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Abstract With the popularity of 3D films, the conversion of
existing 2D videos to 3D videos has attracted a wide interest
in 3D content production. In this paper, we present an efficient
approach for 2D to 3D video conversion based on structure
from motion (SFM). The key contributions include a piece-
wise SFM approach and a novel nonlinear depth warping
considering the characteristics of stereoscopic 3D. The dense
depth maps are generated and further refined with color seg-
mentation. Experiments show that the proposed approach can
yield more visually satisfactory results.

Keywords 2D to 3D conversion · Structure from motion ·
Depth warping · Depth map

1 Introduction

Nowadays three-dimensional (3D) films are becoming more
and more popular due to their higher realism over the con-
ventional two-dimensional (2D) ones. However, the cost of
making 3D films is still very high and it is not easy to cre-
ate contents directly in some suitable 3D format. Since there
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exists tremendous amount of media data in 2D format, a
demand for adding 3D effect to them is growing. This is
where the 2D to 3D conversion comes to rescue.

Many approaches have been proposed for 2D to 3D con-
version in the past years. They can be roughly divided into
two categories. One tends to directly render stereoscopic
videos from the captured scenes [1–3], while the other one,
called depth image-based rendering (DIBR) [4,5], is more
widely used which shows 3D effect using only one mono-
scopic texture video and an associated depth map sequence
at the terminal devices. Usage of depth maps in the 2D to
3D conversion has many significant advantages as shown
in [6,7]. Therefore, our proposed approach is also based on
depth maps. In fact there are various cues which could be
used to create depth maps. Four cases are listed as follows
according to the relationship between movements of camera
and scenes:

1. Camera moves and at least one object moves in the scene.
2. Camera does not move while at least one object moves

in the scene.
3. Camera does not move and no object moves in the scene.
4. Camera moves while no object moves in the scene.

First one is the most complex and is hard to handle. Meth-
ods combining multiple depth cues [8], using user interaction
[8,9] or data-driven approach [10] can handle videos for this
case. For the second one, researches on depth from motion
appear in many literatures [11–13]. If a video is captured
of the third case, much more depth cues can be exploited
such as vanishing point [14,15], focus/defocus [16–18], rel-
ative height-depth [19], edge information [20], etc. In this
paper, we mainly focus on the last case. An approach based
on structure from motion (SFM) techniques and image-based
rendering was proposed in [1] of this case. As indicated in
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Fig. 1 Flowchart of the proposed approach

the above analysis, it was not convenient to use this approach
to generate 3D media data which can be played on differ-
ent devices when compared with DIBR-based methods. A
framework was proposed in [7] for creating depth map from
video sequences of static scenes using SFM technique, but
this method fails to render satisfactory stereoscopic videos if
the scenes consist of zones with different depth ranges.

In this paper, we present an efficient approach for 2D to
3D conversion based on SFM and nonlinear depth warping
considering the characteristics of stereoscopic 3D. Flowchart
of the proposed approach is shown in Fig. 1. The main contri-
butions include a piece-wise SFM, nonlinear depth warping,
and depth map optimization, which are introduced respec-
tively in Sects. 2, 3, and 4. Section 5 reports the experimental
results and discussions. Some concluding remarks and future
work are given in Sect. 6. Experiments and comparisons show
that our method can yield more visually satisfactory results.

For notational convenience, all the video frames corre-
sponding to a scene are called a subsequence and all the key
frames in a subsequence are called a group hereafter. Points
in 3D space are represented by homogeneous coordinates X
with being a 4-vector, and by homogeneous coordinates x
with being a 3-vector in image. A point X is mapped to its
image x by λx = P X , where λ is a non-zero scale factor, and
P has the form P = K [R|t].R, t are the extrinsic parame-
ters with R being a 3 × 3 rotation matrix and t being camera
translation as a 3-vector. K is the intrinsic parameter of the
following form:

K =
⎡
⎣

f 0 cx

r f cy

1

⎤
⎦ (1)

where f is the focal length, aspect ratio r and principal point
(cx , cy) are assumed to be known. In our experiments, they
are set to 1 and center of the image, respectively.

2 A piece-wise SFM approach for 2D to 3D conversion

SFM is used to recover the camera motion parameters and
the structure of a 3D scene relative to a reference coordinate
system from images captured with calibrated or un-calibrated
cameras. SFM with calibrated cameras is simpler than with
un-calibrated one. In this paper we focus on 2D to 3D video
conversion with un-calibrated cameras for SFM.

There are many differences between SFM-based scene
reconstruction and SFM-based 2D to 3D conversion. To
begin with, in traditional 3D scene reconstruction from a
monoscopic video, video content is usually focused on one
scene. However, in our 2D to 3D conversion, videos are usu-
ally the video clips which always contain sequential scenes,
as shown in Fig. 2. Moreover, in traditional 3D scene recon-
struction, the whole reconstructed scene under a unified coor-
dinates system is sought and consequently a global bundle
adjustment process is necessary. However, for 2D to 3D con-
version, the final goal is to get an accurate depth map for
every key frame, and thus local optimization is preferable.
Based on the above analysis, a piece-wise SFM approach is
proposed in this work.

2.1 Process of the piece-wise SFM

Piece-wise SFM means to recover sequential scenes from
subsequence to subsequence along a video stream and in
each subsequence a separate SFM is carried out for structure
and motion reconstruction. In this section, we discuss the
process of the proposed piece-wise SFM, as shown in Fig. 3.

The piece-wise SFM approach mainly consists of the fol-
lowing four steps:

1. Extraction of key frames Given an input video clip, a
video summarization approach [21] is first adopted to
segment the video clip into subsequences of different
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An efficient approach for 2D to 3D video conversion 57

Fig. 2 Sequential scenes and corresponding key frames in a video stream, where each group of key frames roughly corresponds to a different
scenes

Fig. 3 Overall flow of the piece-wise SFM

scenes, and then in each subsequence, key frame extrac-
tion approach [22] is used to generate corresponding key
frame group.

2. Projective reconstruction For each group projective 3D
reconstruction is carried out with key frames obtained
from the first step.

3. Self-calibration Videos do not store camera parameters
(besides, they are subject to change with time), so self-
calibration is a key part in our conversion approach. Here,
a modified robust self-calibration algorithm is introduced
for our proposed piece-wise SFM approach. As the num-
ber of key frames in a group is limited, calibration with
longer tracks is usually more reliable and robust than

shorter ones. When calibrating a group, our modified self-
calibration algorithm couples with two adjacent groups
to generate more robust and smoother results. This self-
calibration part will be elaborated in the next subsection.

4. Metric reconstruction For each group the projective
reconstruction is upgraded to a metric one using self-
calibrated transformation matrix. In this sense, our piece-
wise SFM is able to recover the sequential scenes in a
video clip.

For subsequence segmentation, key frame extraction,
and projective reconstruction, some rather conventional
approaches are adopted in this work. The related details will
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be skipped. Here, we are mainly concentrated on the third
step.

It should be noted that although our piece-wise SFM does
not reconstruct sparse 3D points for each group in a unified
reference, the depth consistence among video stream is guar-
anteed by other constraints. In the following steps, the nonlin-
ear depth warping automatically adjusts depth values to rea-
sonable ranges and a smooth filter is used as post-processing
for the generated depth maps. Experimental results show that
these constraints are sufficient enough to keep consistence for
depth values in our 2D to 3D video conversion.

2.2 A modified self-calibration approach for the piece-wise
SFM

A coupled self-calibration approach is used in [23,24] to
deal with degeneracy for structure and motion recovery in
the presence of dominant planes. In this work, we modified
the approach for our piece-wise SFM.

The absolute quadric is projected to an image as dual
image of the absolute conic:

λK K T = P�∗ PT (2)

where �∗ is the absolute quadric in projective space. It is
a 4×4 symmetric matrix with being rank 3. P is a projec-
tive matrix under projective reconstruction. According to the
linear self-calibration method proposed in [23,24], for each
key frame in a group the uncertainty is taken into account by
weighting the equations below:

1

9v
(P1�

∗ PT
1 − P3�

∗ PT
3 ) = 0

1

9v
(P2�

∗ PT
2 − P3�

∗ PT
3 ) = 0

1

0.2v
(P1�

∗ PT
1 − P2�

∗ PT
2 ) = 0

1

0.1v
(P1�

∗ PT
2 ) = 0

1

0.1v
(P1�

∗ PT
3 ) = 0

1

0.01v
(P2�

∗ PT
3 ) = 0

(3)

where Pi is the i-th row vector of P , and v a scale factor that
is initially set to 1 and then to P3λ

∗ PT
3 during the iterations.

For each group, when choosing P = [I |0] for one of its
projection matrices, �∗ in (3) has the form:

�∗ =
[

K K T a
aT b

]
(4)

An estimate of the dual absolute quadric �∗ can be
obtained by solving the set of equations (3) for all the key
frames in a group by the linear least-squares method. Thus,
the set of equations of Group n can be written as:

[Cn Dn]

⎡
⎣

kn[
an

bn

]
⎤
⎦ = 0 (5)

where n is the index of a group, kn is the vectorization of
matrix Kn K T

n , an a 3-vector , bn a scalar and Cn, Dn are
matrices containing coefficients of the equations for all the
key frames in Group n.

In a shot containing sequential scenes, camera focal length
varies continuously. The camera parameters of a monoscopic
video usually do not change abruptly, so we can assume
Group n and its two adjacent groups (Group n −1 and Group
n +1) have the same camera intrinsic parameters. Our exper-
iments show that this assumption generally holds. Then, the
intrinsic kn can be estimated from the following coupled
self-calibration equations:

⎡
⎣

Cn Dn 0 0
Cn−1 0 Dn−1 0
Cn+1 0 0 Dn+1

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kn[
an

bn

]

[
an−1

bn−1

]

[
an+1

bn+1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (6)

With the estimated (kn, an, bn) we can obtain �∗
n in pro-

jective space. According to the properties mentioned above,
an upgrading transformation Tn which transforms �∗

n →
diag(1, 1, 1, 0) will upgrade the projective reconstruction
of Group n to the corresponding metric one. Thus, Tn can
be obtained from Tn�

∗
nT T

n = diag(1, 1, 1, 0), and metric
reconstruction is obtained by:

Pmetric n = Pproj nT −1
n

Xmetric n = Tn X proj n
(7)

There are two advantages of the self-calibration approach:

1. Calibration that results from coupling equations are more
robust than those estimated from a single group. Pro-
jective reconstruction is applied on each group indepen-
dently, so the self-calibration approach is less sensitive
to projective drift.

2. As we have noted, our approach could deal with long
video sequences with varying focal length. Note that for
estimating the camera parameters of Group n, we addi-
tionally use data from Group n − 1, Group n + 1, and
assume that they (Group n − 1, Group n, Group n + 1)
have the same intrinsic parameters as shown in Fig. 3. The
purpose of doing so is to enhance estimation robustness
for Group n. It does not mean that the camera parame-
ters do not change across consecutive groups. In fact, for
estimating the parameters of Group n +1, we again addi-
tionally use data from Group n, Group n +2, and assume
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that they (Group n, Group n + 1 and Group n + 2) have
the same intrinsic parameters.

Once the intrinsic and extrinsic parameters are calibrated,
sparse 3D scene structures can be reconstructed with triangu-
lation [25] with key frames and the corresponding projection
matrices.

3 Nonlinear depth warping

The displayed depth and resulting 3D viewing experience
are dictated by a complex combination of perceptual, techno-
logical, and artistic constraints [26]. Recent researches have
explored adaptation of visual content to the peculiarities of
particular application scenarios. Literature [27] proposed a
novel 2D to 3D conversion system based on visual atten-
tion analysis. This system adopts saliency maps containing
visual attention information instead traditional depth maps to
deliver better viewing experience with more immersive feel-
ing. A similar work appeared in [26], where a new strategy
based on stereoscopic warping was proposed. The strategy
first computes disparity and estimates image-based saliency,
and then uses them to compute a deformation of the input
views. In this work, we also focus on the adjustment of depth
maps and propose a novel nonlinear depth warping method
considering the characteristics of stereoscopic 3D.

People can feel depth variation through left and right view
images with parallax in the stereoscopic 3D display system.
In Fig. 4, two cameras simulate human eyes, and the parallax
is defined as the distance between the row coordinates of the
pixel locations (a, a

′
), which are in the left and right images

Fig. 4 Illustration of parallax zones

of a stereo pair and both correspond to 3D point A. The region
of intersections between left and right image projections is
in the captured area of both cameras. If the display plane is
regarded as a 3D monitor, then usually this plane is called
zero parallax plane. It is referred as the comfortable zone or
convergence zone. Besides, the area front of the monitor is
called negative parallax zone and the area back of it positive
parallax zone [26]. Positive parallax zone is usually larger
than the negative one. In this work we set the ratio of the two
zones as λratio. If a close object is displayed on a screen with
distance beyond the acceptable negative parallax zone, the
strong negative parallax may lead to uncomfortable viewing
experience and can cause temporary diplopia, or the inability
to fuse stereoscopic images. According to the principle of 3D
imaging, the relationship between parallax d and depth Z is
as follows:

d = f tc
Z

(8)

where tc denotes the distance between human eyes (the value
is about 64 mm for an adult), f is the focal length. Formula
(8) shows that parallax is determined both by the depth of
field and the parameters of imaging device. So the character-
istics of 3D imaging can also be used for analysis of depth
distribution.

In addition, the preview range in display devices is lim-
ited and should be adjusted adaptively, but important depth
cues such as accommodation (change of focus) cannot be
controlled at all. Parallax that exists in the form of depth
map in our work is the only parameter which can be directly
controlled. The goal of our depth warping method is to
use the relationships between parallax zones and stereoacu-
ity to adjust depth maps to converge to the main objects
automatically.

At first the dominant depth, denoted by Dm , is found by
the depth histogram of sparse points. Similarly the smallest
and the largest depth value, denoted by Ds and Dl, are found
respectively. In the normalized dense depth map, the nearer
objects correspond to larger depth value, so we set the depth
value range as [0, Nmax] and design the following nonlinear
warping function:

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nmax|ϕ(B1)−ϕ(B2)| ×
∣∣∣ϕ

[
B3 + B2−B3

Dl−Dm

×(x − Dm)
]

− ϕ(B2)

∣∣∣ , x > Dm

Nmax|ϕ(B1)−ϕ(B2)| ×
∣∣∣ϕ

[
B1 + B3−B1

Dm−Ds

×(x − Ds)
]

− ϕ(B2)

∣∣∣ , x ≤ Dm

(9)

where x denotes the initial sparse depth value, and y denotes
the new depth value which will then be used as seed points
to propagate dense depth maps. ϕ(x) is the transformation
operator. B1 denotes the minimum of the normalized ini-
tial depth value, and B2 denotes the maximum. Since B3
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corresponds to the zero parallax plane, according to the ratio
of the two parallax zones mentioned above the following
equation can be obtained:

|ϕ(B1) − ϕ(B3)|
|ϕ(B3) − ϕ(B2)| = 1

λratio
(10)

Therefore, we can obtain B3 from the derivation of (10):

B3 = ϕ−1
(

λratioϕ(B1) + ϕ(B2)

1 + λratio

)
(11)

In the human visual system, people’s stereo perception is
more sensitive to closer objects. So the transformation oper-
ator can be chosen as one of the two following nonlinear
transformation function:

ϕ(x) = lg|x |, 0 < B1 < B2 < 1 (12)

ϕ(x) = e−x , 0 < B1 < B2 < +∞ (13)

Thus, using nonlinear depth warping, we can adjust the
main object of a scene to converge to the zero parallax plane
for stereoscopic 3D. The clearly improved visual effects will
be displayed in the final depth map of Sect. 5.

4 Depth map computation and stereoscopic synthesis

Up to now, depth maps of sparse points are obtained by
the piece-wise SFM approach and nonlinear depth warping,
while dense depth maps are still required for DIBR-based
conversion. In the traditional way [7], delaunay triangula-
tion is used based on the assumption that the complete scene
is composed of triangular planar patches. But in experiments
we find this assumption generally works well if the scene
does not contain different dominant depths. A similar obser-
vation is also reported in [7]. In order to alleviate this prob-
lem, we propose the following scheme for dense depth map
generation as shown in Fig. 5.

4.1 Generation of initial depth map

In the proposed framework initial depth maps are generated
using delaunay triangulation, followed by further optimiza-
tion. Because pixels belonging to one object are usually in
the same depth layer, in this work a heuristic is used such
that only delaunay triangles whose depth values of the three
triangle vertexes close to each other are used for depth map
initialization. In this paper, we define Dv which denotes the
depth difference of different delaunay triangle vertexes to
measure the distance and Dv = 10 in experiments.

4.2 Depth refinement based on color segmentation

Since displaying effect of a generated stereoscopic video
depends heavily on the accuracy of the edge of depth maps,

Fig. 5 Scheme for depth map generation

the contour of a depth map needs to be as close to real con-
tour as possible. So we utilize color segmentation to further
enhance the accuracy and reliability of depth maps.

Image segmentation is widely used in many image analy-
sis applications to partition an image into homogeneous
regions. Here, we adopt a graph-based segmentation method
[28], which is based on selecting edges from a graph. The
first step is to measure the dissimilarity between a pair of
regions and to determine the weight of their common edge.
Those regions with a low-weight common edge are merged.

The next step is to allocate depth values using the seg-
mented region information and the initial depth information
obtained above. In order to determine whether the i-th seg-
mented region Ri belongs to a single depth layer, we define
the following measure:

rosi = Card(Ri
⋂

Rinit )

Card(Ri )
(14)

where Card(X) denotes the cardinality of a set X , and
Rinit ∈ (x, y) | depth(x, y) > β is the region of the ini-
tial depth map (β = 10 in this work). Thus the regions to be
refined are determined by the following rule:

Rrefine = {Ri | rosi > Tr } (15)

If rosi is larger than a preset threshold (Tr = 0.8 in
our experiments), the region Ri is considered to need fur-
ther refining. Then for each such region local linearization is
adopted:

d = a1x + a2 y + a3 (16)

where (x, y) are the pixel coordinates and d denotes the
corresponding depth value. Using all the available initial
depth values within this region, the interpolation coefficients
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a1, a2, a3 can be estimated, and then the whole dense depth
map of this region can be interpolated by (16).

Since outliers can severely affect the estimated plane, we
need to determine a set of inliers from the initial depth map
in each segmented region. Here, the Random Sample Con-
sensus (RANSAC) algorithm [25] is employed for outlier
removal as follows:

At first, three points from the initial depth map in each
segmented region are selected randomly. These points define
a plane. The support for this plane is measured by the number
of points whose distance to the plane is within a threshold Dr .
This random triplet sampling is repeated a number of times
and the plane with the most support is deemed the robust fit.
The points within the threshold are considered as inliers. (In
experiments, we set Dr = 0.02 and random triplet sampling
is repeated 100 times.)

4.3 Stereoscopic synthesis

The discontinuities of depth values between adjacent regions
can cause artifacts when stereoscopic is synthesized. In order
to reduce such artifacts, a smoothing process on the esti-
mated depth map is needed. Because the human visual system
mainly obtains depth cues by horizontal rather than vertical
disparity, Asymmetric Gaussian smoothing in [5] is adopted
in this work. We set the horizontal standard deviation σx = 6
and the vertical standard deviation σy = 30. Let G(x, y)

denote the Asymmetric Gaussian filter, then we have

G(x, y) =
(

1√
2πσx

e
− x2

σ2
x

)(
1√

2πσy
e
− y2

σ2
y

)
(17)

To generate the depth maps of non-key frames, an adaptive
interpolation method [29] was adopted:

DepthN = α × DepthL + (1 − α) × DepthM

α = M − N

M − L

(18)

where DepthL , DepthN , DepthM denote the depth values
of Frame L, Frame N, Frame M, respectively. Frame L and
Frame M are key frames, Frame N is a non-key frame. α,
which denotes the temporal distance between a key frame
and one of its adjacent non-key frame, is used as weighting
coefficient to adjust the smoothness.

Finally, we use DIBR algorithm [4,5] to generate stable
stereoscopic image pairs from the reference images and the
corresponding depth maps. This algorithm can be extended to
multi-view video generation when appropriate depth values
for multi-view displays are available.

5 Experiment

In this section, six video sequences are used for evaluation
including three publicly available ones (flower, castle, and

urban) and three captured ones with stereo digital camera
(desktop, plant, and building). These cover a wide range of
videos with both indoor and outdoor scenes. Experimental
results are discussed in two subsections. The first subsec-
tion is designed to show the experimental results at each of
the core steps and analyze the computational complexity of
the proposed method. In the second subsection, our results
are compared with other state-of-the-art works and evaluated
with subjective and qualitative criteria.

5.1 Analysis of experimental results and computational
complexity

Without loss of generality, for showing implementation
details of our method, the tested sequence desktop is mainly
analyzed in the following. This sequence of 214 frames con-
tains telephone, books, toothpaste box and files on the desk-
top, and only one view of the original stereoscopic video
is used. It was captured by moving camera with regular
motion from left to right. The camera focal length was
fixed at 715 pixels which was estimated with a calibration
board. This value was considered as the ground truth. Self-
calibration was carried out six times and the piece-wise SFM
process worked successfully. Experimental results are shown
in Fig. 6, from which we can see that the modified calibra-
tion algorithm works well and is suitable for the proposed
piece-wise SFM process.

Furthermore, to avoid abrupt change due to various noise,
for Group i a Gaussian filter is applied to fi as:

f̃i =
∑i+w

k=i−we− (k−i)2
9 fk

∑i+w
k=i−we− (k−i)2

9

(19)

where w = 1 in the desktop sequence, and for longer
sequences w should be set to a larger value.

Fig. 6 Focal length obtained by our modified self-calibration
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Fig. 7 Experimental results (desktop). a Original image; b color segmentation; c initial depth map; d depth map without nonlinear depth warping;
e depth map with nonlinear depth warping; f synthesized anaglyph image

Figure 7a is one frame from the desktop video sequence.
Figure 7b is the color segmentation result which is visually
satisfactory. To obtain a more accurate depth map we uti-

lize an optional step to merge some over-segmented regions
into big ones in an easy interactive way. Figure 7c is the
initial depth map with mere delaunay triangulation. Note
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An efficient approach for 2D to 3D video conversion 63

that some obvious holes exist in the depth map of the tele-
phone and books. The reason is that corners cannot be eas-
ily extracted from the texture-poor region. However, in our
approach to avoid a delaunay triangle crossing regions of dif-
ferent objects, a heuristic is used such that only those delau-
nay triangles whose perimeter is smaller than a threshold
are retained for the depth map initialization. Figure 7d shows
the final depth map synthesized with segmental information
but without nonlinear depth warping. The object contour is
clearly identified and the accuracy of depth values computed
for each object is improved significantly over the initial depth
map. The depth difference between toothpaste box and the
books behind it is small, so if the depth map is generated by
the linear interpolation of the non-warped sparse points, the
depth variation of the farther objects is compressed severely
just like the region of background in Fig. 7d. Depth map with
nonlinear depth warping in Fig. 7e converges the main object
(telephone in the frame) to the comfortable parallax zone,
alleviating the problem well. Figure 7f is the stereoscopic
anaglyph image.

In Sect. 2.1 we indicate that the nonlinear depth warp-
ing can also effectively guarantee depth consistency of con-
tinuous scenes, it will be verified in the following experi-
ment with video sequence flower. Three part’s average depth
values (layer1: tree, layer2: flowers and layer3: houses in
the background) were tracked and listed in Fig. 8, and two
observations can be made. First, comparing with traditional
linear depth warping, the proposed nonlinear depth warping
adjusted the depth values of each key frame using the infor-
mation of the captured scene. This novel top-down smooth
process improved the stability of depth evaluation effec-
tively. Second, from Fig. 8a, b, we can see that depth eval-
uation using traditional linear depth warping did not take
full advantage of the valid range of depth of field, and the
depth distances among different objects were compressed
seriously.

The experiment was implemented on a commodity PC
with an Intel CoreTM2 Quad CPU Q9400 @ 2.66GHz. For
the desktop sequence, on average, it takes about 12 s to gen-
erate one 3D image of resolution 640 × 480. Although it is
hard to accurately analyze the complexity of the proposed
method, the percentage of running time at different core step
in the whole process is listed in Table 1 as a relative indicator
for this purpose. It can be seen that, piece-wise SFM is the

Fig. 8 Stability analysis of depth evaluation. a Results using traditional
linear depth warping; b results using proposed nonlinear depth warping

most time-consuming part in our system. GPU-based struc-
ture reconstruction might be useful to improve the overall
efficiency of the system.

5.2 Comparison and evaluation

To evaluate the quality of the estimated depth maps, our
method was compared with three similar methods which

Table 1 Statistics of the
running time Processing step Piece-wise SFM Depth map generation and

stereoscopic synthesis

Subsequence Key frame Structure
segmentation extraction reconstruction

Running time (%) 16.06 12.45 63.1 8.39
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Fig. 9 Comparison of
generated depth maps in castle
sequence and flower garden
sequence. Images from left to
right are original images, depth
map of [7] (castle
sequence)/depth map of [11,13]
(flower sequence), depth maps
of the proposed method

were proposed in [7,11,13], using sequences castle and
flower.

As seen from the results shown in Fig. 9, accurate depth
measurements and apparent depth ordinals are achieved in
the sequences with our method. Even the ordinals among
the penthouses and house roof can be distinguished in the

castle sequence. However, the results from [7] fail to identify
boundaries between different objects. In the flower sequence
our results are largely consistent with the true situation in real
world, especially for the gradually diminishing depth values
of flowers from the near to the distant, while results from
[11] fail to maintain depth consistency. Method in Fig. 9f is
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Fig. 10 Error rate comparison of different methods

based on depth cues of occlusion reasoning which is another
way to handle videos of this kind. These results confirm the
effectiveness of our nonlinear depth warping in generating
final depth map.

For objective evaluation of the conversion results, error
rate between depth maps and ground truth was computed
according to

Error_Rate = 1

N

∑
x,y

(|D(x, y) − Dg(x, y)| > τ) (20)

where Dg(x, y) denotes normalized value of ground truth,
and D(x, y) denotes normalized value of the converted depth
map. τ is the preset threshold, τ = 10 in our experiment. N is
the total number of pixels in an image. If difference value at
(x, y) between the converted depth map and the ground truth
was larger than threshold τ , then the evaluated depth value
was regarded to be wrong. In Fig. 10 we can observe that our
proposed method generates smaller error rate in comparison
with the benchmarking methods.

Except for depth maps comparison, subjective viewing
tests were also performed with these sequences by 15 individ-
uals with normal or correct-to-normal visual acuity and stereo
acuity. The participants watched the stereoscopic videos in
a random order and were asked to give a satisfaction score.
The score was from 1 to 100, where 1 stood for no stereo-
scopic feeling and 100 for strongest stereoscopic feeling. The
average score was obtained and used as a measure of the sub-
jective evaluation. We compared our system to a few 2D-to-
3D conversion systems with the best performance at present,
including: (1) the method in [7]; (2) DDD TriDef 2D-to-
3D player; (3) our method without nonlinear depth warping;
(4) our method with nonlinear depth warping; (5) real 3D
videos captured with stereo digital camera—this method is
only available for sequences desktop, plant and building.

Table 2 Subjective evaluation results

Videos Methods

Method1 Method2 Method3 Method4 Method5

Flower 61 55 68 75 N/A

Castle 60 71 65 73 N/A

Urban 52 73 75 78 N/A

Desktop 68 65 70 76 74

Plant 65 68 71 73 85

Building 60 56 69 72 87

Average 61 64.7 69.7 74.5 82

The evaluation results are summarized in Table 2. From
the table several observations can be made. First, in the
urban sequence (Fig. 11b) because the alignment of build-
ings was complicated the method from [7] generated quite
poor results, while our methods got high scores due to more
accurate depth measurements. Second, we note that in the
desktop sequence when scenes were captured at close range
with moving camera, the original stereo video did not always
obtain the highest score because camera arrangements such
as camera baseline and focal length were hard to configure
timely as well as the human visual system. Third, in gen-
eral our method with nonlinear depth warping yields better
results than other conversion methods. These results validate
the effectiveness and robustness of the proposed method.
Figure 11 shows some examples of synthesized anaglyph
images of the evaluation test sets.

6 Conclusion

In this paper, we have proposed an approach of 2D to 3D
conversion based on structure from motion. This approach
is effective and efficient mainly due to the piece-wise SFM
approach and the modified robust self-calibration algorithm
for videos. After the estimation of sparse 3D structure, a novel
nonlinear depth warping is applied to enhance the immer-
siveness considering the characteristics of stereoscopic 3D.
Finally, a dense depth map is generated and refined based on
color segmentation. The experimental results demonstrate
advantages of the proposed approach.

We have also observed some shortcomings of our cur-
rent implementation. The most severe one is that the scene is
required to be static and any moving objects would disturb
the depth map. This is due to the inherent limitation of SFM.
Another problem is that the conversion results are greatly
related to the contents of the scenes. For example, the desk-
top in Fig. 7 and the flowers in Fig. 9 both have gradually
diminished depth distribution. However, the generated depth
map for the desktop is not as good as that of the flowers. This
is because corner points from texture-poor zones were not
enough to generate dense depth maps, as we discussed in the
SFM part. In the future, we will extend our current work to
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Fig. 11 Synthesized anaglyph
images of test sequences,
a castle, b urban, c plant,
d flower, e building

deal with more general images and sequences by combining
with more cues.
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