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Abstract—Vehicle recognition plays an important role in traf-
fic surveillance systems, advanced driver-assistance systems, and
autonomous vehicles. This paper presents a novel approach for
multivehicle recognition that considers vehicle space location and
classification as a coupled optimization problem. It can speed up
the detection process with more accurate vehicle region proposals
and can recognize multiple vehicles using a single model. The
proposed detector is implemented in three stages: 1) obtaining
candidate vehicle locations with prior objectness measure; 2) clas-
sifying vehicle region proposals to distinguish the three common
types of vehicles (i.e., car, taxi, and bus) by a single convolutional
neural network (CNN); and 3) coupling classification results with
the detection process, which leads to fewer false positives. In ex-
periments on high-resolution traffic images, our method achieves
unique characteristics: 1) It matches the state-of-the-art detection
accuracy; 2) it is more efficient in generating a smaller set of
high-quality vehicle windows; 3) its searching time is decreased
by about 30 times compared with the other two popular detection
schemes; and 4) it recognizes different vehicles in each image using
a single CNN model with eight layers.

Index Terms—Convolutional neural network (CNN), multivehi-
cle detection, object proposals, vehicle classification.

I. INTRODUCTION

THE development of intelligent transportation systems
(ITS) brings new technologies to solve traffic issues,

including congestion, accidents, delays, and pollution. In the
applications of ITS, such as traffic light control and intelligent
vehicles, there is an increasing demand for traffic data extrac-
tion. To extract traffic data automatically and timely, vision-
based vehicle recognition is an essential and challenging task.
It collects vehicle physical attributes and vehicle traveling data
for traffic management and control in parallel transportation
systems [1] and has high industrial potential in advanced driver
assistance systems [2] and autonomous vehicles [3].

There are two main tasks in typical automated vehicle recog-
nition (AVR) systems: finding locations of vehicles in natural
scene images (vehicle detection) and classifying detected ve-
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hicles into their specific subclasses (vehicle classification).
According to their recognition feature, different AVR systems
have different functions, such as vehicle color recognition
systems, vehicle brand recognition systems, and vehicle type
recognition (VTR) systems. However, environments of traffic
surveillance pose many difficulties for identifying vehicles due
to viewpoint variation, multiscale, deformation, illumination
conditions, cluttered background, partial occlusion, and mot-
ion blur.

To achieve AVR systems, many approaches have been pro-
posed to deal with vehicle detection and classification. In
[4], a hierarchical vehicle model was established for real-
time vehicle color identification and that could recognize four
colors (red/green/blue/yellow) of cars with the help of a support
vector machine (SVM) classifier. Lu et al. [5] combined the
background subtraction method and three frame differencing
methods to detect moving vehicles and then classified the
detected vehicles into five types by six geometric parameters.
Similarly, a VTR system was designed in [6] for a toll station
using background subtraction to get vehicles in the region of
interest (ROI). Different from the work in [5], it yields vehicle
type results by counting the black pixel number included in
the vehicle body contour. However, some limitations could be
noted in these approaches: 1) Color may dramatically vary
in response to illumination changes, and certain color types
are very close to other color types; 2) motion-based detection
methods are not suitable for slow-moving traffic or car fleet;
3) simple geometric information or pixel counting is not enough
to represent a vehicle; and 4) no generic model was pro-
posed for multiple-vehicle detection and classification. Other
methods [7]–[9] are based on handcrafted features and com-
plex models, using a category-specific classifier to evaluate
image windows in a sliding window fashion. Due to large
computation complexity, they are difficult to apply in real-time
applications.

In this paper, we propose a deep-learning-based method to
recognize multivehicle types in images for traffic surveillance.
By considering vehicle space location and classification as a
coupled optimization problem, we combine the prior objectness
measure [10] and the convolutional neural network (CNN) [11]
to recognize multiple vehicles. The main contributions of our
work are as follows.

1) We propose a combined probabilistic measure in a
Bayesian framework with three cues to help in the search
for vehicle locations using objectness scores, which can
greatly reduce the number of candidate locations and
detection time than with the sliding window technique.
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Fig. 1. Pipeline of the proposed VTR algorithm.

2) To recognize different vehicle types in one image, we
utilize a CNN that contains eight layers to learn features
of vehicle proposals and obtain the corresponding distri-
bution over types with a softmax classifier.

3) To reduce the number of false positives, we linearly
combine the type score of a window with its objectness
score, which optimizes detection results and classification
results simultaneously.

The pipeline of our VTR algorithm is shown in Fig. 1. First,
in natural scene images, we carry out the objectness measure
to detect vehicle proposals using a Bayesian probability model.
Our objectness measure integrates multiple features including
multiscale saliency (MS), color contrast (CC), and edge density
(ED) to describe the vehicle features more accurately. Then,
we sample high score windows in diverse locations by a given
window number. Third, we warp the set of candidate detections
into a fixed size as a form compatible with the CNN. Then,
we further classify the detected vehicles into their specific
subclasses by employing a CNN with a softmax classifier.
When it ends, a vehicle is recognized as a car, a bus, or a taxi
by a linear combination of the proposal score and the CNN
score. Experimental results show that both our detection and
classification methods achieve a state-of-the-art performance
together with significantly improved computational efficiency.
It is worth mentioning that our recognition method is 30 times
faster than the other two popular detection schemes.

The remainder of this paper is organized as follows. Existing
vehicle detection and classification algorithms are generally
reviewed in Section II. Our vehicle detection process to extract
vehicle proposals is described in Section III. Then, Section IV
presents the multivehicle type recognition algorithm and ex-
plains the idea of combining the detection and classification
results for multiple vehicles. In Section V, the performance of
our algorithm is evaluated by real traffic images of metropolitan
roads. Experiment results and their comprehensive discussions
are also included in the same section. Finally, we make a
conclusion of this paper and present the future work.

II. RELATED WORK

Vehicle detection and classification are two basic tasks in
vehicle recognition. Here, the existing methods for these two
tasks are individually introduced.

A. Vehicle Detection

Vehicle detection requires that the hypothesized locations
of vehicles are found and verified quickly in an image [12].
After vehicle detection, further processing can be carried out
[13], such as vehicle tracking and vehicle classification. There
are two main categories for vehicle detection methods. One is
moving-vehicle detection based on background estimation [14],
[15]. Vehicle candidates can be found from foreground blocks
that are obtained by subtracting the estimated background from
original input images. This kind of method has low compu-
tational complexity and can be used for applications with a
simple and stable background. However, they are not suitable
for dealing with congested urban traffic because the congestion
causes slow-moving traffic and the lack of movement informa-
tion. On the other hand, whether an object is moving cannot be
determined without considering its inherent information.

Sliding windows [16], [17] is another method for vehicle
detection, which is treated as a binary classification problem
to distinguish vehicles of different colors and shapes from
cluttered backgrounds. The process is as follows: First, parse
the whole image with multiscale sliding windows or parse an
image pyramid with a fixed sliding window; then, score each
sliding window with a classifier based on statistical models to
determine whether it contains a vehicle instance or background;
and finally, output windows with locally highest scores. The
principle is intuitive, and a good detection performance can be
got when using proper models and scales.

However, the sliding window mechanism has two potential
limitations. First, the sliding window fashion is time con-
suming, which makes it difficult to be integrated into real-
time applications. Parsing the whole image needs millions of
windows under different scales, and a larger image yields more
windows. When using complex vehicle models such as the
deformable part model [18], [19], scoring all windows will
cost intolerable computational time. On the other hand, most
windows are backgrounds, and it is not necessary to evaluate
every window. Second, simply treating vehicle detection as a
two-class problem will not satisfy the requirements of vehicle
recognition in modern traffic monitoring systems. In reality,
multitype vehicles will appear in one image at the same time.
Considering all vehicles as the same category cannot describe
the details of each vehicle. Although class-specific models can
be trained to detect special types of vehicles, such as a taxi [9],
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two-classification could not identify which vehicle is a car and
which is a taxi by a single model.

To speed up sliding window operations, training an object-
ness measure [10], [20]–[23], which is generic over categories,
has recently become popular for object detection. By proposing
a small number of category-independent proposals, the object-
ness measure, which reflects how likely an image window cov-
ers an object, can avoid making decisions early on [10]. Carreira
and Sminchisescu [20] and Endres and Hoiem [21] presented
effective works on reducing search spaces for classifiers by pro-
ducing rough segmentations as object proposals, while allowing
the usage of strong classifiers to improve accuracy. However,
these methods are computationally expensive, usually requiring
several minutes per image. In [22], a selective search approach
was proposed to get higher prediction performance and was
successfully used in regions with a CNN (R-CNN) [24], which
is the state-of-the-art object detector. However, the computation
cost is still a problem for its real application. For example,
when testing a 480 × 360 pixel image in Caffe [25], 1570
windows are processed in 120 s with a single NVIDIA GTX
Titan GPU. In [23], a cascaded ranking SVM approach with an
orientated gradient feature was proposed for efficient proposal
generation. In [10], a cue integration approach is proposed to
get a better prediction performance more efficiently. Inspired
by their work, we propose a combined probabilistic objectness
measure in a Bayesian framework with three cues to extract
multiscale regions as vehicle proposals.

B. Vehicle Classification

Vehicle classification is to classify all detected vehicles into
their specific subclasses. Kafai and Bhanu [26] designed a
hybrid dynamic Bayesian network that classifies a vehicle as a
sedan, a pickup truck, an SUV, or unknown by its height, width,
and angle. Chen et al. [27] used size and shape cues obtained
by camera calibration to classify a vehicle into four classes (car,
van, bus, and motorcycle). However, these approaches have a
relatively high false-positive rate since they have not considered
the appearance or structure features of vehicles, and their
performance is heavily influenced by cluttered background,
various illuminations, and severe occlusions. In [28], Mishra
and Banerjee presented a multifeature combination approach
to classify vehicles using SVM. A vehicle is classified to be a
two-wheeler, a three-wheeler, a light motor vehicle, or a heavy
motor vehicle according to multiple features including Haar,
gradient, RGB, and pyramidal histogram of oriented gradients.
Unfortunately, selecting and designing an effective handcrafted
feature is laborious, and the resulting classifiers are not strong
enough to capture vehicles of different poses and scales.

With advances in deep learning and GPU computation, deep
CNNs have recently had a major impact in a variety of vision
tasks, such as face recognition [29], [30], object detection [24],
[31], and object classification [32], [33]. CNNs are biologi-
cally inspired multistage architectures that automatically learn
hierarchies of invariant features. With its fast development,
CNNs are also gradually used in traffic monitoring systems,
particularly for traffic sign classification. In [34], a two-stage
convolutional network was applied to deal with traffic sign clas-

sification for the German Traffic Sign Recognition Benchmark
competition [36], which was above the human performance
of 98.81% by 98.97% accuracy. In [35], a CNN was used to
further classify the detected sign proposals extracted by the
color probability model, which was 20 times faster than other
existing best traffic sign detection modules.

To adopt the advantages of the CNN, we apply it in solv-
ing multiple-vehicle recognition in a real-traffic scene in this
paper. We aim at designing a method, which is able to reduce
the number of classifier evaluations substantially, detect more
precise candidate locations, and recognize multitype vehicles
with high accuracy. To achieve the aforementioned idea, a
combined probabilistic measure built in a Bayesian framework
with three cues is defined to predict a set of bounding boxes,
which represent potential vehicle locations. Furthermore, a
CNN model is trained to output a score for each box, which
indicates whether a specific vehicle type is contained in this
box. Here, a candidate box can be classified as a car, a bus, a
taxi, or background. Finally, the proposal score and the CNN
score are linearly combined for one window, which optimizes
detection results and classification results simultaneously and
reduces the number of false positives. The details of the method
are given in the following sections.

III. VEHICLE PROPOSAL EXTRACTION

To extract vehicle proposals, we take the idea of objectness
measure to find candidate regions. Objectness is usually rep-
resented as a value to quantify how likely an image window
covers an object of any class, which can speed up detectors by
reducing a large number of evaluated windows. To define the
objectness measure, objects in an image are characterized by
their uniqueness, a closed boundary in space, and a different
appearance from their immediate surroundings. In our work,
three image cues are used to measure the characteristics of
objects, and the final measure combines them in a Bayesian
framework to obtain potential vehicle locations.

A. Three Cues

Alexe et al. presented five objectness cues to measure the
characteristics for an image window in [10]. In this paper, three
of them are selected to get our objectness score. The following
gives a brief introduction of them.

Multiscale Saliency: This cue measures the uniqueness char-
acteristic of vehicles. It can measure the unique appearance of
a vehicle from backgrounds shown in Fig. 2. For each scale
s, a saliency map Ms(p) of an image i at each pixel p can
be obtained by the spectral residual of fast Fourier transform
proposed in [37]. Extending it to multiple scales, the saliency
of a window w at scale s is defined as follows:

MS(w, θs) =
∑

{p∈w|Ms(p)≥θs}
Ms(p)×

|{p ∈ w|Ms(p) ≥ θs}|
|w|

(1)

where θs is scale-specific thresholds, and | · | indicates the
number of pixels.

Having MS maps is important for finding more vehicles in
data sets. Each scale threshold θs is learned independently, by
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Fig. 2. Bayesian framework combined cues to search for vehicle proposals.

optimizing the localization accuracy of the training vehicle win-
dowsV ateach scales.Thesaliency mapMs(p)and theMSscore
of all windows are computed for every training image i and
scale s. Then, a set of local maxima windows W s

max is obtained
after nonmaximum suppression (NMS) on score space. The
optimal θ∗s is founded by maximizing the following function:

θ∗s = argmaxθs
∑

v∈V
maxw∈W s

max

|w ∩ v|
|w ∪ v| (2)

the optimal threshold θ∗s leads the local maxima of MS in the
images that can most accurately cover the annotated vehicles.
At the same time, maximizing (2) indicates minimizing the
score of windows not containing any annotated vehicle.

Edge Density: The ED cue captures the closed-boundary
characteristic of vehicles by measuring the density of edges
near the window borders. A pixel p that is classified as edge by
an edge detector is an edgel. The ED of window w is computed
as the density of edgels in the inner ring In(w, θe), i.e.,

ED(w, θe) =

∑
p∈In(w,θe)

Me(p)

Len (In(w, θe))
(3)

where Me(p) ∈ {0, 1} is a binary edge map that is obtained
using the Canny detector in this paper, Len(·) indicates the
perimeter of the inner ring, and the inner ring In(w, θe) of
window w is obtained by shrinking it by a factor θe in all
directions, i.e., |In)w, θe)| = (1/θ2e)|w|.

The optimal inner ring In(w, θe) is defined by a well-learned
parameter θ∗e. We learn θe in a Bayesian framework. For every
image i, 100 000 random windows are generated to distinguish
positive examples and the negatives. Windows covering an
annotated vehicle are considered as positive examples W fg;
however, the others are the negatives W bg . For any θe, the
likelihoods for positive and negative classes can be built as
p(ED(w, θ)|fg) and p(ED(w, θ)|bg), respectively.

The optimal θ∗e is founded by maximizing the posterior
probability that object windows are classified as positives, i.e.,

θ∗e = argmaxθe
∏

w∈W fg
p (fg|ED(w, θe))

= argmaxθe
∏

w∈W fg

p (ED(w, θe)|fg) · p(fg)∑
c∈{fg,bg} p (ED(w, θe)|c) · p(c)

(4)

where the priors are set by relative frequency, i.e.,{
p(fg) = |W fg |

|W fg |+|W bg |
p(bg) = 1− p(fg).

(5)

Color Contrast: CC is a useful cue to measure the differ-
ent appearance characteristics of vehicles. It scores a whole
window as whether it contains an entire object. Knowing that
objects tend to have a different appearance than the background
behind them, CC measures the dissimilarity of a window to its
immediate surrounding area according to their color distribu-
tion. CC between window w and its surrounding S(w, θc) is
computed as

CC(w, θc) = χ2 (h(w), h (S(w, θc))) (6)

where h(·) is the LAB histogram that is invariant to rotation
and scales, χ2(·) indicates the chi-square distance between two
histograms, and the surrounding S(w, θc) of window w is a
rectangular ring obtained by enlarging the window by a factor
θc in all directions, i.e., |S(w, θc)| = (θ2c − 1)|w|.

Parameter θc is learned the same as parameter θe. Note
that the learned parameter θ∗c defines the optimal outer ring
S(w, θc). Once all of the parameters have been learned, we can
take advantage of the three cues for vehicle proposal detection.

B. Vehicle Proposal Extraction

From the previous section, a vehicle proposal can be mea-
sured from backgrounds by its characteristics of uniqueness,
closed boundary, and different appearance according to MS,
ED, and CC, respectively. To speed up, all cues are computed
by integral images. Since the proposed cues are complementary,
we combine them in a Bayesian framework to obtain potential
vehicle locations in Fig. 2.

To combine three cues, a Bayesian classifier is trained to
distinguish positive from negative. For each training image i,
we sample 100 000 windows from the distribution given by the
MS cue and then compute the other two cues. The positive
and negative examples are similarly defined as in ED. Here,
a naive Bayes approach is chosen to avoid enormous samples
estimating the joint likelihood of cues.

In our naïve Bayes model, the priors p(fg) and p(bg) can
be estimated by (5). Moreover, the individual cue likelihoods
p(cue|fg) and p(cue|bg) can be obtained due to the fact that
cues are independent, where cue ∈ {SM,ED,CC}. When a test
image is given, the posterior probability of a test window w is
computed as

p(fg|cue) =
p(c|fg)p(fg)

p(C)
(7)

=
p(fg)

∏
cue p(cue|fg)∑

c∈{fg,bg} p(c)
∏

cue p(cue|c) .

Thus, the final objectness score of w is computed by (7).
To get more precise vehicle proposals, we have taken two

procedures into account. First, we sample much less candi-
date vehicle locations according to the desired final number
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Fig. 3. Example of objectness measure to detect vehicle locations. (a) Input
image. (b) Corresponding probability heat map of the vehicles’ locations.

of windows responding to an objectness threshold. This can
reduce a large number of evaluated windows. The selection
principle for the window number is described in Section V-A.
Then, we consider the size and aspect ratio of the candidate
region, which also helps in reducing the false positives. As
a complementary strategy, windows that appear too large are
reduced by vehicle size prior without analyzing image pixels,
such as 500 × 500. At the same time, a very elongated window
is less probable as a vehicle proposal in an image than a square
window; hence, this window is also not considered as a vehicle
candidate for postprocessing. Fig. 3 gives an example showing
how the Bayesian classifier based on the objectness measure
can provide the meaningful distribution over the vehicles’
locations. Fig. 3(b) is the corresponding probability heat map
of an input image that indicates where vehicles are more likely
to appear. It proves that our detection procedure can reduce the
uncertainty of vehicle locations, which helps us find candidate
vehicles quickly and easily.

IV. VEHICLE TYPE CLASSIFICATION BASED ON

CONVOLUTIONAL NEURAL NETWORK

Here, we will provide details of the vehicle type classification
algorithm and its training process by a pretrained CNN. The
CNN architecture is trained using the training examples, and
later, it acts as a feature extractor to compute a feature vector
for each resized image. A softmax classifier over four classes
is used to predict the type of a given proposal. As a comple-
mentary optimization strategy, a linear combination of the CNN
score and the objectness score for a window is used to filter out
false positives for final recognition results.

A. Vehicle Type Classification by CNN

Here, a region proposal obtained in Section III can be
classified as a car, a bus, a taxi, or background by our VTR
model based on a CNN. The CNN feature extractor can run
on raw pixels to automatically learn a hierarchy of features in
a deep stacked structure for a specific task. Meanwhile, it has
the ability to extract features that are invariant to translations,
rotations, and scale changes. The framework of our CNN net is
shown in Fig. 4. A detailed explanation on this figure is given
below.

In our method, we adopt AlexNet [33] as a pretrained model
for vehicle type classification. AlexNet is an eight-layer con-
vnet that has been successfully trained on the ILSVRC 2012
ImageNet data set [38]. Before fine tuning the model on our

data, we model the recognition task as a four-class classification
problem containing four predefined labels: car, bus, taxi, and
background. Hence, we replace the final layer of AlexNet with
a softmax loss function with a four-dimensional output. As
presented in Fig. 4, our model consists of eight layers, where the
first five layers are convolution layers {C1, C2, C3, C4, C5},
and the last three layers are fully connected layers {f6, f7, f8}.
A resized proposal is the input of our CNN model. Based on
convolving the input image with different filters, several feature
maps can be generated in convolution layers. The responses
of the filters in each layer are regarded as the features for our
task. Each feature map in pooling layers {Pooling1, Pooling2}
is obtained by max pooling performed on the corresponding
feature map in previous convolution layers, respectively. Fol-
lowing each convolution layer, contrast normalization, pooling,
and nonlinear function are connected to it successively. Fol-
lowing two fully connected layers {f6, f7}, the final layer f8
implements a softmax nonlinear function to give the score of
each category in classification, i.e.,

f(xi) =
exp(xi)∑4
j=1 exp(xi)

(8)

where xi is the ith input of f8 that is equal to a linear
combination of a 4096-dimensional feature, and f(xi) is a four-
dimensional output corresponding to the number of nodes in
f8, which can give a probability to predict the class of a vehicle
proposal, i.e., car, taxi, bus, or background.

As shown in Fig. 4, the proposals are resized to 227 × 227
since the input of the CNN should have the same size. Hence,
the net takes 227 × 227 × 3 RGB images as input. The sizes
of the filter kernel in the five convolution layers are 11 × 11,
5 × 5, 3 × 3, 3 × 3, and 3 × 3, respectively. The sizes of the
outputs of all the convolution layers are 55 × 55 × 55 × 96,
27 × 27 × 256, 13 × 13 × 384, 13 × 13 × 384, and 13 × 13 ×
256, respectively. The max pooling method is applied to the
outputs of C1 and C2 to reduce the size of the output and, at
the same time, shorten the computation cost. The output of C5
is fed to the fully connected layers f6 and f7 to get a long
feature vector with the length of 4096. Finally, these extracted
feature vectors are used to compute the score of each class by
the softmax classifier. Given all scored regions in an image, a
greedy NMS is applied to reject a region if its intersection-over-
union (IOU) overlap with a higher scoring selected region is
lower than a learned threshold.

For fine tuning, we used 100 k iterations of stochastic gradi-
ent descent (SGD), momentum of 0.9, weight decay of 0.0005,
and base learning rate of 0.001. Note that the learning rate is
dropped to one-tenth of the initial rate every 20 k iterations,
which allows fine tuning to progress while not clobbering the
initialization. We trained our models using SGD with a batch
size of 128 examples, where each batch contained 32 positive
and 96 negative examples. To generate examples, we manually
annotated the type of each vehicle from the data set, which
consists of 10 K images with 40 K vehicles. To increase the
number of examples, we randomly sampled subwindows of
the annotated images. A subwindow is treated as a positive
example if it has more than an 80% IOU overlap with the
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Fig. 4. Framework of our CNN.

Fig. 5. Examples for training our CNN model.

ground-truth box. Otherwise, it is treated as a negative image
if it has less than a 20% IOU overlap with the ground-truth box.
For further data augmentation, we also cropped and flipped the
taxi and bus examples randomly because they are extremely
rare compared with car images in real traffic. Fig. 5 shows
some examples of training samples. It can be clearly seen that
our training samples contain a wide-range rotation angle of
vehicles. Finally, the resulted data set contains 30 K positive
images and 90 k negative images for training and testing. The
fine tuning takes about 9 h in Caffe on a Titan GPU with a very
high classification accuracy level of 99.76%.

B. Reduce False-Positive Rate

The score function of the given CNN-based classifier typi-
cally returns a high response to instances of vehicle types, but
occasionally also to other image patterns, which will usually
lead to false positives. The most common false positives are
images of full background and partial background with object.
To reduce the number of false positives and improve the average
precision for three vehicle types, we linearly combine the de-
tection and classification results in the previous sections. A low
score of objectness measure should be given to a false-positive
window. To realize this, the final score f(w) is calculated by
combining the type score c(W ) of window w and its objectness
score p(v|w), i.e.,

f(w) = (1 − α)c(w) + α · p(v|w) (9)

where α is the weight to control the importance of the object-
ness score.

When a different value of α is set, the final result for vehicle
type classification is also different in some degree. Because
that objectness score p(v|w) is an assistant measure to improve

TABLE I
DETAILED INFORMATION OF OUR COLLECTED DATA SET

the reliability of type score c(w), it is usually set at a smaller
weight value. We tested several values for parameterα to obtain
better vehicle detection and classification results. In our final
experiment, we set α = 0.2.

V. EXPERIMENTS

We evaluate our integrated approach on a large set of image
sequences and compare it with other representative methods.
All testing images are taken by traffic cameras along metropol-
itan roads. All experiments were conducted on a computer with
4-GHz CPU, 32-G RAM, 12-G GPU, and 64-bit Linux OS. Ex-
perimental results under various circumstances of roads show
that our method achieves the state-of-the-art performance with
significantly improved computational efficiency. The recogni-
tion process is almost 30 times faster than the R-CNN method.

A. Data Set and Evaluation Criteria

This section presents the data set and evaluation criteria to
verify the effectiveness of our method.

The proposed methods are trained and evaluated on a large
set of testing images in various traffic conditions including
partial occlusion. The images are captured roughly from the
frontal view by different high-resolution CCD cameras along
metropolitan roads. The data set is built from several videos
that are respectively captured at 8 fps with the resolution of
2592 × 1936 and 1920 × 1080. For the training phase, we
do some data augmentation to balance different data classes.
We subsample 900 testing images to form three representative
data sets that cover a large range of variations in view angle
and ambient illumination. Detailed information of each data set
is shown in Table I. For convenience, the ROI is set from the
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TABLE II
PERFORMANCE OF OUR METHOD

middle to the bottom of each image without considering the
upper area because the objects are too small in that area.

The performance of the proposed methods is measured by
calculating the detection rate/windows amount (DR-#WIN),
the VTR rate, and the receiver operating characteristic (ROC)
curve. The computational time of the whole recognition system
is also considered.

DR-#WIN means detection rate (DR) given #WIN propos-
als. This metric is the most popular evaluation criterion for
objectness measure methods, where DR is the percentage of
ground-truth vehicles covered by selected proposal windows,
and #WIN is the number of selected proposal windows. When
#WIN is larger, DR is more likely to be higher, but the following
processing requires more computing resources. A vehicle is
correctly detected only if the percentage of the ground-truth
bounding box covered by detected windows is above 0.8. The
VTR rate indicates the ability to correctly recognize vehicles of
each type.

ROC curves show the performance of different methods with
a series of TP–FP (true positive rate and false positive rate)
pairs at various threshold settings. The ROC curve of different
vehicle types is drawn by adjusting the scoring thresholds in
the vehicle localization, as shown in Fig. 9. We tested all data
sets in different scenarios to get the summary ROC curve and
utilized the least squares method for curve fitting. With the ROC
curve, we can choose a relatively good scoring threshold for all
scenarios.

B. Experimental Results

From Fig. 3, we obtain the probabilistic response of loca-
tions for multiple vehicles by our integrated image cues. To
describe its ability to extract vehicle proposals, we compute the
DR-#WIN curves of our method on three data set, which is
shown in Fig. 6. Different #WIN represents different candidate
location numbers. A small set of coarse locations with high
DR is sufficient for effective vehicle detection, and it allows
complex features to be involved in following processing to
achieve better quality and higher efficiency than traditional
methods. When WIN = 1000, the DR of our method is already
above 96%, which is much higher than using a single cue. It
proves that a large size of search space is reduced with little
loss of DR for the subsequent VTR. This is the reason for the
improved efficiency in our method. It is crucial to obtain the
precise bounding box of each vehicle region before recognition.
It also indicates that the three cues are complementary and
important for finding vehicles in challenging traffic images.
Table III shows detailed information on the average processing
time in different phases of the proposed method.

Fig. 6. DR-#WIN plots of the triple cue combinations.

TABLE III
AVERAGE PROCESSING TIME OF DIFFERENT PHASES

Fig. 7 shows some results of testing images by the proposed
method. According to those results, we can easily find that
our method can deal with vehicles with different translations,
rotations, and noise caused by illuminations. There are two
main reasons for this: First, our model is trained on a large-
scale data set, which guarantees that the model can be adapted
to a variety of situations; second, the robustness depends on
multifeature extractors in different stages. The complementary
cues and CNN features also ensure that the proposed method
can extract features that are invariant to translations, rotations,
and noise variances.

Fig. 8 shows examples in the final results of the proposed
multivehicle type recognition method. We sequentially process
all the testing images and output the bounding boxes of the
detected vehicles’ type with different colors. The red rectangles
indicate the bounding boxes of the detected cars, the blue
rectangles indicate the bounding boxes of the detected taxis,
and the green rectangles indicate the bounding boxes of the
detected buses. As shown in Fig. 8, our method can detect mul-
tivehicle locations and recognize the corresponding different
vehicle types at the same time. It can work for traffic images
under different illumination conditions, including daylight and
night. More importantly, our method has a good performance
in some occlusion conditions. In Fig. 8(c), it is shown that our
method can deal with the partial occlusion between vehicles. In
addition, our method adapts to various vehicle poses and shapes
benefiting from the usage of the prior objectness measure
and the CNN-based classifier. Statistical results are provided
in Table II which shows the performance of our method to
recognize different vehicle types in each subset. It proves that
the proposed method can obtain high precision and meet the
requirements of monitoring accuracy.
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Fig. 7. Examples of results for vehicles with different out-of-plane translations, rotations, and illuminations.

Fig. 8. Examples for detection and recognition results of test images in each subset. (a) Multivehicle type recognition result for a 1920 × 1080 image in the
daytime. (b) Multivehicle type recognition result for a 1920 × 1080 image in the nighttime. (c) Multivehicle type recognition result for a 2592 × 1936 image in
the daytime.

TABLE IV
COMPARISON OF COMPUTATIONAL TIME FOR THREE METHODS

C. Comparison of Experiments

Here, some contrasting experiments for further testing of
our method have been conducted. The proposed method is
compared with two popular object detection schemes, namely,
the sliding window technique and the R-CNN method [26]. The
sliding window technique is realized by a multiscale pyramid
iterative method combining with CNN. The R-CNN method
is the state-of-the-art object detection algorithm that adopts
selective search, which is another common objectness measure
method. The comparison analysis is done from two aspects,
namely, computational time and VTR rate.

All of the three methods are conducted in GPU mode. The
code is implemented in Python, C++, and MATLAB. Detailed
information of the average computational time to process an
image for each method is shown in Table IV. Clearly, our
method achieves a remarkable advantage in shortening the full
computation cost for images in 2 and 5 MP. The sliding window
fashion and the selective search method are time consuming,
requiring hundreds of seconds to process an image. Our method
is efficient in decreasing the processing time for two main
reasons: The first reason is that integral images are used to

efficiently compute three cues for the final objectness score
of a window, and the second reason is that a large number
of windows have been reduced before the final evaluation by
the objectness measure in detection. As shown in Table IV,
the average processing time for different high-resolution traffic
images is no more than 20 s in our method. The proposed
method is able to efficiently process a 1920 × 1080 image with
only 5 s and a 2592× 1936 image with only 12 s, which is about
30 times faster than the existing R-CNN with selective search.
Combined with Fig. 6, it proves that our method can greatly
reduce the size of search space without sacrificing the DR.

In Fig. 9, the ROC curves of the three methods for mul-
tivehicle type recognition in subset 1 are shown. The curves
are color coded so that the proposed method, the R-CNN
method, and the sliding window technique appear as red,
green, and blue, respectively. The comparison of ROC results
clearly shows that our method achieves remarkable advantages
on the true positive rate against the same false positive rate
above 0.1, for three types of vehicle recognition. This indicates
that compared with general R-CNN and sliding windows, our
method that couples multivehicle detection and classification
is more precise in capturing diverse locations of vehicles and
classifying their corresponding types. As shown in Fig. 9, our
method has very strong discriminative power and can achieve
the state-of-the-art recognition performance for a car, a bus,
and a taxi. Our method has shown its advantage in classifying
high-dimensional features using a single CNN-based model. In
addition, it achieves an effective performance and is robust in
dealing with traffic images of different resolution and different
illumination conditions.

D. Discussions

The collection of incorrect and missed samples in detection
and classification is used to analyze the limitations of our
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Fig. 9. ROC curves in subset 1 for vehicle types of (a) car, (b) bus, and (c) taxi, respectively.

method. Three situations cause the most failed cases. First,
poor image cues caused by the camera view and make vehicles
hard to identify. For example, a red taxi can be classified as
a car because they are similar in size and color when viewed
from one perspective. Second, shadows in daytime and light of
vehicles at night cause problems in finding an accurate vehicle
location. Thus, the location of a vehicle is vague and generates
no strong responses of objectness measure in general. Third,
vehicles with severe occlusion are still difficult to detect and
classify. In this situation, the objectness score of the occluded
hypothesis is quite low, and the occluded is detected as the same
vehicle in front by mistake.

VI. CONCLUSION

A novel method for multivehicle recognition has been pro-
posed in this paper. The proposed method considers vehicle
detection and classification as a coupled optimization problem
by combining objectness measure with CNN. With three image
cues, our approach obtains more accurate vehicle region pro-
posals and avoids the brute-force search in the sliding window
approach. Then, normalized detection areas are classified into
one of three common vehicle types using a single eight-layer
CNN model. Due to the recognition framework, not only are
vehicle locations detected, but vehicle types are determined
as well. Our method has the ability to extract features that
are robust against various translations, rotations, and noise
variances. In experiments on high-resolution traffic images,
the results have demonstrated that the proposed method can
achieve reliable and robust recognition performance in a real-
traffic environment while speeding up the detection process by
capitalizing on the reduced number of locations.

In addition, the CNN structure makes it suitable for a parallel
implementation on GPUs, thus making a real-time recognition
system possible. In the future, we are planning to use multiple
GPUs to accelerate the vehicle recognition process, improving
the performance and efficiency of the recognition system. At
the same time, we will also expand the network learning data
set and use more sophisticated data augmentation techniques to
further recognize more vehicle types and improve our method’s
performance.
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