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Abstract—A number of images are present on the Web and
the number is increasing every day. To effectively mine the
contents embedded in Web images, it is useful to classify the
images into different types so that they can be fed to different
procedures for detailed analysis, such as text and non-text image
discrimination. We herein propose a hierarchical algorithm for
efficiently classifying Web images into four classes, namely,
natural scene images, born-digital images, scanned and camera-
captured paper documents, which are the most prevalent image
types on the Web. Our algorithm consists of two stages; the first
stage extracts global features reflecting the distributions of color,
edge and gradient, and uses a support vector machine (SYM)
classifier for preliminary classification. Images assigned low
confidence by the first-stage classifier is processed by the second
stage, which further extracts local texture features represented in
the Bag-of-Words framework and uses another SVM classifier for
final classification. In addition, we design two fusion strategies
to train the second classifier and generate the final prediction
label depending on the usage of local features in the second
stage. To validate the effectiveness of our proposed method, we
also build a database containing more than 55,000 images from
various sources. On our test image set, we obtained an overall
classification accuracy of 98.4% and the processing speed is over
27FPS on an Intel(R) Xeon(R) CPU (2.90GHz).

Keywords—genre classification of Web images; low-level fea-
ture; Bag-of-Words; hierarchical classification

I. INTRODUCTION

On the Internet and mobile network, the explosive growth of
multimedia data, including texts, images and videos, brings us
rich information and also the difficulty of efficiently mining
relevant information. While the texts are explored by most
Web mining tools, to mine the contexts in images is also
very important. Particularly, the texts embedded in images
provide easily understandable semantics and such images
occupy a considerable proportion on Web pages. A study
[1] showed that 17% of the words visible on the web pages
are in image form and a large proportion (76%) of text
information embedded in images cannot be found anywhere
in the Web pages. The texts in images, however, are hard
to extract by computers, though easily read by humans. For
text detection and reading methods to process efficiently in
the Internet environment, we need to quickly classify the
images into different types of sources such that each type
of images undertake detailed analysis by a special procedure.

Also, for accurate processing, different types of text images
(document images), such as natural scene text images, born-
digital images, scanned and camera-captured paper documents,
are better analyzed in different procedures.

In this paper, we propose a fast classification algorithm for
classifying Web images into four major types, namely, natural
scene images (NSI), born-digital images (BDI), scanned pa-
per documents (SPD), and camera-captured paper documents
(CPD). Natural scene images (photographs) are captured by
surveillance cameras or mobile cameras, and are most popular
on the Internet. Whether they contain texts or not need to be
judged using more detailed procedure, but the fast identifica-
tion of this image type is helpful for the overall process of
Web image analysis. The other three types, BDIs, SPDs and
CPDs, usually contain rich texts. They also show different
characteristics of image quality, e.g., BDIs usually have large
areas of constant color, and SPDs are more uniform in intensity
and less distortion than CPDs. For a good tradeoff between
classification accuracy and processing speed, our algorithm
consists of two stages. The first stage uses global features
capturing the difference of appearances between four types
of images for preliminary classification with a support vector
machine (SVM) classifier. Images assigned low confidence by
the first-stage classifier are then processed by the second stage,
which extracts local texture features encoded in the Bag-of-
Words (BoW) framework and uses another SVM classifier
for final classification. Compared with global features, local
texture features are able to represent different patterns of
color transitions and properties of edges between four types of
images in a more detailed way, and yield higher classification
accuracy. To validate the effectiveness of our proposed method,
we also build a large image database from various sources
such as Web crawling, camera capturing and other standard
public databases. On our test image set, we obtained an overall
classification accuracy of 98.4% and the processing speed is
over 27FPS on a CPU (2.90GHz).

II. RELATED WORK

A lot of feature extraction and classification methods were
proposed in the context of content-based image retrieval
(CBIR) [2], but the existing methods there are not directly
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Fig. 1: A flow chart demonstrating the proposed hierarchical classification framework. If the max posterior probability from
SVM 1 is higher than a given threshold T, the test samples will be considered “simple” and then can be made decision of
corresponding class with the highest confidence. Otherwise, fusing strategies will be introduced in the second stage to find out

the final result.

applicable for our purpose of image genre classification. In
the following, we outline some works related to our purpose.

Hammond et al. [3] distinguished art paintings from scene
photographs using color texture signatures derived from the
human visual system. The receptive field profiles (RFPs) and
composite visual features (CVF) they presented are helpful to
solve our problem. Motivated by the physical image generation
process, Ng et al. [4] proposed a novel geometry-based model
for classifying photographic images and computer graphics
in the context of image forgery detection. They exploited
global geometry information at different scales as well as local
patch statistics to discover distinctive physical characteristics
of images, such as the gamma correction of photographs
and the sharp structures in graphics. Despite that the method
was shown effective, the feature extraction there is very
time-consuming, e.g., only global fractal geometry feature
extraction takes 128.1s on a 1280x1024 image. Swain et
al. [5] presented a method for separating photographs and
graphics on Web pages. The graphics they considered, such as
corporate logos, fags, and navigation buttons, are very simple
even compared to our born-digital images which contain both
texts and graphics. Lienhart et al. [6] also tried to solve
this problem, and the metrics they designed depend mostly
on statistics of global visual cues such as color and edge
orientation histogram. Lee et al. [7] tried to categorize images
into art, photo and cartoon using a neural network model.
Five standard MPEG-7 visual descriptors [8] in their work
were employed for feature values such as Color Layout,
Color Structure, Homogeneous Texture, Region Shape and
Edge Histogram, which are not only redundant but also time-
consuming. Pourashraf et al. [9] adopted an ensemble model
for classifying images embedded in commercial real estate
flyers into one of five genres, such as aerial photo, map, inside
building, outside building and schematic drawing. However,
the authors only evaluated their model with a small database
and did not report the processing speed.

In recent years, deep neural networks, especially the con-
volutional neural network (CNN) [10] [11] has achieved a
great success in image recognition tasks, including scene text

detection and recognition [12]. The superiority of CNN is
partly attributed to its ability of automatic feature exaction by
learning from large training dataset. However, the CNN suffers
from heavy computation in both training and testing, and so,
is usually implemented using GPU for parallel computation,
which to a certain extent limits its application to mobile phone
and other embedded devices. It is hence not preferable for fast
genre classification of images which are of huge number on
the Web.

Our proposed method for fast genre classification of images
uses both global visual features and local texture features
which consumes low computation complexity and is of mod-
erate dimensionality. The local texture features, extracted from
different types of image patches and represented in the Bag-
of-Words framework [13] [14] are shown to be effective in
differentiating photographs vs. non-photo, and scanned vs.
camera-captured paper documents.

III. PROPOSED METHOD

A. System Overview

Fig. 1 shows a schematic diagram of our hierarchical clas-
sification system. The first stage extracts global features and
uses a SVM for preliminary classification. In this stage images
with high confidence (over a threshold 7.) are made decision
of class directly. Meanwhile, others with lower confidence are
fed into the second-stage, which extracts local texture features
represented in BoW framework and uses another SVM for
final classification. In the second stage, different types of
texture descriptors are extracted from local patches and each
of them is represented into a BoW histogram. In particular,
we carefully design four types of local patches such as edge
patch, key point patch, smooth region patch and random patch.
In addition, a two-step clustering method is used for a more
discriminative codebook. Finally, we concatenate four BoW
histograms into the local feature vector. Depending on the
usage of local features, two fusion strategies are proposed to
train the second classifier and generate final prediction result:

1) Training the second classifier with global and local
features: Considering that global visual features alone are still



mNSI mBDI ENSI  mBDI CcPD

|.I.L].I.|.I.I.I.l||ll”|”h Illli”““"" :

0 01 02 03 04 05 06 07 08 09 1 0 20 40 60 80 100 120 140 160 180 200

(@) (b)

Fig. 2: The distribution of normalized histograms of different
types of images over global features. (a) and (b) represent
coherence of highly saturated pixels f; and average contrast
of edge pixels f, respectively.

not very discriminative for those “difficult” images which are
assigned to low confidence by the first classifier, one fusion
strategy is to train the second classifier using global and local
feature together and use its prediction label as the final result.
2) Training the second classifier with local features only:
In the second way, we only use the local features to train the
second classifier and then fuse the posterior probability vectors
of two classifiers with different weight coefficients. Thus the
test sample images will be categorized into the class that has
higher confidence according to the fused vector.

B. Global Features

All the global features are designed based on the different
appearances between four types of images. Compared with
NSIs, BDIs tend to have fewer colors, shaper edges, larger
constant color regions and more highly saturated pixels. As
for the other two types, SPDs are clearly more uniform in
intensity and less distortion than CPDs.

1) Coherence of highly saturated pixels fi: This feature
focuses on measuring different patterns of color transitions
from pixel to pixel appearing in four types of images. NSIs
often depict objects of the real world, and neither regions
of uniform color nor coherent pixels of highly saturated are
common in this kind of images because of the natural texture
of objects, noise and diversity of illumination conditions. On
the other hand, BDIs tend to have larger regions of constant
color and more blocks consisting of highly saturated pixels.
Let 1,4, Insy and I, denote a 3-channel RGB image, its HSV
version and saturation channel respectively. A binary image
Lask1 1s obtained by thresholding I with a given threshold
Ts. A morphological erosion operation is then performed on
Lnask1 with a 3x3 square structuring element to generate a
new I,,qske. The number of nonzero pixels in I,,,sx1 and
Iasko are calculated and denoted as N1 and Ns. Finally we
define f; = N3/N;. To demonstrate visually the effectiveness
of this measure, we randomly selected 3,000 images from NSI,
BDI and CPD categories in our database: 1,000 samples per
class, and calculated the normalized histogram of three types
of images over f;. From Fig. 2 (a), we can observe that BDIs
which have more coherent and highly saturated regions tend
to have higher scores than NSIs.

2) Average contrast of edge pixels fo: The intensity transi-
tion at edges from pixel to pixel also follows different patterns

in NSIs, BDIs and CPDs. Edges in NSIs and CPDs are usually
generated by occlusion, illumination and changing of surface
property, while BDIs tend to have more ‘“color edges” [3]
resulting from adjacent uniform regions. Accordingly, sharp
translations occur more frequently in BDIs than others. Let
I, and M, denote a gray-scale image and its canny [15] map
respectively. Firstly we define the max sharpness map M,
in (1), where current pixel p(z,y) and its neighbor p(x’,y’)
satisfy max{|z — 2’|, |y — v'|} = D. In our experiments D is
set to 2. Then f; can be obtained by calculating the average
value of M,,s with M. as the mask. As we expected, BDIs
tend to have sharper edges than others in Fig. 2 (b).

(1)

Moa(o,) = {glax{|fg<x,y>-fg<x',y/>} if Me(z,y) > 0,
otherwise.

3) Coherence of smooth region fs: This feature measures
spatial correlation of pixels of uniform regions in images. The
large flat regions in BDIs and SPDs often have high coherence
and low gradient magnitude. At first, we generate horizontal
and vertical gradient map Mg, and Mgy, with the kernel
[-101]and[-10 l]T respectively, then an approximate gra-
dient magnitude image M| is obtained: My = | Mg, |+ |Mg,|.
Given My, a binary mask I3 indicating smooth regions
and its eroded version I,,,sx4 are generated with a threshold
T, in the same way described in Section B.1. Finally, we
define f3 = {N4/N3, N3/N,}, where N3 and N, denote the
number of nonzero pixels in I,,qsx3 and 1,454 respectively,
and N, is the total number of image pixels.

4) Color histogram fy4: This feature is based on the as-
sumption that certain colors occur more frequently in BDIs
than others. Instead of directly calculating the histogram in
original RGB color space, we here choose hue channel I}, for
speed. The dimension of color histogram vector is set to 180.

5) Gradient magnitude histogram f5: Last but not least,
we calculated an equal interval histogram of M, as fs5. The
gradient value is changed within a range of [0,510], and the
number of bins is set as 200.

C. Local Features and BoW Coding

Though successfully capturing the different characteristics
of appearance in common Web images, global features pro-
posed in the above section are still not very discriminative
for classifying “difficult” images. To end this, we introduce
local texture features based on the fact that local texture
patterns of different types of images clearly differ from each
other, e.g., BDIs and SPDs often have large constant regions,
and CPDs show different texture patterns from SPDs due to
the non-uniform illumination in photographing. In addition,
some objects possessing certain typical texture patterns such
as sky, trees or walls occur frequently in NSIs. Accordingly,
we exploit four types of local patches and organize their
corresponding descriptors in BoW framework [13] [14], which
represents an image as a histogram of certain key descriptors
and has been demonstrated very effectively in whole-image
categorization tasks.



1) Local patches and descriptors: Four types of local
patches are proposed in this paper, i.e., edge patch, key point
patch, smooth region patch and random patch. The LBP [16]
descriptors are used for the first three types of patches, and
reduced color index histogram for the last. The number of
each type of patch is N, and all patches have the same size:
Slp X Slp.

a) Edge patch: Inspired by the concept of “intensity
edge” and “color edge” [3], we randomly select /Nj, local
patches whose centers are exactly located at canny edge point
and then build an edge patch collection for each image.
Combined with the BoW framework, the differences of texture
in the vicinity of edge between four types of images can be
introduced into the local feature and help classifying images.

b) Key point patch: In the field of object detection,
interesting points on the object can be extracted to provide a
“feature description” of that object. This description, extracted
from training images, can then be used to identify and locate
the object in another test image. Considering that certain
specific objects occur frequently in particular types of images,
the same technique could be used for our genre classification.
We here adopt the FAST corner detection algorithm [17] to
locate key points for processing speed. Similarly N;, key
points are randomly selected as the centers of corresponding
patches.

¢) Smooth region patch: Another distinctive texture
comes from smooth regions, e.g., sky, lawn and water surface
in NSIs, const color regions in BDIs and SPDs. Pixels coming
from these regions usually have low gradient magnitude in
images. Therefore we randomly select patches that have high
overlap area with I,,,,513. To make sure smooth pixels are
able to occupy sufficient areas in the patches, the overlap ratio
threshold is set to 0.7.

d) Random patch: As the name suggests, patches of this
type are cropped randomly from original images and mostly
play a complementary role to others. We use the histogram of
reduced color index map of raw image to describe this type of
local regions. Given the original 256 color space, a uniform
quantization is performed and generates a 64-level (43) one:
each axis is divided into 4 equal sized segments. We then
convert the quantized 3-channel image to a 1-channel color
index map by replacing the original triple value (r, g,b) with
rx 42 +gx 4! 4+b x4 pixel by pixel. Finally a 64-D histogram
based on the reduced color index map is calculated and used
as random patches’ descriptors.

2) Concatenated BoW representation: Since the traditional
“hard” coding methods in BoW framework fails in capturing
spatial layout of descriptors of local patches, we herein adopt
the Locality-constrained Linear Coding (LLC) [14] algorithm
to organize local descriptors. An approximate version is used
for speed to incorporate locality constraint by reconstructing
each descriptor with a few closest K entries in codebook. All
the reconstructing vectors are then averaged to generate a final
histogram vector. In order to achieve a more discriminative
codebook, we also adopt a two-step clustering method; at first,
for each image in training set, N.; sub-centers are selected
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Fig. 4: Some double-label images in DL database.

with the K-means clustering algorithm, and all the sub-centers
are gathered and then clustered again to generate a codebook
containing N9 entries. Finally, we build codebooks for each
type of patches, generate corresponding histogram vectors with
LLC coding and concatenate them into a 4 N.o-D vector as the
final local feature.

1V. DATABASE

To validate the effectiveness of proposed method, we have
built a large database of four types of images, i.e., NSI, BDI,
CPD and SPD. Depending on the difficulty degree of labeling
images, we divide our database into two parts: the Single-
Label (SL) and the Double-Label (DL). The first one consists
of such images that are easily classified by their appearances
and tagged with only one label. Roughly more than 90%
images in our database belong to the SL. However, there are
a small fraction of “complex” samples such as photorealistic
images produced by cutting edge computer graphics effects,
images spliced or embedded by other different types of smaller
ones, computer graphics that are displayed on LCD monitors
and then recaptured by a camera, and so on. With such
confusing appearances, they can not be classified intuitively
into any genres. Hence, for these images, we carefully selected
two proper labels as their ground truth genres in order to

TABLE I: DETAILS OF OUR IMAGE DATABASE. THERE ARE
5,175 NSIS IN OUR DATABASE COMING FROM THE PUBLIC
DATABASE SUN397, AND MOST OF THE SPDS (6,036) USED
HERE COME FROM THE MULTILINGUAL HW DATASET.

. Double-Label
Single-Label NSI BDI | CPD | SPD Remarks
NSI 26,410 - - - - SUN397: 5,175
BDI 12,153 1,792 - - - -
CPD 6,805 1,484 | 282 - - -
SPD 6,124 12 72 51 - MHW: 6,036
Total 51,492 3,693 55,185




TABLE II: RESULTS ON SL DATABASE OF PROPOSED FEA-
TURES. (FPS: ABBREVIATION OF “FRAMES PER SECOND”)

Features Acc Speed (FPS)
Global 93.97% 28~30
Global + Local | 98.56% 16~18

TABLE III: RESULTS ON PERFORMANCE OF DIFFERENT
MODELS ON SL DATABASE. THE PARAS NUMBER OF SVM
MOSTLY DEPENDS ON THEIR SUPPORT VECTORS. (CPU(C):
INTEL(R) XEON(R) 2.90GHZ, GPU(G): NVIDIA TITAN, 12G)

TABLE IV: RESULTS ON DL DATABASE. THE TERM “S-
L+DL” IN PARENTHESES MEANS BOTH TRAINING AND TEST-
ING SAMPLES COME FROM A MIXED DATABASE CONTAINING
ALL SL AND DL IMAGES. AND “SL->DL” MEANS MODELS
ARE TRAINED ON SL BUT TESTED ON DL.

Methods Acc (SL+DL) | Acc (SL->DL)
AlexNet (fine-tuning) 95.09% 94.13%
Our (strategy 1) 96.41% 96.11%
Our (strategy 2) 96.01% 95.33%

Speed(FPS) | Number of Memory
Methods Ace | () /(G) | Paras(105) | Usage(MB)
AlexNet 98.39% | 246/ 157 43.02 796 (GPU)
(fine-tuning)
Our(strategy 1) | 98.43% 2721/ - 5.58 -
Our(strategy 2) | 98.21% 28.0/ - 3.89 -

describe them as accurately as possible. Given the complexity
and variety of images on the Web, the DL of 3,693 images is a
salutary supplement to SL database and makes it more proper
and scalable. Totally we collected 55,185 images from various
sources such as web crawling, manually camera capturing
and other public databases including SUN397 [18] and the
Multilingual HW Dataset [19]. More details regarding the
distribution of different types of images are listed in Table
I and some samples are shown in Fig. 3 and Fig. 4.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

We adopt the Radial Basis Function (RBF) kernel SVM as
our learning algorithm, and all the experiments were conducted
with the LIBSVM [20] package. The maximum image size
allowed by the system is 1000x1000 for processing speed.
If the original image is larger than that, a 1000x1000 sub
region will be randomly cropped and then alternatively tested.
70% images from each class are selected randomly to train
classifier models, and the rest is used as testing set. Though our
hierarchical algorithm involves several parameters, the ranges
of their values are relatively broad. For convenience, we divide
all key parameters into two parts: feature parameters and
system parameters. The first one contains parameters regarding
to feature extraction such as T, Ty, Nip, Sip, Ne1 and Neo.
And the second consists of the confidence threshold 7. (default
0.95), and weighting coefficient w (default 0.80) of local
feature classifier in the second fusion strategy, which both are
critical to the overall hierarchical system. In the course of our
experiments, we found out the feature parameters just slightly
influence the final results. Thus we only present herein their
ranges: Ty € [150,230], T, € [0.2,2.5], N;;, € [100,300],
Sip € [5,30], Ne1 € [5,20] and Ny € [50,200]. As for the
two system parameters, we will give a detailed analysis in the
following subsection.

B. Experimental Results and Discussions

1) Effectiveness of proposed features: We firstly extract
global and local features from images of SL and use a SVM to

train and test them directly. Results are reported in Table II. As
we expected, both global and local features are discriminative
for different types of Web images. Compared with using global
features alone, introducing local texture information evidently
increases the final classification accuracy by around 5% but at
the sacrifice of processing speed.

2) Performance of proposed hierarchical classification sys-
tem: We have compared our algorithm with the popular CNN-
based methods. The typical LeNet-5 [10] architecture with
128x128 input images was firstly tested on our SL database.
The batch size was set to 50, and an overall accuracy of
96.7% was obtained after 40,000 iterations in training phase.
For higher accuracy, we further explored the deeper AlexNet
[11] architecture using a fine-tuning operation. The pre-trained
CaffeNet model used here comes from the standard caffe [21]
repository. In Table III, we have analyzed several performance
indexes including classification accuracy, speed, number of
parameters related to classifiers and GPU memory usage.
Compared with direct classification (Table I), our hierarchical
algorithm with two fusion strategies can achieve a comparable
accuracy but at faster speed. Mainly because most “simple”
samples have been confidently classified and filtered in the
first stage. As for the comparison experiments, our method
is evidently comparable with the AlexNet model in terms
of accuracy but consumes much less computer memory. In
addition, CNN is often implemented on GPUs for accelerating
computation, which to a certain extent limits its application to
mobile phones and other embedded devices that are usually
not equipped with GPUs.

3) Robustness of different methods: We also compared our
hierarchical classification system with the CNN-based model
on the DL database, in which each image owns two labels.
For each DL image, we randomly selected a label from its
label set as the ground truth during the training phase. When
testing, prediction is considered correct as long as it can
meet either of both candidate ground truth labels. Results are
listed in Table IV. As we can see, our system achieves a
higher accuracy (SL+DL), and is more robust to the variety of
different databases (SL->DL). The decline in accuracy of CNN
model, we believe, is partly owing to its resizing operation,
which omits the most distinctive details existed in images.

4) Effects of T. and w on classification performance: Fig.
5 shows the effects of system parameters, and all experiments
are conducted on SL database. In particular, 7, controls the
number of images sent into the second stage. As the criterion
becomes stringent, more and more images are selected by



~m—Acc Speed —4—Acc
0.986 31 [[0.995
0.985 30 0.99

29 | [0.985
0984 g 28 098

0.983

- - 27 | [|0975

0.982 ~ 2 097
0.981 2 | [09es
098 2 096

0.979 23 0955

0.95
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.15 025 035 0.45 055 0.65 0.75 0.85 0.95

(a) (b)

Fig. 5: Effects of system parameters on classification perfor-
mance.

BRER U
|~ JEEREN | TR

Fig. 6: Some failure cases by our classification system.

the first classifier for further analysis, which results in higher
accuracy but slower speed. As the weighting coefficient of
the local feature classifier in the second fusion strategy, w is
critical to our hierarchical system. When it increases gradually,
the final result will become more dependent on its local part.
Fig. 5 (b) illustrates a range from 0.5 to 0.95 for w is expected
to effectively make use of local information.

5) Analysis on misclassified images: we noticed that most
failure cases come from the NSIs and BDIs. Specifically, we
divide them into three categories: NSIs misclassified into BDI,
BDIs misclassified into NSI, CPDs misclassified into NSI. As
we can see, most misclassified NSIs in Fig. 6 (a) have large
flat regions and highly saturated pixels, which violates the
previous assumptions we proposed above, thus are categorized
into BDI. The BDIs and CPDs containing a large proportion
of scene photos in Fig. 6 (b) and (c) are more likely to be
classified as NSI. In the future work, we will try to introduce
more elaborated features to fix these problems.

VI. CONCLUSIONS

In this paper, we proposed a fast classification algorithm
for categorizing Web images into one of four genres, i.e.,
natural scene images, born-digital images, camera-captured
paper documents and scanned paper documents. Based on a
comprehensive consideration of global and local differences of
four types of images, we proposed a set of effective and effi-
cient features derived from color, edge, gradient and texture.
The hierarchical classification system we developed consists of
two stages for a good tradeoff between classification accuracy
and speed. We also contributed a database containing over
55,000 images. On our test image set, we obtained an overall
accuracy of 98.4% and the processing speed is over 27FPS.

Our next work will be to refine the features and classifiers to
improve the classification performance on images of divergent
styles. To realize robust and fast reading, a task worth of
attention is the fast detection of natural scene images with
texts.
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