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Abstract: An accurate and robust approach for tracking and guiding multiple laser beams is developed, which can be applied to the

task of beam and target alignment. Multiple laser spots are firstly detected and recognized from the image sequences of the target and

laser spots. Then, the contour tracking algorithm based on the chain code is investigated, in which the shape matching scheme based

on the invariant moments is employed to distinguish different spots. When occlusion occurs in the multiple spots tracking procedure,

the contour tracking combined with Kalman filter prediction is proposed to obtain the positions of multiple spots in real-time. In order

to guide 3 spots to align the target, an incremental proportional integral (PI) controller is employed to make the image features of

spots converge to the desired ones. Comparative experiments show that, the proposed tracking method can successfully cope with the

fast motion, partial or complete occlusion. The experiment results on spots guiding also exhibit the accurate and robust performance

of the strategy. The proposed visual system solves the problem of spots mixing, reduces the alignment time, improves the shooting

accuracy and has been successfully applied to the experimental platform.
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1 Introduction

In order to apply the theories of inertial confinement fu-

sion (ICF) to practice, the challenges associated with beam

and target alignment system must be overcome[1]. It is nec-

essary to take measures to realize rapid and precise align-

ment in a time as short as possible. In order to achieve

higher shooting accuracy, the laser spots should be guided

through continuous visual feedback in real-time[2]. Nor-

mally, the process of aligning multiple laser beams to the

desired region on the target is called a beam and target

alignment process, and a sensor for aligning multiple laser

beams to the target is called a target alignment sensor,

which mainly consists of the conjugate reflectivity mirror

and the microscope lens, as shown in Fig. 1. In this work,

3 dedicated laser alignment devices are integrated to guide

3 laser beams to achieve the beam and target alignment.

For each laser beam, the laser from the transmitter is am-

plified, processed through a filter wheel, focused by a set

of convergent lenses, and then filtered via an aperture of a

circular hole of 6 mm diameter. Finally, the laser is focused

again by a convex lens and is reflected to the end surface of

target by a high-reflectivity mirror. Therefore, the detect-

ing, tracking and guiding technologies of laser spots become

very important so that multiple laser beams can shoot the

desired region of the target in the beam and target align-

ment procedure.
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The detection and segmentation of multiple spots in im-

age sequences is a fundamental step before the tracking or

when the tracking is failed. The laser spot is assumed to be

the only part of the image with a high light intensity. The

common approach is to extract the spots by background

subtraction. However, in practice, the intensity of laser

may randomly change, the illumination in the scene may

not be very stable and even the intensity of a cylindrical

target may vibrate slightly. All of these may induce the

changes of background. Stauffer and Grimsor[3] modeled

each pixel as a mixture of Gaussians and used an on-line

approximation to update the model. However, the method

suffers from slow learning at the beginning and is not sensi-

tive to the small motions. An improved Gaussian mixture

model was presented by Zivkovic[4], in which not only the

parameters but also the number of components of the mix-

ture were constantly selected for each pixel. However, this

method has high computational cost, especially, in the face

of the high image resolution.

The tracking algorithm can provide the position feed-

back for the spot in real-time. In [5], the object tracking

was divided into point tracking, kernel tracking and silhou-

ette tracking. Features, such as color, edges, optical flow

and texture are often chosen for tracking. They can be rep-

resented by a probabilistic model and then detected in con-

secutive frames. In general, the most desirable features of

spot are the ones which can be used to distinguish one spot

from the others. Considering the gray image, the biggest

difference between different spots is the contour then the

intensity. Moreover, due to the fact that the spot is non-
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Fig. 1 Beam and target alignment system configuration, in which the microscope is used in the imaging procedure of the target while

it is not used in the imaging procedure of laser spots

rigid, the tracking algorithm based on its contour is more

practical. Many contour models have been reported for

tracking in the previous literature, such as optical flow,

level set, snakes, balloons and active contours model[6−8].

Some contour tracking methods based on boundary codes

were investigated in [9, 10]. However, they are limited to

the boundary-based information and are sensitive to noise.

In order to overcome the drawbacks of the sensitiveness to

noise and poor image contrast, a particle filtering algorithm

for geometric active contours tracking was proposed in [11].

However, these techniques require a number of iterations

and are computationally too expensive for real-time appli-

cation on multiple spots tracking. It is necessary to develop

one rapid and robust contour tracking scheme for spots.

Another important problem is that the spots may mix

together and interfere with each other when multiple laser

beams simultaneously shoot the target. The problem may

be solved by guiding a single beam at a time, however,

which is time-consuming. Therefore, occlusion handling is

a difficult issue in the face of multiple spots tracking. In

the previous literature, the appearance model was incorpo-

rated, or the target was treated as a blob which may merge

and split, or an exclusion principle was employed by using

the joint probabilistic data association filter and the par-

ticle filter was employed to avoid the high computational

load[12−15]. The prior information of shape is often inte-

grated into contour representation. Yilmaz et al.[16] pro-

posed a non-rigid tracking method, which was achieved by

evolving the contour from frame to frame with some en-

ergy functions. The contour represented by level sets was

used to recover the missing object regions during occlusion.

However, these methods require precise model, increase the

computational complexity and may fail in the face of the

rapid motions.

The recognition of multiple spots is also a key problem

during multiple spots tracking. In order to distinguish dif-

ferent spots, shape representation and matching techniques

should be considered. A number of successful shape match-

ing algorithms were proposed. One of the most popular

methods is to use Hausdorff distance, although it is very

sensitive to outliers. Some methods compare shape by the

feature vector which contains the descriptors such as area,

geometric moments, shape matrix, appearance via gray his-

tograms, optical flow vectors, etc.[17], while others directly

do with the aid of pixel brightness[18]. Belonggie et al.[19]

proposed the shape context for shape matching and ob-

ject recognition, which described the contour points by his-

togram in the log-polar space. The similarity between two

shapes was computed by a sum of matching errors between

corresponding points. However, a large amount of calcula-

tions will be needed and they are hard to satisfy the real-

time requirement.

The motivation of this paper is to develop the detec-

tion, tracking and guiding schemes for multiple laser spots

based on a beam and target alignment experimental plat-

form. An accurate and real-time system for multiple laser

beams shooting is presented, which consists of spots seg-

mentation, spots contour tracking even under occlusion and

spots guiding based on visual feedback control.

The rest of this paper is organized as follows. Section 2

describes multiple spots detection and tracking strategy,

in which the spot segmentation, the contour tracking and

the shape matching algorithms are introduced. In order

to accomplish the beam and target alignment task, Sec-

tion 3 presents multiple spots guiding scheme. Section 4

provides the experimental configuration and the analysis

of experiment results. Finally, the paper is concluded in

Section 5.

2 Multiple spots detection and tracking

strategy

The achievement of the beam and target alignment based

on visual feedback needs to obtain the positions of multiple
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spots in real-time. The accurate positions need to be deter-

mined by the detection and tracking stages. As shown in

Fig. 2, the proposed strategy is initialized with a status flag

L = 1. Each spot is recognized by its shape and is num-

bered after the detection. Meanwhile, its location, width,

height, image moments and so on are also calculated. If all

spots are found, then flag L is set to 0. When a new image is

captured, the tracking algorithm is employed to obtain the

new features of spots. When occlusion occurs, the tracking

scheme combined with a prediction mechanism will deter-

mine the new positions of spots. If the shape matching

between the current contour and the previous one is failed,

then, flag L changes to 0. Otherwise, the positions of the

current spots will be provided to the guiding stage. Then,

the spots in the next frame will be tracked until stopping.

Fig. 2 Block diagram of multiple spots detection, tracking and

guiding strategy

3 Spots detection stage

3.1 Spots detection stage

First of all, the moving spots are segmented from the

beam and target images. However, noise may be introduced

and the differential image may be incomplete by stationary

background subtraction. Many solutions in the previous

literature have been proposed for real-time foreground de-

tection from moving background. Here, the adaptive Gaus-

sian mixture model (GMM) is employed to obtain the spots

background[20]. A Bayes decision rule for classifying back-

ground and foreground is formulated and the learning strat-

egy is introduced to adapt to slight changes in background.

The probability of each pixel value at time t can be written

by

p(xt) =
K∑

i=1

wiη(xt, μi, Qi) (1)

where K is the number of Gaussian distributions, wi is

the weight of the i-th Gaussian component, μi is the mean

value, Qi is the covariance matrix and η(xt, μi, Qi) is the

i-th Gaussian probability density function, which is repre-

sented by

η(xt, μi, Qi) =
1

(2π)
D
2 |Qi| 12

e−
1
2 (xt−μi)

TQ−1
i

(xt−μi). (2)

In order to avoid the complex matrix computation, let

Qi = σ2
i I . Considering the high resolution of the spot im-

age, no more than 3 Gaussian models are initialized.

Each pixel is firstly classified as either background or a

foreground pixel by the models. The K distributions are

ordered based on the fitness value wi/σi. The first B dis-

tributions are selected as a model of the background, which

are estimated by

B = arg min
b

(
b∑

i=1

wi > T

)
(3)

where T is the threshold of background weight value. The

Gaussian model that matches the current pixel value will

be updated by the following formulae.

ŵt+1
i = ŵt

i + α
(
1 − ŵt

i

)

μ̂t+1
i = μ̂t

i + α
(
xt+1 − μ̂t

i

)

Q̂t+1
i = Q̂t

i + α
(
(xt+1 − μ̂t+1

i )(xt+1 − μ̂t+1
i )

T − Q̂t
i

)
. (4)

If no Gaussian model matches the current pixel value,

then the least probable model is replaced by the formu-

lae wt+1
i = α, μt+1

i = xt and Qt+1
i = σ0. If the maximum

number of components is reached, the component with the

smallest weight will be discarded.

However, the foreground region segmented by the Gaus-

sian mixture model is not sufficient to be clear. Firstly, a

binary image is obtained through adaptive threshold seg-

mentation, in which the value of each pixel is compared

with the weighted average value around the pixel.

Ib(u, v) =

{
255, if (Ib(u, v) - Ib̄(u, v)) > IT

0, otherwise
(5)

where Ib̄(u, v) is the convolution of pixel by one Gaussian

kernel operator and IT is the constant value. Then, the

region-based noise cleaning is applied, such as the morpho-

logical open operation including the erosion by the structur-

ing element A then the dilation by the structuring element

B, denoted by

(X ⊕ A) � B. (6)

This opening operation can generally remove very small re-

gions, eliminate thin protrusions and smooth the contour
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of the spot. Then, the shape filter is used to classify the

spots. So far, all spots are numbered and each one has its

own ID number.

3.2 Spots tracking stage

In this subsection, the contour tracking algorithm based

on the chain code is introduced. Many applications using

chain code representation have been reported in previous

literatures. The first approach for representing the arbi-

trary geometric curve using chain code was proposed by

Freeman[21]. In this approach, an arbitrary contour can be

represented by a sequence of small vectors of unit length and

a set of possible directions. There are two standard code

definitions used to represent contour, including the crack

code based on 4-connectivity and the chain code based on

8-connectivity.

In this work, the real-time and robustness are very impor-

tant for multiple spots tracking. Here, the 8-connectivity

chain code is employed for representing the contour of spot,

which is based on the connectivity of neighboring pixels[22].

Fig. 3 illustrates the changes of 8 possible absolute direc-

tions, which are indicated by numbers. “0” indicates the

direction change to the east, “1” indicates the direction

change to the northeast, “2” indicates the direction change

to the north, “3” indicates the direction change to the

northwest, “4” indicates the direction change to the west,

“5” indicates the direction change to the southwest, “6” in-

dicates the direction change to the south and “7” indicates

the direction change to the southeast. A change between

two consecutive chain codes means a change in the direction

of the contour. Thus, each spot′s contour can be coded by

the chain code in the image space.

Fig. 3 Spot′s contour tracking based on chain code

Generally, the basic principle of the tracking based on

chain code of 8 directions is to separately encode each con-

nect component. It can be divided into 3 steps as follows.

Firstly, the initial center of the tracked spot should be

specified so that the first border pixel can be found. The ini-

tial position can be obtained from the detection procedure.

Starting from the first center, the first border pixel can be

detected along the u-axis direction. In order to search a

new contour in a small region of interest (ROI) when the

tracking is failed, one suitable search window is set. A copy

of the current spot should be created in order to determine

whether the current spot is similar to the next one. If no

similar spot is detected, this copy is set to the current spot.

Secondly, the next border pixel is considered by updating

the pixel coordinates along the 8 directions. The coordinate

transformation rules are described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui+1 = ui + 1, vi+1 = vi, if di = 0

ui+1 = ui + 1, vi+1 = vi − 1, if di = 1

ui+1 = ui, vi+1 = vi − 1, if di = 2

ui+1 = ui − 1, vi+1 = vi − 1, if di = 3

ui+1 = ui − 1, vi+1 = vi, if di = 4

ui+1 = ui − 1, vi+1 = vi + 1, if di = 5

ui+1 = ui, vi+1 = vi + 1, if di = 6

ui+1 = ui + 1, vi+1 = vi + 1, if di = 7

where ui, vi are the coordinates of the current pixel and di is

the indication of the direction change. Meanwhile, the spot

features, such as the center of mass, surface, bounding box

and image moments, are calculated by their corresponding

increments. This continues until the encoder returns to the

starting border pixel. Compared to other contour-based

methods, it does not go through all the neighbors of the

pixel, so faster. So far, the boundaries of the spot′s contour

are represented by the chain codes.

Thirdly, if the tracking is failed, a search area will be

required. Thanks to the short image sampling interval, the

moving distance of the spot during two consecutive frames

is limited in a small range. So the dynamic window tech-

nique is applied to searching. Once the spot is found in the

new frame, the center of the dynamic window will be up-

dated. Therefore, if the tracking is failed or the spots go out

of the field of view, the searching region in the next frame

can be confined in this dynamic window. If the spot is still

not detected in this small window, the searching window

will be changed to the entire image region[23]. In addition,

when the tracking is failed, not every pixel will be treated as

a starting point for contour detection, but a large searching

step is separately set along the u-axis and v-axis directions.

If the new contour is similar enough to the previous one, the

chain codes of spot contour will be updated. This tracking

procedure continues until stopping.

During the multiple spots tracking procedure, if the rela-

tive chain codes of spot contour are considered for matching,

it must be independent of the choice of the first boundary

pixel. Usually, the normalized differential chain codes in-

stead of the relative ones are used to represent the contour

boundary and this can be computed by subtracting each el-

ement from the previous one[24]. However, the chain codes

of spot contour are usually sensitive to noise, so the shape

matching by chain code is impractical. In this work, consid-

ering the real-time and simplification, the image moments

of spot have been employed for shape matching. The Hu in-

variant moments that are invariant to translation, rotation

and changes in scale are adopted to evaluate the resem-

blance of two contours[25].
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The image moments are obtained by

mpq =
∑

u

∑

v

upvqI(u, v) (7)

where the order of the moment is p+q, the central moments

μpq are calculated by

μpq =
∑

u

∑

v

(u − ū)p(v − v̄)qI(u, v), ū =
m10

m00
, v̄ =

m01

m00
.

(8)

Then, the normalized central moment ηpq can be deter-

mined by

ηpq =
μpq

μλ
00

, λ =
p + q

2
, p + q ≥ 2. (9)

Further, 7 Hu invariant moments that contain image mo-

ments up to order 3 are shown as

h1 = η20 + η02

h2 = (η20 − η02)
2 + 4η2

11

h3 = (η30 − 3η12)
2 + (3η21 − η03)

2

h4 = (η30 + η12)
2 + (η21 + η03)

2

h5 = (η30 − 3η12)(η30 + η12)((η30 + η12)
2−3(η21 + η03)

2)+

(3η21 − η03)(η21 + η03)(3(η30 + η12)
2 − (η21 + η03)

2)

h6 = (η20 − η02)((η30 + η12)
2 − (η21 + η03)

2) + 4η11(η30+

η12)(η21 + η03)

h7 = (3η21 − η30)(η30 + η12)((η30 + η12)
2−3(η21 + η03)

2)+

(3η21 − η03)(η21 + η03)(3(η30 + η12)
2 − (η21 + η03)

2).

(10)

The Hu moments advantages of invariance to position,

size and orientation make the spot matching become practi-

cal. Therefore, the 7 Hu moments combined with the spot′s
width, height and surface are applied to shape matching.

However, the spot′s shape is not very stable, but slightly

changes in a small range. So a certain changing range is set

for each moment. If the changes of moments are beyond a

certain range, the corresponding shape will be rejected.

3.3 Occlusion handling

Importantly, the tracking should continue even in the

event that the spot is partially or even completely occluded.

Especially, the mixing phenomenon between different spots

is very common. When multiple spots move to near the

desired positions in the guiding procedure, occlusion may

occur. In this case the spots may even completely merge

for a long time.

Here, the bounding box distance is used for determin-

ing whether the spots merge or split, as shown in Fig. 4.

It is more stable as opposed to the Euclidean distance be-

tween the centers of spots. Therefore, occlusion detection is

performed by determining the distance between the bound-

ing boxes of different spots. When occlusion occurs, mul-

tiple spots mix each other, which induces sudden changes

in shapes. So the mass centers of spots calculated by the

common contour become inaccurate. In the previous litera-

tures, this case is defined as a filtering and data association

problem.

Fig. 4 Bounding box distances between different spots

The most common expression of the filtering and data

association process is the state space approach, which can

model the discrete dynamic system by linear difference

equations[26]. Kalman filter technique can predict motion

information and reduce the computational complexity, so

it is employed to predict and update the spot′s features

in this work. The features of the spot are defined by the

state sequences xk (k = 0, 1, · · · ), which are specified by the

dynamic equations xk = fk(xk−1, vk). The available mea-

surements zk (k = 1, 2, · · · ) are related to the corresponding

states through the measurement equations zk = hk(xk, nk).

The functions vk and nk are the noise sequences, which are

assumed to be independent and are of Gaussian distribution

with zero mean. The functions fk and hk are linear. The

dynamic equations are defined by xk = Fxk−1 + vk and the

measurement equations are defined by zk = Hxk + nk. F

is the transition matrix and H is the measurement matrix.

The contour tracking technique combined with the

Kalman filtering is applied when occlusion occurs. The

weighted sum of the measured position and the predicted

position is used for determining the spot′s position in the

next frame.

Typically, a Kalman filter can be divided into the pre-

dicted phase and the corrected phase[26]. In the first phase,

a priori state estimation of the spot at time k is evolved

from the state at time k − 1 according to

xk|k−1 = Fkxk−1|k−1 + Bkuk−1 (11)

where Fk is the state transition matrix, Bk is the control

matrix which is not used in this work. Meanwhile, a poste-

riori error covariance matrix can be estimated by

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (12)

where Qk is the process noise covariance matrix.

In the update phase, the state estimation is updated by

the formula as

xk|k−1 = xk|k−1 + Kk(zk − Hkxk|k−1) (13)

where Hk is the measurement matrix, Kk is the optimal

Kalman gain matrix, which is a function of the relative
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certainty of the measurements and current state estimate.

With a high gain, the filter places more weight on mea-

surement. With a low gain, the filter follows the prediction

more closely. At the extreme, a gain of zero causes the mea-

surement to be ignored. The gain can be set up to achieve

better performance and is expressed by

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1 (14)

where Rk is the measurement noise covariance matrix and

the posteriori estimate covariance matrix is updated by

Pk|k = (I − KkHk)Pk|k−1. (15)

The prediction step and correction step are executed re-

cursively. From (15), the Kalman gain is inversely propor-

tional to the measurement covariance matrix Rk. There-

fore, the smaller Rk is, the greater the gain becomes and

the higher the weight of the predicted value becomes. Like-

wise, the closer the priori estimate error Pk|k−1 gets to zero,

the higher the weight of the measurement becomes.

In Kalman filter algorithm, the moving model of spot

should be constructed. Because of the small changes on

spot′s surface in consecutive frames, only 4 input states are

taken into account, which are the positions and the veloc-

ities of the spot along the u-axis and v-axis directions in

the image space. The position and velocity of the spot are

evolved from the state at time k − 1 according to

⎡

⎢⎢⎢⎣

uk

vk

Δuk

Δvk

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

uk−1

vk−1

Δuk−1

Δvk−1

⎤

⎥⎥⎥⎦ (16)

where Δuk and Δvk are the position increments during the

continuous sampling time along the u-axis and v-axis di-

rections, and they can replace the velocities, uk and vk are

the pixel coordinates of the mass centers of spot. The state

transition matrix is a 4× 4 one, the measurement matrix is

a 2 × 4 one, the measurement noise covariance matrix Rk

is a 2× 2 diagonal one, the process noise covariance matrix

Qk is also a 4 × 4 diagonal one, and the posteriori error

estimate covariance matrix Pk is a 4 × 4 one.

When occlusion occurs, the entire contour including the

merge boundaries can be detected by the chain code. At

this moment, the position of spot is the weighted sum of

the mass centers of the common contour and the predic-

tion position. Importantly, the practical implementation of

Kalman filter is often difficult to obtain a good estimation

of the noise covariance matrices Qk and Rk. The auto-

covariance least squares technique was used to estimate the

covariance[27]. More practically, in order to reduce the com-

putation cost, an occlusion rate is defined to determine the

values of noise covariance, shown as

ζ(t) =

⎧
⎨

⎩

∣∣∣ Ns
N(t)

∣∣∣ , if occlusion occurs

1, otherwise
(17)

where Ns is the number of pixels of spot before occlusion,

N(t) is the number of pixels in the common area of multiple

spots under occlusion. So, N(t) is greater than Ns. Here,

it is assumed that the noise covariance is inversely propor-

tional to occlusion rate ζ(t). When occlusion occurs, the

measurement noise covariance becomes greater, and then

the weight of the predicted value becomes higher. As the

common area of multiple spots becomes smaller, the occlu-

sion rate becomes greater and the noise covariance becomes

smaller, so the weight of the measurement becomes higher.

According to the occlusion rate, the Kalman filter is ad-

justed adaptively.

4 Multiple spots guiding based on vi-

sual feedback

The objective of the spots tracking is to guide the laser

spots to accomplish the beam and target alignment. From

the previous section, the positions of spots are obtained in

real-time, so the position errors in pixels between the cur-

rent and the desired ones are known. Fig. 5 illustrates the

desired positions of 3 spots. Note that due to the pose

relationship between the target alignment sensor and the

high-reflectivity mirror, the two axes of the sub-coordinate

system of each spot are not perpendicular to each other.

The control objective is to minimize the errors by choosing

an appropriate control vector at each sampling time. The

control scheme for eliminating the position deviations of the

spots is the discrete incremental proportional integral (PI)

controller. The linear control law is given by
[
Δux(k)

Δuy(k)

]
=Kp

([
Δx(k)

Δy(k)

]
−
[
Δx(k − 1)

Δy(k − 1)

])
+Ki

[
Δx(k)

Δy(k)

]

(18)

where parameters Δux(k) and Δuy(k) are the output of the

PI controller at the k-th control cycle, Δx(k) and Δy(k) are

the positions errors in Cartesian space at the k-th control

cycle. Kp is the proportional factor, which is a diagonal

matrix. Ki is the integral factor, which is also a diagonal

matrix. The Ziegler-Nichols method is employed to tune

the PI parameters.

The control structure is shown in Fig. 6. The coordinates

of the mass centers in pixels are obtained from the camera

system. Then, the errors Δu(k) and Δv(k) in the image

space between the current position and the desired one are

calculated. The movements of the spot are achieved by the

rotational motions of the two servo motors with a high-

reflectivity mirror along the pitch and yaw directions. The

rotational increments of two motors Δx(k) and Δy(k) can

be acquired by
[
Δx(k)

Δy(k)

]
=

[
pu 0

0 pv

] [
Δu(k)

Δv(k)

]
(19)

where parameters pu and pv are the proportional relation-

ship between the translational motions of the spot in pixels
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Fig. 5 The initial and desired positions of 3 spots in the

beam and target alignment procedure and the axes of the sub-

coordinate system of each spot are not perpendicular to each

other

and the rotational motions of the motor. The values of

pu and pv can be separately calibrated off-line by multiple

motions, as shown in (20).

pu =

N∑
i=1

Δxi
Δmi

N
, pv =

N∑
i=1

Δyi
Δni

N
(20)

where Δxi is the increment of the motor′s motion only along

the pitch direction and Δmi is the corresponding increment

of the spot′s motion in the image plane. Similarly, Δyi is

the increment of the motor′s motion only along the yaw di-

rection and Δni is the corresponding increment of the spot′s
motion in the image plane. Meanwhile, the corresponding

unit vector can be obtained by line fitting. In the control

procedure, the rotational increments Δx(k) and Δy(k) are

obtained by the increments in image space, which can be

treated as the input of PI controller. Finally, the outputs

Δux(k) and Δuy(k) are used as the input to the motor′s
controller.

5 Experiment and analysis

5.1 Experiment system

The whole experimental configuration consists of 3 beam

and target alignment subsystems, as shown in Fig. 7. Each

laser subsystem of laser is composed of a laser transmitter,

a set of convergent lenses, a convex lens with a translational

motion platform and a high-reflectivity mirror with two ro-

tational motions platform. Before passing through the aper-

ture, the laser needs to be adjusted manually. Then, it is

focused again by a convex lens with a translational motion

platform. Finally, the laser is reflected by a high-reflectivity

mirror which is driven by one pitch motor and one yaw mo-

tor. In addition, the camera system could simultaneously

image the laser spots and the cylindrical target, which could

provide the position feedback to ensure the alignment ac-

curacy. Therefore, the imaging camera and the guiding

motors including the pitch and yaw ones constituted one

visual servoing system. Importantly, after being reflected

by the high-reflectivity mirror, the laser is reflected again

by the mirror on the target alignment sensor, and then it

is captured by the camera system. So, the charge-coupled

device (CCD) plane and the target′s end surface should be

conjugate relative to the plane of target alignment sensor

so that the laser could shoot the target′s surface after the

target alignment sensor is removed. It effectively prevents

multiple laser beams from directly shooting the target.

The above manipulators are the Aerotech′s motor named

ANT95-50-XY in the translational direction, one named

ANT 130-360-R in the yaw direction and one named ANT-

20G-90 in the pitch direction. The accuracy of the rota-

tional motor is ±50 μrad and the resolution is 0.25 μrad. In

order to guarantee that the reflected spots are not out of

view, the rotational angle of each motor is limited within

0.015 rad. The imaging detector is GRAS-50S5M-C from

Point Grey Research. The camera could run at 15 frames

per second for 2448(H) × 2048(V) in pixels. The software

system has two processes including a user interface pro-

cess and an application one. The interprocess communi-

cation is achieved by shared memory and the socket tech-

nology. Meanwhile, multi-threading technology is used in

multiple spots tracking procedure. The experiment was im-

plemented on a PC (Intel i7 2.80 GHz).

5.2 Experimental result and analysis

In the spots detection experiments, the noise variance

was set to 6.4, the initial weight value was 0.04, the vari-

ance threshold was 0.64, the threshold of background weight

value was 0.9, and the learning rate was set to 0.005. The

procedure of spots segmentation based on the Gaussian

mixture model is shown in Figs. 8 (e) to 8 (g). As a con-

trast, the procedure of stationary background subtraction

is exhibited in Figs. 8 (b) to 8 (d). Compared to the station-

ary background subtraction, the segmentation results based

on GMM are more stable and precise, especially in the face

Fig. 6 Control architecture of spots guiding based on visual feedback
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of the complex beam and target images or the rapid move-

ment of spot. Then, the adaptive threshold operation, the

morphological open operation including the erosion with a

3 × 3 operator and the dilation with a 5 × 5 operator are

used to clean noise.

Fig. 7 Experimental system

Fig. 8 The spot segmentations based on stationary background

subtraction and Gaussian mixture model. (a) The beam and tar-

get images; (b)−(d) The spot after the stationary background

subtraction, the spot after the threshold segmentation and the

spot after the morphological operation, respectively; (e)−(g) The

spot after subtraction based on GMM, the spot after adaptive

threshold segmentation and the spot after the morphological op-

eration, respectively; (h) The image segmentation and contour

extraction of 3 spots.

In this work, 3 laser beams are used for tracking and

guiding. The first laser spot is about 51 pixels in width,

49 pixels in height and 1 980 pixels in surface. The second

spot is about 70 pixels in width, 65 pixels in height and

3 560 pixels in surface. The third spot is about 64 pixels

in width, 64 pixels in height and 3 202 pixels in surface. In

the tracking procedure, if the tracking is failed, the size of

searching window would be set to 15 times the spot′s size

and the corresponding searching steps along u-axis and v-

axis directions would be respectively set to 0.75 times the

spot′s width and height. In addition, the tracking times

have been tested. The average times spent on searching the

contour based on chain code are 1.373 ms for the first spot,

1.134 ms for the second spot and 1.235 ms for the third spot.

The whole tracking times including the spot segmentation

are 38.051 ms for the first spot, 39.806 ms for the second

spot and 41.160 ms for the third spot. The real-time con-

tour tracking technique based on the chain code could meet

the requirement of the experimental system.

The experiments on handling the problem of spots mix-

ing have been conducted. As discussed in Subsection 3.3,

whether the spots merge with each other is determined by

the bounding box distances. In the Kalman filter algorithm,

the initial values of the diagonal elements of matrix Rk are

set to 3, the initial values of the diagonal elements of matrix

Qk are 1e−6 and the initial values of the diagonal elements

of matrix Pk are 0.1. When multiple spots mix with each

other in the guiding procedure, the center of the search-

ing window calculated by the common contour would have

a sudden shift. However, thanks to the prediction mecha-

nism based on Kalman filter, the sudden shift would be de-

creased. A range of tracking results combined with Kalman

filter prediction is shown in Figs. 9 (a)−9 (f), in which the

trajectory of the tracking center is marked with the solid

line. Fig. 10 exhibits the tracking results of 3 spots in the

face of merging and splitting. The proposed algorithm is

able to track multiple spots in the presence of partial or

complete occlusion, which increases the feedback accuracy.

Fig. 9 The tracking image sequences under two spots mixing, in

which the first spot remained in motion, merged with the second

spot and then split during its movement. The second spot re-

mained motionless. (a)−(f) Image sequence frames 1 502, 1 520,

1 531, 1 550, 1 571, and 1 596 are shown.

Fig. 10 The tracking results in the case of 3 spots mixing. These

are the images sequences for the 3 laser spots in the cases of

merging, splitting, partially occluding and completely occluding.

(a)−(f) Image sequence frames 621, 1 005, 1 032, 1 050, 1 061, and

1 854 are shown, in which the entire contour is detected under

the occlusion.
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In order to show the better performance of the proposed

tracking algorithm, the comparative experiments have been

carried out as follows.

The most popular shape representation is the shape con-

text proposed in [19]. Yet in the face of the conditions

that the strict requirement of real-time, the high resolution

image and multiple targets, many complex contour-based

tracking algorithms are difficult to be used in our experi-

mental system. Shape context has been employed in the

contour-based tracking. Firstly, the spot is represented by

a set of points sampled from the contour. Then, the shape

context is calculated by the log-polar histograms (5 bins for

logr and 12 bins for θ, which are the same as [28]). The

point correspondences are obtained by the matching cost

function with χ2 distance, as shown in Fig 11. Finally, the

similarity based on shape distance could be obtained. The

translation and rotation between two frames are also cal-

culated by the affine transformation. The contour of each

spot is saved as the prior shape before matching. Each spot

could be recognized by shape similarity between the current

shape and the prior one. Fig. 12 reveals the times of shape

matching between each spot′s shape in arbitrary frame and

the corresponding prior shape. The average matching times

are 406.092 ms and 410.989 ms. It is time-consuming and

hard to be accepted. Furthermore, when two spots mix with

each other, the shape matching based on shape context will

fail. Therefore, the tracking method based on shape context

matching is not practical for our system, although the shape

context represent the spot′s contour better. Considering the

real-time requirement, the contour tracking scheme based

on the chain code detection and the recognition based on

the invariant image moments are more practical for our ex-

perimental system.

Fig. 11 Shape matching by the shape context between two

frames

Fig. 12 Time of shape matching by the shape context in the

sequential frames

In the second comparative experiment, the mean shift

algorithm was employed, which is an efficient technique for

tracking 2D blobs, such as the spots in this work. The mean

shift method is a nonparametric statistical one for tracking

with an isotropic kernel[29, 30]. Here, the kernel function is

simplified as a rectangular one. In the tracking procedure,

the mass center is computed. Meanwhile, a mean shift vec-

tor is determined and the searching window center shifted

to the current mass center accordingly. This procedure is

repeated until the number of iterations reaches the specified

one or until the shifting distance was less than the specified

one. Since the spot′s shape changed not too much, here the

size and orientation of the tracking window do not change

during the tracking procedure. In addition, the searching

window is set to a rectangle region of 264 × 264 in pixels.

The average searching time is 1.679 ms and the whole track-

ing time including pre-processing is 39.848 ms. Compared

to the proposed tracking scheme, the times are almost sim-

ilar. However, it is hard to continue tracking when multiple

spots are close to each other, as shown in Fig. 13. Although

this method has the better tracking time performance, it

cannot handle the case of occlusion. Therefore, this disad-

vantage limited its applications on multiple spots tracking.

Fig. 13 Tracking image sequences by the mean-shift. When two

spots mix with each other, the tracking is failed. (a)−(c) Image

sequence frames 912, 937 and 979 are shown.

Fig. 14 Tracking image sequences by polar coordinate scanning.

When two spots mix with each other, the tracking was failed.

(a)−(c) Image sequence frames 628, 645 and 682 are shown.

Table 1 The comparative experiment results

Spots tracking Average tracking time

Chain code 1.247ms(39.672ms)

Mean shift 1.679ms(39.848ms) (ROI: 264×264)

Polar coordinate 2.411ms(43.054ms) (ROI: 264×264)

Shape matching Average matching time

Invariant moments Very short

Shape context 412.253 ms

In addition, on the condition that the spot′s shape is ap-

proximately treated as a circle, the contour can be detected

by scanning along the polar coordinate. The least square

method combined with random sampling consensus tech-

nique is utilized to fit circle with the contour points. Then,
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the tracking window is updated by the new center of circle.

The searching window is also set to a rectangle region of

264× 264 in pixels. The average time of detecting the spot

contour is 2.411 ms and the whole tracking time including

pre-processing is 43.054 ms. By contrast, not only is its real-

time performance is not better, but also it cannot handle

the case in which multiple spots are very near each other, as

shown in Fig. 14. In addition, when the spots shape change

suddenly and cannot be treated as a circle, the tracking will

be failed. The running time of the comparative experiment

are concluded in Table 1.

Through many tests, the proposed contour tracking

scheme proved to be robust under the adverse conditions,

including rapid motions, large-scaled changes in velocity,

slight vibrations of target and slight shaking of the laser

spot. Therefore, the proposed tracking method is optimal

and practical.

Finally, a series of images that show 3 spots guiding with

PI controller are displayed in Figs. 15 (a)−15 (f). Three

threads for guiding 3 laser beams execute synchronously.

Three spots mix with each other when they are close to

the target area. In this case, the contour tracking method

combined with the Kalman filter is applied to determine

the current position of each spot. The weight of the mea-

surement is adjusted by the occlusion rate. Meanwhile, the

position error of each spot between the current one and the

desired one is treated as a feedback. Here, the valid shoot-

ing objective is a circular region with 150 pixels in diameter

and the desired position is the center of the target′s end

surface. The detection, tracking and guiding strategy have

realized the high accurate shooting. The average time of 3

spots guiding is within 38 s, which meets the experimental

system′s requirement.

6 Conclusions

In this paper, the main contribution is that a new detect-

ing, tracking and guiding strategy for multiple laser spots

based on beam and target alignment experimental system

are developed. First, the laser spots are segmented and rec-

ognized by the contour-based analysis. Then, the contour

tracking technique based on the chain code and Kalman

filter prediction is proposed, in which the shape matching

scheme is employed to distinguish different spots. Finally,

a visual feedback system is introduced in order to guide

3 laser spots to shoot the desired position of the target.

The experiment results show the rapid, accurate and ro-

bust performance of the laser shooting. In future, the new

technique can be further combined with more data asso-

ciation approaches, such as multiple hypotheses tracking,

especially, when multiple spots mix together or completely

interfere with each other.

Fig. 15 The guiding procedure of 3 spots for beam and target

alignment. (a)–(f) Image sequence frames of the spots guiding

1 109, 1 183, 1 282, 1 638, 1 652 and 1 675 are shown. The lines

are the directions of spot motion only driven by the yaw or pitch

motor. And in the experiment, the linear interpolation algorithm

was applied to two motors.
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