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Fast Minimax Path-Based Joint Depth Interpolation
Longquan Dai, Feihu Zhang, Xing Mei, and Xiaopeng Zhang

Abstract—We propose a fast minimax path-based depth inter-
polation method. The algorithm computes for each target pixel
varying contributions from reliable depth seeds, and weighted
averaging is used to interpolate missing depths. Compared with
state-of-the-art joint geodesic upsampling method which selects
the nearest seeds to interpolate missing depths with
complexity, our method does not need to limit the number of
seeds to and reduces the computational complexity to .
In addition, the minimax path chooses a path with the smallest
maximum immediate pairwise pixel difference on it, so it tends
to preserve sharp depth discontinuities better. In contrast to the
results of previous depth upsampling algorithms, our approach
can provide accurate depths with fewer artifacts.

Index Terms—Depth map, minimax path, upsampling.

I. INTRODUCTION

R ECENTLY, low-cost depth sensors such as ToF camera
and Micosoft Kinect have been widely used in various

applications and gradually shape a new man-machine interac-
tive way. However, limited by the current sensing techniques,
the depth map suffers from all sorts of problems. Specifically,
the resolution of a depth image is very low and some depths in
the depth map are lost due to occlusion or other degradation.
Thus the quality is worse than the traditional optical photo. To
obtain a high-quality depth map as the optical photo, we pro-
pose a novel joint depth interpolation algorithm.
Our algorithm interpolates the depths of target pixels from the

depths of seeds under the guidance of a registered color image
for a corrupted depth map, where seeds stand for the the pixels
with observed depths and target pixels denote the pixels whose
depths are lost. The guidance information of color image can
help our method produce high quality result because color tran-
sition usually suggests depth transition and thus the guidance
image’s structure can indicate the structure of the depth map
for edge-preserving results. Specifically, in our algorithm, we
extract all-pairs minimax paths from the guidance image and
map them onto to present the structure of . After that, the
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missing depths of target pixels are figured out from the reliable
depths of seeds along these minimax paths.
On the graph representation of an image, the minimax path

[1] between two nodes is the path linking the two nodes with
the smallest intermediate length of the longest edge. It does not
cross the color edges of , which are typically also the depth
boundaries of . Otherwise, the crossing boundary edge will
increase the maximal length of edges in the path. Since the min-
imax path is sensitive to the underlying structure of the guidance
image, we employ the length of the minimax path, which links a
seed and a target pixel, to calculate the contribution of the target
pixel received from the seed in a geometric aware manner.

II. RELATED WORK

The most related works are the depth upsampling methods
which focus on upscaling depth maps. Generally, these upsam-
plingmethods can be roughly categorized as global methods and
local methods. Global methods [2], [3], [4], [5] utilize the opti-
mization framework that punishes a large cost for coupled pixels
that have similar colors but different depths. Global methods
usually produce high-quality upsampling results, but the com-
putational cost is too heavy for real time processing.
Local methods [6], [7], [8], [9], [10], [11] are based on the

weighted average scheme introduced by Kopf et al. [8] and
often have fast implementations. Our approach, which is in-
spired by a recently proposed aggregation method [12], also
falls into this category. Specifically, Yang proposed an
non-local cost aggregation method. However, the algorithm is
not suitable for interpolation. We make an advance and present
an efficient interpolation implementation with complexity
by designing a novel reliable seed choosing strategy and intro-
ducing a geometric-aware similarity metric, where denotes
the total number of image’s pixels.
Euclidean distance [8] is the simplest similarity measure, but

it is not aware of the structure of the data points that lie on a
curved manifold. On the graph representation of these points,
people propose a set of computation intensive link-based dis-
tances [6], [13], [14], [15], [16] to conquer the weakness of Eu-
clidean distance. Here, we prefer the length of minimax path (or
theminimax distance) which is an efficient and geometric-aware
affinity metric.

III. JOINT INTERPOLATION ALGORITHM

A. Essential Ingredients of an Ideal Joint Interpolation

Here we identify what the essential ingredients of the ideal
joint interpolation method are by disclosing the shortcomings
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Fig. 1. The comparison between minimax path and geodesic path, and the procedure demonstration of obtaining an interpolation tree. (a) shows that the geodesic
chooses the crossing edges path which has a large jump at the color boundaries as the path is almost on the flatten area and the length on flatten area is nearly zero.
In contrast, the minimax path is more sensitive to color edges and is able to follow the structure of guidance image. (b) the graph representation of guidance
image, where the green nodes are target pixels and yellow nodes denote seeds. (c) a MST of . (d) the obtained interpolation tree by inserting orange auxiliary
nodes into the MST. (e) the auxiliary nodes divide the interpolation tree into several parts by removing seeds.

of local upsampling methods. Kopf et al. [8] introduced the first
weighted average based upsampling formula (1).

(1)

where denotes the entire image domain, stands for the seeds
and . However, the user-spec-
ified window and the Euclidean distance [8] defined on
the five-dimensional space-color volume [17] are suboptimal to
take advantage of the geometric structure of guidance image
because both and are not adaptive to the underlying geo-
metric structure of the guidance image . Liu et al. [6] substi-
tuted the Euclidean distance [8] with the geodesic distance
[6] and replaced the user-specified window selecting method

with the nearest seeds choosing strategy. The interpolation
formula (2) is still problematic.

(2)

where and denotes the nearest
seeds of the target pixel . Specifically, Liu et al. employ an
iterative algorithm with complexity to calculate the
geodesic distance, as the computational cost for extracting all-
pairs geodesic paths is [8]. But accurate approx-
imation demands iterations, which is still inefficient. Addi-
tionally, it is reasonable to expect that the quality of results will
increase with the number of reliable seeds. Unfortunately,
Liu’s algorithm depends on too.
Above all, we argue that an ideal joint interpolation should

have following properties:
1) An ideal interpolation method should utilize a reliable seed
choosing strategy which can automatically catch all the
reliable seeds for any distribution.

2) An ideal interpolation method should employ a geometric-
aware similarity metric, which is sensitive to the under-
lying geometric structure of guidance image, to weight the
contributions from reliable seeds.

3) The implementation of an ideal interpolation method
should be high-efficiency, especially for real-time appli-
cations, thus an algorithm with complexity should
be given the primary consideration.

B. The Geometric Aware Minimax Distance

Similar to the well-known geodesic distance, the minimax
distance (i.e the length of the minimax path) is another kind

of geometric-aware metric which can be used to measure the
similarities between seeds and target pixels. The minimax path
is defined on the graph representation (Fig. 1(b))
of the guidance image , where each pixel of corresponds
to a node and the first order neighborhood ( )
of pixels and denotes an edge with length

. Thus the minimax path
that links pixels and is ,
where denotes all the possible paths which connect the
initial node and the destination vertex
such that , for any
path , . Moreover,

. Using the
same symbols, the minimax distance of can
be written as .
The minimax path is more sensitive to color transition than

geodesic. Specifically, the minimax path, according to the defi-
nition, minimizes the maximal length of edges of a path whereas
geodesic prefers the shortest path which tolerates large color
transition on the path, as shown in Fig. 1(a). More importantly,
unlike the fastest extracting all-pairs geodesic paths algorithm
with complexity [6], Hu [18] proves that all-pairs
minimax paths (shown in Fig. 1(c)) can be represented by amin-
imum spanning tree (MST) which has an efficient extracting al-
gorithm with complexity [19].

C. A Reliable Seed Choosing Strategy

A MST of the graph representation of a depth map
connects all points on the graph and the path linking two
nodes along the MST is the minimax path between them [18].
We find that the seeds on the graph separate the graph
into different subgraphs along a MST of the
graph and thus form the boundary of these subgraphs. In
Fig. 1, the yellow points demonstrate the boundary seeds. We
can observe that the path that links any two interior nodes of
two different subgraphs along the MST must pass through at
least one boundary node (or seed). For example, the path linking
and passes through . Then, for each target pixel in the

subgraph , using the depths of the boundary points to in-
terpolate the depths of the target pixels in the subgraph is
more reliable than using other seeds because boundary points
are the closest seeds to the target pixels in the sense of minimax
distance, in other words, the minimax path from a non-boundary
seed to any target pixel in must pass through a boundary seed
of . We call these boundary seeds as the reliable seeds of
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the target pixels in and only use their depths to interpolate
the target pixels in .
The reliable seed choosing strategy has three major advan-

tages. First, it automatically catches all reliable seeds for any
target pixel and thus our interpolation algorithm can employ all
reliable depth information to interpolate the depth of each target
pixel. Second, it is not sensitive to the seed distribution and can
be used to various seed distributions other than the uniform dis-
tribution taken by upsampling. Last but not least, the strategy
can be integrated into a linear time joint interpolation algorithm
without extra cost.

D. A Linear Complexity Joint Interpolation Algorithm

Our interpolation formula is expressed as (3), which both
takes the minimax distance as the similarity metric and employs
our reliable seed choosing strategy to choose the interpolating
seeds for each target pixel.

(3)

where and .
The formula can be computed in a linear complexity by trans-

forming the MST into an interpolation tree and updating depths
along the interpolation tree . Let denote the neighbor-
hood nodes which are connected to the seed by the MST. For
each edge , we insert an intermediate point
into the middle of and , as shown in Fig. 1(d), and assign

. Here, all auxiliary points are
denoted as . We can observe from Fig. 1(e) that the interpola-
tion tree is divided into subtrees by removing all seeds,
and the depths of auxiliary nodes determine the
depths of the target pixels in the . Then (3) can be rewritten as

(4)

where and is the path that connects
to along the interpolation tree .
In order to obtain the updating formulae with linear com-

plexity, we put , , for ;
, , for ; , , for a

target pixel , then (4) can be further transformed into following
forms.

(5)

(6)

In (5), we replace with . Although the values of and
for receive supports from all other nodes on the

interpolation tree according to (5), the depths of target pixels
in only depend on the depths of auxiliary nodes as the
length of edge between the seed and its auxiliary points is set as
infinity.
Yang [12] shows that the non-local cost aggregation form de-

fined on the tree as and can be efficiently figured out

by traversing the tree structure of the interpolation tree in two
sequential passes. Initially, we visit the nodes of using the
breadth first traversal algorithm to assign each node an order
based on the visit sequence with the property that if is the
father of , then , where , denotes
the nodes number of . In the first pass, while the tree is traced
from to , and are not updated until all
its children have been updated by the updating formulae (7) (8).

(7)

(8)

where and are initialized as and ,
records the father of node , both and are

the intermediate aggregated results. In the second pass, we em-
ploy the updating formulae (9) (10) to renew and
when the tree is traversed from to . At last, we use (6)
to estimate final interpolation depths.

(9)

(10)

The computational complexity of our method consists of two
parts: the cost of extracting a MST from the graph representa-
tion of the guidance image and the cost of updating (7) (8)
(9) (10). In (7) (8) (9) (10), only depends on the edge
weights of the interpolation tree and can be pre-computed in
linear complexity. Thus, only a total of 6 addition/subtraction
operations and 7 multiplication/division operations are required
for each node. So we can complete the interpolation task with

complexity disregarding the number of reliable seeds.
The interpolation tree can be easily transformed from a MST
with linear time by traversing the MST and inserting auxiliary
nodes. To extract a MST, Karger et al. [20] present a linear time
randomized algorithm. Moreover, with a linear number of pro-
cessors, the parallel algorithm [19] for the minimum spanning
tree problem can solve the problem in time. Above
all, we conclude that the overall complexity of our algorithm is

.

IV. EXPERIMENTS

We implement our algorithm usingMatlab on a Desktop com-
puter with 4 GB memory. Parameter sensitivity and computa-
tion analysis are offered. We also exhibit the quantitative and
visual evaluation of interpolation results.

A. Quantitative and Visual Evaluation

We compare our method with five methods which are JBL
[8], JG [6], ATGV [22], NLA [12] and AR [4] respectively.
For fair comparison, we subscribe the 2X, 4X, 8X, 16X up-
sampling results of Art and Book of the Middlebury Stereo
Datasets from original authors. In the experiments, the low reso-
lution depth images are obtained by downsampling and we use
the percentage of bad matching pixels (PBP) [21] to evaluate
the performance at discontinuity regions and continuous areas,
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Fig. 2. Visual illustration of the interpolation results for real word data. (a) the registered guidance images. (b) the depth maps which are used as seed for structure
missing. (c) the restoration results for structure missing. (d) the seed distribution for simultaneous 5% random missing and structure missing. (e) the inpainted
results of (d). (f) the seed distribution for simultaneous 8X upsampling and structure missing. (g) the upsampled results of (f).

TABLE I
WE COMPARE THE PROPOSED ALGORITHM WITH STATE-OF-THE-ART
METHODS ON THE MIDDLEBURY DATASET USING PERCENTAGE OF BAD

MATCHING PIXELS [21], WHERE THE DISPARITY ERROR TOLERANCE IS 1. DISC
DENOTES THE PERCENTAGE OF BAD MATCHING PIXELS AT DISCONTINUOUS
REGIONS AND CONT STANDS FOR THE PERCENTAGE OF BAD MATCHING

PIXELS AT CONTINUOUS AREAS

where the discontinuity regions are obtained by dilating 1-pixel
wide edge of ground truth and the rest of image domain are
considered as continuous areas. In the experiments, we assign

consistently.
The quantitative DISC (i.e the PBP at discontinuous regions)

and CONT (i.e the PBP at continuous areas) evaluations are
listed in Table I. We find that the CONT of different methods are
almost same, and the DISC indices, which reflect the edge pre-
serving ability, distinguish different methods. Benefitting from
the geometric-aware minimax path, our method achieves the
lowest DISC ranks among all the methods as we expected.
We also use our method to process the depthmap ofMicrosoft

Kinect. We input the registered guidance images in Fig. 2(a) and
the deteriorated depth maps in Fig. 2(b). The restoration results
are illustrated in Fig. 2(c). We also exhibit the results of 5%
randommissing inpainting and 8X upsampling in Fig. 2(e), 2(g)
respectively. The seed distributions of both kinds of deteriora-
tion, which suffer from structure missing as Fig. 2(b) does, are
shown in Fig. 2(d), 2(f) respectively. From Fig. 2, we conclude
that our method can produce satisfactory results for real world
data and can be used in the working environment.

B. Parameter Sensitivity & Computation Analysis

The parameter setting of our method is simpler than other
depth upsampling methods because the only parameter is
that adjusts the similarity of coupled nodes. With varying ,
we record the PBP of our method to draw the performance curve
of PBP and report the statistical data in Fig. 3. The figure ex-
hibits that the performance of our algorithm at the discontinuous
regions and continuous areas are rather robust in a wide range

Fig. 3. PBP performance curves of discontinuous regions and continuous areas
are shown as a function of . The proposed algorithm renders good perfor-
mance for a wide range of under 2X, 4X, 8X, 16X upsampling rates and 2%
random missing inpainting (a) Discontinuous regions (b) Continuous areas.

Fig. 4. Close-ups of the 8X upsampled result of book. For clarity, we visualize
the image intensities using a color map. We can observes that our method can
keep the sharp depth edges satisfactorily (a) Ground truth (b) Yang’s (c) Ours.

of , therefore we do not need to fine tweak the scale factor
for pursuing stable results.
We use a image to test the efficiency of our

method. Our method’s computational time is stable at 8 fps for
2% random missing inpainting and 2x, 4x, 8x upsampling. In
contrast to the fastest upsampling method [6] which achieves
0.03 fps for exact method and 3 fps for approximation approach,
our algorithm outperforms it significantly.

C. Comparison with Yangs Method

This section is devoted to explain why our method is better
than Yang’s, since our method is derived from and similar to
the method of Yang [12]. Fig. 4 shows the comparison results
of Book. We can observe that our method keeps the sharp depth
edges much better. We own this achievement to the reliable
seed choosing strategy. Specifically, Yang’s aggregationmethod
does not distinguish the different pixels and thus each pixel re-
ceives the contribution of all other pixels indiscriminately. On
the contrary, our method only takes advantage of reliable seeds
(or the closest points in the sense of minimax distance). In this
way, our method successfully rules out the negative effects of
the unreliable depths that are far from the target pixels.
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