and BLM improves the recognition
performance significantly.

Keywords—handwritten Chinese text recognition; higher order
character language model; neural network language model; hybrid
language model

I. INTRODUCTION
Handwritten Chinese text recognition has been intensively

studied in the past forty years. However, it remains a challeng-
ing problem due to the diversity of writing styles, the character
segmentation difficulty, large character set and unconstrained
language domain. The framework of the recognition method
based on over-segmentation by integrating character classifier,
geometric and linguistic context models has been demonstrated
successful in handwritten string recognition [1], among which
the linguistic context model (i.e., language model) is of great
importance.

Statistical language models, which give the prior prob-
ability of a sequence of words, play an important role in
many applications such as character and speech recognition,
machine translation and information retrieval, etc. Although
back-off N-gram language models (BLMs) were proposed
more than twenty years ago [2],[3] and have been used in
handwritten text recognition for more than ten years, they are
still considered as a favorable choice. A system for the reading
of totally unconstrained handwritten text is presented in [4],
which combines a hidden Markov model with a statistical
language model to improve the performance. By combining
with multiple models including BLMs, effective approaches
for both off-line Chinese handwriting recognition [1] and on-
line Chinese handwriting recognition [5] obtained encouraging
performance. Bissacco et al. [6] adopted a two-level language
model with a 8-gram character model and a 4-gram word
model in a system called PhotoOCR for text recognition
in camera-based images, which outperformed all previously
reported results on public benchmark datasets.

Generally, higher order language models can capture longer
context patterns so as to estimate the sequence probability
more accurately. Carpenter [7] found that the performance
of character N-gram can be significantly improved until 8-
gram, given sufficient training samples. However, traditional
BLMs suffer from the data sparseness problem, as the number
of parameters increases exponentially with the length of the
context (i.e., the curse of dimensionality), preventing these
models from estimating context stably.

Recently, a new type of language model called neural
network language model (NNLM), also known as continuous
space language model (CSLM) in [8], has been proposed to
overcome the data sparseness based on a continuous rep-
resentation of the words [9]. Inspired by that work, many
extensions of NNLMs and related algorithms have been pro-
posed, which either aim to improve the model performance
[10],[11] or to reduce time complexity [12],[13]. NNLMs,
which are complementary to standard N-gram models, have
been successfully applied in speech recognition [8],[11], s-
tatistical machine translation [14],[15], and English off-line
handwriting recognition [16]. However, to the best of our
knowledge, NNLMs have never been evaluated in handwritten
Chinese text recognition.

In this study, we evaluate the effects of three types of
character-level language models (since it is relatively difficult
to incorporate higher order word-level LMs into our system),
say, higher order BLMs, NNLMs and hybrid language mod-
els (HLMs), under the general integrated segmentation-and-
recognition framework. Experimental results on the CASIA-
HWDB database show that NNLM and BLM of the same
order perform comparably, and HLM by interpolating NNLM
and BLM improves the recognition performance significantly.

The rest of this paper is organized as follows: Section II
gives an overview of the handwritten Chinese text recognition
system, Section III describes the neural network language
models, Section IV presents the experimental results. Finally,
the paper is concluded in Section V.

II. SYSTEM OVERVIEW
The diagram of our handwritten Chinese text recognition

system is shown in Fig. 1. First, the input text line image is
over-segmented into a sequence of primitive image segments
using the method of [17] (Fig. 2(a)). Then, consecutive seg-
ments are combined to generate candidate character patterns,
forming a segmentation candidate lattice as shown in Fig. 2(b).
After that, each character pattern in a sequence is classified to
assign several candidate character classes, and all the candidate
patterns in a candidate segmentation path generate a character
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Fig. 1. Diagram of handwritten Chinese text recognition system.

candidate lattice, which is shown in Fig. 2(c). The rest of
the task is to find the optimal path with minimum cost or
maximum score.

We denote a sequence of candidate characters as X =
x1...xm. Each candidate character is assigned candidate class
(denoted as ci) by a character classifier, and then the result of
string recognition is a character string C = c1...cm. We adopt
the path evaluation criterion presented in [1] which formulates
string recognition from the view of Bayesian decision and
integrates multiple contexts including character classification,
geometric context [18] and linguistic context. For saving space,
we give the criterion directly and more details can be found
in [1].

Denote the score of classifying character x into class c as
P (c|x). The linguistic context is given by an N-gram language
model, denoted as P (ci|hi), where hi denotes the history of
ci and an N-gram model only considers the N-1 history char-
acters (see Section III). The unary class-dependent geometric
(ucg) score, unary class-independent geometric (uig) score,
binary class-dependent geometric (bcg) score and binary class-
independent geometric (big) score are denoted as P (ci|gucg),
P (zpi = 1|guig), P (ci−1, ci|gbcg), and P (zgi = 1|gbig), respec-
tively, where g denotes corresponding geometric feature and
the output scores are given by geometric models classifying
on features extracted. We obtain a log-likelihood function
f(X,C) for the segmentation-recognition path:

f(X,C) =

m∑
i=1

(wi · logP (ci|xi) + λ1 · logP (ci|gucgi ) +

λ2 · logP (zpi = 1|guigi ) + λ3 · logP (ci−1, ci|gbcgi ) +

λ4 · logP (zgi = 1|gbigi ) + λ5 · logP (ci|hi)), (1)

where wi is the word insertion penalty which is used to
overcome the bias to short strings, for which we use Weighting
with Character pattern Width (WCW) [1] in the system, λ1-λ5

are the weights to balance the effects of different models op-
timized with Maximum Character Accuracy (MCA) criterion
[1]. Via confidence transformation, the six models, namely, one
character classifier, four geometric models and one character
linguistic model, are combined to evaluate the segmentation
paths. As for path search, a refined frame-synchronous beam
search algorithm [1] is used to retain a limited number of
partial paths with maximum scores at each frame, and finally,

(a)

(b)

(c)

Fig. 2. (a) Over-segmentation of a text line; (b) Segmentation candidate of
(a); (c) Character candidate lattice of the thick path in (b).

gives a number of global paths of maximum score.

III. NEURAL NETWORK LANGUAGE MODELS
In this section, we present an alternative way of using

the N-gram statistics by training and using NNLMs. If the
sequence C contains m characters, p(C) can be decomposed
by

p(C) =
m∏
i

p(ci|ci−1
1 ), (2)

where ci−1
1 =< c1, ..., ci−1 > denotes the history of character

ci. An N-gram model only considers the N-1 history characters
in (2):

p(C) =
m∏
i=1

p(ci|ci−1
i−N+1) =

m∏
i=1

p(ci|hi), (3)

where hi = ci−1
i−N+1 =< ci−N+1, ..., ci−1 > (h1 is null).

A. Basic Models
In order to attack the data sparseness problem, NNLMs

were proposed to project the words into a continuous space to
perform an implicit smoothing and estimate the probability of
a sequence. Both the projection and estimation can be jointly
performed by a multi-layer neural network [9]. The basic
architecture of the NNLM with one hidden layer is illustrated
in Fig. 3.

NNLMs are statistical N-gram models, and the inputs are
the N-1 previous characters hi, while the outputs are the
posterior probabilities of all words in the vocabulary:

p(ci = ωj |hi) ∀j ∈ [1, V ], (4)

where V is the size of the vocabulary. Since we use character-
level language model in our system, vocabulary consists char-
acters as ”words”. Each input character is initially encoded
using the ”1-of-V ” scheme. After training, each column of
the P × V dimensional projection matrix corresponds to the
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Fig. 3. Architecture of the NNLM with one hidden layer. P is the size of one
projection, and H,V are the sizes of the hidden and output layer, respectively.

distributed representation of a word in the vocabulary denoted
as r, since all the weights of the projection layer are shared.

Using the column-major form, denote the weight-
s between the projection layer and the hidden layer as
WP,H , the N-1 history concatenate distributed representations
[rTi−N+1, ..., r

T
i−1]

T as R, and the vector of the hidden layer
biases as BH , then the hidden layer activities DH can be
computed as:

DH = tanh(WP,H ∗R+BH), (5)

where tanh(·) is the hyperbolic tangent activation function
performed element wise. The neural network predicts all the
words in the vocabulary using the following functions:

M = WH,O ∗DH +BO, (6)

O = exp(M)/
V∑
i=1

exp (mi), (7)

where WH,O is the weight matrix of output layer, BO is
the vector of the output layer biases, M is the vector of
the activation values calculated before softmax normalization,
mi is the ith element of M . The exp(·) function as well as
the division function are performed element wise. After the
above operations, the jth component of O, denoted as oj ,
corresponds to the probability p(ci = ωj |hi).

The standard back-propagation algorithm is used in training
to minimize the regularized cross entropy criterion:

E = −
V∑

j=1

tj log oj + β(∥WP,H∥22 + ∥WH,O∥22), (8)

where tj denotes the desired output, which should be 1.0 for
the next character in the training sentence, and 0.0 for all the
others.

B. Acceleration
Although many systems achieved success with the help of

NNLMs, which have a much higher complexity than BLMs,
it is not trivial to speed up both training and testing steps
when using NNLMs. Since the softmax operation dominates
the processing time, we adopt the method called short-list
introduced by [15] to simplify the model at little loss of system
performance.

The original short-list method was proposed in [8], where
Schwenk chose to limit the output of the neural network to
the s most frequent words, s ≪ V , referred to as a short-list.
Then the probability can be formalized as:

P̂ (ci|hi) =

{
P̂N (ci|hi, L) · PB(hi|L), if ci ∈ short− list

P̂B(ci|hi), otherwise
(9)

where P̂N denotes the probability of characters in the short-list
calculated by NNLMs, P̂B is the probability given by standard
BLMs, the random variable L defines the event that the word
to be predicted is in the short-list, and PB(hi|L) is given by:

PB(hi|L) =
∑

ci∈short−list

P̂B(ci|hi). (10)

In our system, we further simplify the above model by
following [15]. One extra output neuron is added for all words
that are not in the short-list, whose probability is learned by
the neural network, but not used to renormalize the output
distribution. We simply assume that it is sufficiently close to
the probability mass reserved by the BLM. In general, (9) can
be modified as:

P̂ (ci|hi) =

{
P̂N (ci|hi), if ci ∈ short− list

P̂B(ci|hi), otherwise
(11)

It has been observed that there is no significant difference
between the methods with and without renormalization [15].

IV. EXPERIMENTAL RESULTS
We evaluated the performance of our handwritten Chinese

text recognition system on the CASIA-HWDB [19] test set
containing 1, 015 pages. The system was implemented on
a desktop computer of Intel Core i5-2400 3.10 GHz CPU,
programming using C++ in Microsoft Visual Studio 2008.

A. Experimental Setup
To make the comparison fair, we applied the same character

classifier and geometric context models trained on CASIA-
HWDB as in [1] to Chinese text line recognition.

The character classifier was trained on 4,198,494 isolated
character images of 7,356 classes from isolated characters and
unconstrained texts. It extracts gradient direction features from
gray-scale images using the method of normalization cooper-
ated gradient feature (NCGF) [20]. The obtained 512D feature
vector was reduced to 160D by Fisher linear discriminant
analysis (FLDA), and then input into the Modified Quadratic
Discriminant Function (MQDF) [21] classifier. We used 4/5
samples of the training character set for training classifiers, and
the remaining 1/5 samples for confidence parameter estimation.

As for the geometric context models [18], we extracted
geometric features from 41,781 text lines of training text pages
for parameter estimation of the corresponding four models
(ucg, uig, bcg, and big).

2015 13th International Conference on Document Analysis and Recognition (ICDAR)

168 



All the language models were trained on a text corpus
containing about 50 million characters, which is the same
as that in [1]. In addition, we collected a development set
containing 3.8 million characters from the People’s Daily
corpus [22] and ToRCH2009 corpus [23], to verify the trained
language models.

We report the recognition performance using two character-
level accuracy metrics following [24]: Correct Rate (CR) and
Accurate Rate (AR):

CR = (Nt −De − Ss)/Nt,

AR = (Nt −De − Ss − Ie)/Nt, (12)

where Nt is the total number of characters in the transcript of
test strings. The numbers of substitution errors (Se), deletion
errors (De) and insertion errors (Ie) are calculated by aligning
the recognition result string with the transcript by dynamic
programming.

B. Comparison of Language Models
In the following, we present and discuss the recognition

performance using the proposed language models. It should be
noted that cls, g, cti, cfour and cfive denote character classifier
(MQDF), the union of all geometric models, the character
trigram language model, the character 4-gram language model,
and the character 5-gram language model, respectively. In
addition to the AR and CR, we also evaluated the perplexity
(PPL) of language models on the development set.

1) Higher Order Back-off Language Models: We trained
4-gram and 5-gram BLMs with the SRI Language Model
(SRILM) toolkit [25] with the default smoothing technique
(Katz smoothing) and entropy-based pruning. The thresholds
of the pruning for both character 4-gram and 5-gram are set
empirically as 10−7. We also trained a trigram BLM using the
same parameters as in [1] to make sure that the realization of
our system is correct.

TABLE I. EFFECTS OF HIGHER ORDER BLMS. TIME DENOTES THE
RECOGNITION TIME ON ALL THE TEST PAGES.

Combination AR (%) CR (%) Time (h) PPL
cls+cti [1] 89.03 90.24 11.03 -

cls+cti+g [1] 90.20 90.80 11.73 -
cls+cti 89.05 90.26 8.08 82.97

cls+cti+g 90.21 90.81 8.25 82.97
cls+cfour 89.08 90.25 8.01 73.72

cls+cfour+g 90.23 90.82 8.49 73.72
cls+cfive 89.08 90.26 8.17 73.09

cls+cfive+g 90.23 90.82 8.50 73.09

The effects of different combinations are shown in Table
I. Obviously, the performance of our system and the one in
[1] give nearly the same performance with cti, which verifies
the correct realization. It is observed that both cfour and
cfive yield slight improvements compared with cti, but there
is little difference between cfour and cfive because of the
data sparseness problems, especially when the order of the
language models gets higher. In summary, the capability of
higher order BLMs trained on our training corpus is saturated.
We also notice that it takes less time to recognize all the test
images even combined with more complex models, which may
attribute to the increase in hardware power.

2) Neural Network and Hybrid Language Models: The
NNLMs were trained with a free software called CSLM
toolkit [26], which provides full supports for short-list and

GPU implementation, both convenient and efficient. We trained
NNLMs on GPU of NVIDIA Tesla C2075, and also used Intel
Math Kernel Library (MKL) to speed up the matrix operations
of the neural network. The model with the lowest perplexity
on the development set was chosen as the final one.

To explore the full potential of NNLMs, we compared
three types of NNLMs as shown in Table II, which were all
trained with batch size of 128 examplers, weight decay 10−7,
and 20 iterations. The short-list of NNLM-1 covers all the
characters in the training corpus, NNLM-2 and NNLM-3 use
a smaller short-list. NNLM-1 and NNLM-2 have two hidden
layers, while NNLM-3 has only one hidden layer.

TABLE II. THREE TYPES OF NNLMS.

Type Projection
Size

Hidden Layer
Size

Short-list
Length

Initial Learning
Rate

NNLM-1 320 1024 × 512 8330 0.06
NNLM-2 320 1024 × 512 1023 0.06
NNLM-3 320 512 1023 0.10

As Schwenk pointed out that the neural network is never
used alone for large vocabulary tasks [8], it is a common
practice to linearly interpolate an NNLM with a standard BLM
for further improvement, which we call a hybrid language
model (HLM). The weights of this linear combinations were
computed by the compute-best-mix-tool from SRILM toolkit,
minimizing the perplexity on the development set. Correspond-
ing to the three types of NNLMs, we have three hybrid models
HLM-1, HLM-2 and HLM-3. It should be pointed out that all
the BLMs used in this subsection are trained with the same
parameters mentioned above.

TABLE III. EFFECTS OF NNLMS AND HLMS.

Language Type Combination AR (%) CR (%) Time (h) PPL

BLM cls+cti[1] 89.03 90.24 11.03 -
cls+cti+g [1] 90.20 90.80 11.73 -

NNLM-1 cfive - - - 68.60
HLM-1 cls+cfive+g 90.69 91.24 143.44 59.44

NNLM-2 cfive - - - 71.64
HLM-2 cls+cfive+g 90.51 91.09 27.23 63.03

NNLM-3

cls+cti 88.84 90.08 11.77 87.18
cls+cti+g 90.00 90.64 12.43 87.18
cls+cfour 88.93 90.13 12.58 79.63

cls+cfour+g 90.05 90.67 12.98 79.63
cls+cfive 88.97 90.20 13.94 76.75

cls+cfive+g 90.12 90.75 14.50 76.75

HLM-3

cls+cti 89.31 90.43 12.08 76.35
cls+cti+g 90.33 90.92 12.42 76.35
cls+cfour 89.41 90.50 12.49 66.83

cls+cfour+g 90.40 90.99 12.99 66.83
cls+cfive 89.48 90.57 14.27 64.66

cls+cfive+g 90.49 91.08 15.24 64.66

The results of different combinations are shown in Table
III. Since it is quite time-consuming to process all the test
samples with NNLM-1 and NNLM-2, we only evaluated the
perplexity of both 5-gram NNLMs on the development set.
It can be seen that the PPL of 5-gram NNLM-1 is 6.5%
lower than the 5-gram BLM, and although 5-gram NNLM-2
PPL is slightly higher, it is still better than the 5-gram BLM.
Since an decrease of PPL will lead to an improvement of the
system performance in most situations observed in our work,
we could expect an improvement in accuracies with NNLM-1
and NNLM-2.

Since it can be found in Table II and III that HLMs always
perform better than the corresponding NNLMs and BLMs, we
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integrated the 5-gram HLM-1 with the system to give a deep
insight into the best performance our system could achieve.
The 5-gram HLM-1 improves the PPL by 18.7% relative to
the 5-gram BLM. Accordingly, the AR is improved to 90.69%,
which is the best result we could obtain in this paper and is
even higher than the best result without any candidate character
augmentation techniques (90.53%) in [1] , at the cost of higher
time complexity. We then restricted the length of the character
list to 1023, and it is obvious that the time is greatly reduced
by 81.0% to HLM-2 compared with HLM-1. The performance
of 5-gram HLM-2 is not as good as that of HLM-1 in terms of
both accuracies and PPL, due to the small short-list. However,
it still outperforms the BLMs as in Table I.

The NNLM-3 models, which is restricted to both a simpler
architecture and a smaller short-list, perform worse than BLMs
with the same order. However, by interpolation with standard
BLMs, the HLM-3 models not only lead to encouraging
improvement, but also reduce the time to an acceptable range.
This verifies the complementarity between NNLMs and BLMs.
For example, the accuracies of 5-gram HLM-2 and HLM-3 are
almost the same, but 5-gram HLM-3 reduces the test time by
44.0% compared to HLM-2. Moreover, the superiority of 5-
gram HLM-3 compared to 4-gram HLM-3 implies that there
still could be some room for improvement with even higher
order grams.

V. CONCLUSION
In this paper, we trained character-level language models

in 3-, 4- and 5- gram on large scale corpora and applied
them in handwritten Chinese text recognition system. We
compared BLMs and NNLMs in different network structures.
Although it was observed that full NNLMs can obtain signifi-
cant performance improvement, as for the time complexity, we
adopted the short-list method to accelerate the processing. Our
experimental results show that simple NNLMs with short-list
yield comparable performance with BLMs of the same order,
and using HLMs by interpolating NNLMs with BLMs can
improve the performance significantly. It is our future work to
further improve the time efficiency of NNLMs and try NNLMs
of higher order and deeper structure.
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