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Abstract

Most existing hashing approaches usually impose some
artificial constraints (e.g. uncorrelated and balanced) on
hash functions to learn high-quality binary codes, and ap-
ply an optimization process which is typically compatible
with these hash functions. However, these tight constraints
potentially restrict the flexibility of hash functions to fit
training data, and result in complicated optimization prob-
lem. In this paper, we propose a learning-based hash-
ing method called ”deep supervised hashing with target
code”(DSHT) to distill the desirable properties in the target
coding into hash functions to generate high-quality binary
codes. Benefiting from recent advances in deep learning,
our framework constructs hash functions as a latent layer
in a deep neural network in which binary hashing represen-
tations are learned with the guide of target code and seman-
tic information. Experiments on two two large-scale image
dataset (MNIST, CIFAR-10) demonstrate that the proposed
framework is available, flexible and show comparable per-
formance against other state-of-the-art hashing methods.

1. Introduction
With the rapidly growing amount of image data on the

web or video surveillance, nearest neighbor search in large
scale database via hashing approach [2, 3, 18] has attract-
ed much more attention. Generally, hash coding can both
improve the efficiency in storage and search speed of im-
ages, especially when dealing with millions or billions im-
ages. Given a query image in a recognition or retrieval task,
the similarity between the query image and dataset can be
rapidly computed by XOR operations in the Hamming dis-
tance space.

In the past few years, many learning-based hashing ap-
proaches have been introduced e.g.[11, 14, 21]. According
to whether supervised information is available, the learning-
based hashing approach can be categorized into unsuper-
vised and supervised approaches. [4, 8]adopt unsupervised

hash coding which only uses unlabeled data to learn hash
functions. Comparatively, [14, 18] perform the hash learn-
ing process with the help of supervised information to gen-
erate more discriminative binary codes. In addtion, most
of the existing hashing methods use some hand-crafted vi-
sual descriptors(e.g., LBP[16], GIST[17]) to represent each
input image. However, such hand-crafted features can not
guarantee the compatibility with the followed coding pro-
cess. Very recently, benefiting from the great advances of
deep Learning[5, 7, 19, 20, 25] in various visual tasks, deep
learning based hashing methods[11, 22, 26]have been pro-
posed to simultaneously learn the image representations and
hash coding, which have shown superior performance over
the traditional hashing methods with hand-crafted visual de-
scriptors. In this paper, we focus on deep learning based
hashing for image coding. Although the above learning-
based hashing methods have made promising results, two
critical problems are seldom mentioned.

First, recently theoretical and empirical evidences sug-
gest that the balanced and uncorrelated binary constraint
(which favor a large information entropy) can yield high-
quality codes to well facilitate retrieval tasks. To do this,
one common fashion is to reformulate hash coding as a con-
strained optimization problem. For example, [13, 15, 21]
enforce the learned binary codes have 50% chance of be-
ing one or zero to maximize the information from each
code, and the orthogonal item constrains the independence
of different codes to minimize the redundancy. Howev-
er, these discrete constraints are artificially imposed on the
large training samples, making the optimization process d-
ifficult. Even worse, these constraints may result in adverse
effects when excessively pursuing the desired structure.

Second, in real-world settings, any two images from the
same category have more or less disparities due to various
pose, lighting, background and rotation. However, most of
the exiting hashing methods give the same supervised in-
formation for images belonging to the same category, while
ignore the disparity of the intra-class.

To overcome these problems above, we propose a deep

1



Figure 1: An overview of our proposed Deep Supervised Hashing with Target code(DSHT) consisting of 5 convolutional
layers, 2 fully connected layers and a fully-connected hashing layer. We construct a set of hash functions between the second
fully-connected layer and our fully-connected hashing layer. DSHT is trained by jointly the target coding and classification,
where we introduce Hadamard code for target coding and use Softmax function to reduce classification error.

supervised hashing with target code(DSHT)method to ad-
dress the two problems simultaneously. Figure 1 shows the
basic idea of our DSHT model, and the key components of
the DSHT model include:

• A fully-connected hashing layer is used to generate bi-
nary codes. With the design, a set of effective hash-
ing functions are learned between the penultimate fully
layer and our fully-connected hashing layer.

• In order to obtaining high-quality binary codes, we
embed the Hadamard code(target code) into the hash
coding to guide binary hashing representations, fa-
cilitating the learned binary codes meeting these
information-theoretic favored requirements (i.e., bal-
anced and uncorrelated constraints).

• A set of additional bias variables are introduced into
corresponding target code to mitigate the disparity of
the intra-class.

• Our DSHT model is trained by jointly the target cod-
ing and classification with stochastic gradient descent,
where Hadamard code for target coding and Softmax-
loss for clasification.

2. Methodology
We first give a general introduction of Hadamard code,

which is different from 1-of-K code.

2.1. Hadamard code

The Hadamard code can be generated from the
Hadamard matrix[10]. Specificly, the binary matrix H ∈
{+1,−1}m×m is Hadamard matrix if HHT = mI, where I
is an identity matrix. This definition implies that any two
distinct rows or columns are orthogonal. Generally, one can

use the Sylvester’s method [10] to generate Hadamard ma-
trix, where a new matrix can be produced from the old one
by the Kronecker product. For example, given a Hadamard
matrix H2 = [++;+−], H4 and H8 can be generated as fol-
lowing formula (1) and formula (2).

H4 =

(
+ +
+ −

)⊗(
+ +
+ −

)
=


+ + + +
+ − + −
+ + − −
+ − − +

 (1)

H8 =



+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −


(2)

It is clearly that the size of the Hadamard matrix H is a
power of 2, and each element of the first row or column is 1.
The Hadamard code can be obtained by removing the first
row and the column of H. According to the definition of
H, some properties of the Hadamard code can be obtained.
First, each row or column of a Hadamard code has m/2
symbols that equal one. Second, the dot of any two rows
or columns is −1. Third, the Hamming distance between
any two rows or columns is m/2. The first two properties
show that each row or column codes meet balanced and or-
thogonal property, and the third property implies that it has
own unique code distance equally away from other row or
column codes. These properties are beneficial to guide hash
functions to learn effective binary hashing representations.



2.2. Target coding

Inspired by the favourable code property and error-
correcting capacity of Hadamard code, as well as its su-
perior performances having been demonstrated on image
classification[23], we use Hadamard code as the target code
to guide our DSHT model binary hashing representation-
s. Tabel 1 shows the basic configuration of our model.
Unlike previous works that suffer from the limitations of
hand-crafted features and linear projections, or enforce the
learned binary codes approximately having 50% chance of
being one or zero to maximize the information. Our DSHT
can not only break out the limitations of both hand-crafted
features or linear models, but also can learn highly balanced
codes and uncorrelated bits.

Layer Configuration

conv1 filter 96x11x11, stride 4x4, pad 0, LRN, pool 2x2
conv2 filter 256x5x5, stride 1x1, pad 2, LRN, pool 2x2
conv3 filter 384x3x3, stride 1x1, pad 1
conv4 filter 384x3x3, stride 1x1, pad 1
conv5 filter 256x3x3, stride 1x1, pad 1
full6 4096
full7 4096
full8 code length

Table 1: The CNN configuration used in our DSHT model.

Denoting X = [X1,X2, · · · ,Xn]∈Rd×n as the training data
of n images collected from c classes. In this paper, our pur-
pose is to learn a projection matrix Wh ∈Rd×b that generates
binary codes by Bi = sign(WhXi) ∈ {−1,1}b×1. Specifical-
ly, we construct a set of hash functions Wh that mapping the
raw image into binary codes with function sign(x), while:
a) satisfying the balanced property, b) keeping the uncor-
related property, c) minimizing the quantization loss. More
formally, the constraint minimization problem is defined as:

Lh(Wh) = ||sign(Wh
T X)−B||2F +λ1||Wh||2F

s.t. ∀i ∈ c,∑
j

Bi, j = 0,BT B = nI (3)

where Bi, j denoting j-th bit of i-th image Bi, || · ||F denoting
the Frobenius norm, and I being identity matrix as well as
λ1 being a scalar. The constraint ∑ j Bi, j = 0 enforces each
bit to fire 50% of the time, and the constraint BT B = nI
enforces these bits uncorrelated. Obviously, the formula is
non-convex, we adopt the following relaxation:

Lh(Wh) = ||Wh
T X−B||2F +λ1||Wh||2F

s.t. ∀i ∈ c,∑
j

Bi, j = 0,BT B = nI (4)

where Wh
T X is the real-value output, we can undate the Wh

by stochastic gradient descent method. However, the E-

q(4) is still difficult to solve due to the discrete constraint
variable B. To make the problem tractable, we further pro-
pose to simply enforce the binary codes to learn from the
predefined Hadamard code, whose potential information-
theoretic properties can promote the hash coding to yield
high-quality codes without constraint. Thus, the final bi-
nary codes can successfully distill the desired properties of
Hadamard code. The Eq(4) further relaxtion is given by re-
placing B with HY +B

′
:

Lh(Wh,B
′
) = ||W T

h X− (HY +B
′
)||2F +λ1||Wh||2F (5)

where H ∈ {−1,1}b×c is the predefined Hadamard code
corresponding to c classes with code length k. The ma-
trix Y ∈ {0,1}c×n represents the label ground-truth where
each column yi = [0 · · ·1 · · ·0]T is a one-hot vector and the
position of 1 indicates the specific class information. Thus,
each column of matrix HY represents the Hadamard code of
the corresponding sample. Namely, each sample of the spe-
cific class has the identical Hadamard code as target code.
Apart from HY representing target code, another encourag-
ing property of HY can facilitate the learning of projection
matrix Wh ∈ Rd×b to obtain effective binary hashing repre-
sentations.

In addition, the sample disparity of the intra-class is ex-
tensively existed due to various pose, lighting, background
and rotation. Obviously, it isn’t feasible choice that we on-
ly use the identical Hadamard code for each sample of the
intra-class to learn binary hashing representations, because
it could not reflect the disparity learning of the intra-class.
Therefore, we introduce the noise component B

′
into B to

mitigate the intra-class disparity. Finally, the desired so-
lution B comprises two parts HY and B

′
, which not only

represents the class information, but also show the disparity
learning of the intra-class.

According to the back-propagation algorithm, the gradi-
ents of Ln with respect to Xi and Wh are computed as follows
respectively:

∂Lh

∂Wh
= (W T

h Xi− (HY +B
′
i))�Xi +λ1||Wh||F (6)

∂Lh

∂Xi
= (W T

h Xi− (HY +B
′
i))�Wh (7)

here � denotes the multiplication operation by element-
wise. Then we can update these parameters by the follow-
ing stochastic gradient descent with a certain learning rate
η until convergence:

W t+1
h =W t

h−η
∂Lh

∂Wh
(8)



Method MNIST(bits) CIFAR-10(bits)
12 24 32 48 12 24 32 48

LSH 0.189 0.209 0.235 0.243 0.121 0.126 0.120 0.120
SH 0.265 0.267 0.259 0.250 0.131 0.135 0.133 0.130
ITQ 0.388 0.436 0.422 0.429 0.162 0.169 0.172 0.175
BRE 0.515 0.593 0.613 0.634 0.159 0.181 0.193 0.196

CCA-ITQ 0.659 0.694 0.714 0.726 0.264 0.282 0.288 0.295
KSH 0.872 0.891 0.897 0.900 0.303 0.337 0.346 0.356
SDH 0.896 0.921 0.924 0.929 0.203 0.340 0.354 0.351

FashtHash 0.905 0.916 0.934 0.936 0.293 0.345 0.365 0.391
CNNH 0.969 0.975 0.971 0.975 0.465 0.521 0.521 0.532
DNNH 0.970 0.971 0.974 0.975 0.552 0.566 0.558 0.581
BOH 0.970 0.975 0.978 0.982 0.620 0.633 0.644 0.657

DSHT(Ours) 0.972 0.980 0.982 0.982 0.653 0.657 0.647 0.659

Table 2: Mean Average Precision (MAP) of Hamming Ranking for different number of bits on MNIST, CIFAR-10

X t+1
i = X t

i −η
∂Lh

∂Xi
(9)

The gradients of Lh with respect to the variable B
′
i are

computed as:

∆B
′
i =

∑
m
i=1(δyi = k) · (HY +B

′
i−WhXi)

1+∑
m
i=1 δ (yi = k)

(10)

here, the indicator function δ (yi = k) = 1 if the label yi of
image Xi is k; otherwise δ (yi = k) = 0. Then, we can up-
date those parameters by stochastic gradient descent until
convergence:

B
′
i,t+1 = B

′
i,t −∆B

′
i (11)

2.3. Classification

The image label provides supervised information for
mining semantic structures in images, and previous
researches[24] have made use of image label under a two
stream multi-task learning framework to learn effective bi-
nary hashing representations. In this paper, in order to make
the learned binary codes have more discriminative power,
we introduce a co-training mechanism in the way of joint-
ing target coding and classification stream, noting that the
classification stream is linked to the hashing layer. In the
classification stream, a classification error is measured by
the Softmax loss[6]. The Softmax loss function formula-
tion is presented as follows:

Ls(θ) =−
m

∑
i=1

log
eθ T

yi
xi+byi

∑
c
j=1 eθ T

j xi+b j
(12)

where θ denotes the parameters of network architecture,
yi ∈ {1,2, · · · ,c} represents image label and b ∈ Rc is the
bias term. Then, the overall formulation is listed as follows:

L(θ ,Wh) =−
m

∑
i=1

log
eθ T

yi
Xi+byi

∑
c
j=1 eθ T

j Xi+b j

+
1
2

m

∑
i=1
||WhXi− (HY +Bi

′)||2 +λ1||Wh||2F

(13)

We adopt stochastic gradient descent algorithm to update
all these above parameters until convergence.

3. Experiments
We conducted evaluations of our proposed method on

two extensively used image datasets, i.e., MNIST, CIFAR-
10.

3.1. Datasets

The MNIST dataset consists of 700,000 greyscale im-
ages of handwritten digits from ’0’ to ’9’ with size 28 x 28.
The CIFAR-10 dataset consists of 60,000 color images in
10 classes, and each class has 6,000 images with size 32 x
32.

Following the same setting[9, 22], we randomly selec-
t 1,000 images (100 images per class) from the whole set
as test queries. For the unsupervised methods, the whole
rest images are used for training. While for the supervised
methods, we randomly select 5,000 images (500 images per
class) from the rest images as the training set.

3.2. Experimental Settings

We implement the proposed method based on the open
source Caffe [6] framework. In all experiments, our net-
works are trained by stochastic gradient descent with 0.9
momentum. The weight decay parameter is 0.0005. The
initiate based learning rate is 0.0001 and decrease it by 20%



(a) (b) (c)

Figure 2: Comparative evaluation of different hashing algorithms on CIFAR-10. (a)Precision within Hamming radius 2
curves with respect to different number of hash bits. (b) Precision curves with respect to different number of top retrieved
samples when the 48-bit hash codes are used. (c)Precision-recall curves with 48 bits.

Figure 3: Binary codes of selected query from 5 classes.

after every 3,000 iterations. The mini-batch size of images
is 128. The size of input image is resized to 256 x 256.

3.3. Results and Analysis

We compare our method with LSH[3], SH[21],
ITQ[4], CCA-ITQ[4], BRE[8], KSH[14], FashterHash[12],
SDH[18], CNNH[22], DNNH[9] and BOH[1]. These meth-
ods were all implemented using source codes provided by
the author, the experiments result of CIFAR-10 refer to the
result of paper[1].

Table 2 shows the comparative results based on the MAP.
As can be seen, those CNN-based methods outperform the
conventional hash learning methods on both datasets by a
large margin. Our method provides the best performance
for different code lengths.

Figure 2 shows Precision curves with hamming radius
2 w.r.t the different code of length, Precision w.r.t. top
returned samples curves with 48 bits and Precision-recall
curves with 48 bits on CIFAR-10, respectively. From these
curves, we can see clearly that our method outperforms oth-
er methods by certain margins.

Figure 3 shows binary codes of 5 query images from d-

Method 12 bits 24 bits 32 bits 48 bits
DSHT 0.620 0.633 0.644 0.657

DSHT-B 0.608 0.629 0.641 0.645

Table 3: Mean Average Precision (MAP) results of DSHT
and DSHT-B on CIFAR-10

Method 12 bits 24 bits 32 bits 48 bits
DSHT 0.620 0.633 0.644 0.657

DSHT-S 0.598 0.616 0.635 0.639

Table 4: Mean Average Precision (MAP) results of DSHT
and DSHT-S on CIFAR-10

ifferent classes with 23 bits. Specifically, the left colum-
n is raw images, and the right column is the correspond-
ing binary codes. Obiviously, the sum of each row binary
codes is -1(equaling to the reality -1), meeting the balanced
constraints, and the dot of binary codes from any two is
-1(equaling to the reality -1), meeting to the unrelated prop-
erties. Those results demonstrate that our proposed method
can get unrelated and balanced binary codes .

We investigate another variant of DSHT:DSHT-B is the
DSHT variant without the bias B(not considering the dif-
ference of intra-class), and comparative results are shown
in Table 3. We can observe that, the MAP of DSHT is s-
lightly superior to DSHT-B with different length of binary
codes. These results validate that the bias B is flexiabel and
helpful.

The learning of binary hashing representations is imple-
mented by jointly target coding and classification stream in
our model. In order to evaluate whether the classification
stream is conducive to learn binary hashing representations,



we consider another model DSHT-S: DSHT-S is the DSHT
variant, which only implement target coding without classi-
fication stream. Tabel 4 shows the MAP of two individual
model on CIAFR-10 with different length of binary codes.
Obviously, the classification stream is conducive to learn
binary codes.

4. Conclusions
In this paper, we present a deep supervised hashing with

target code method for learning effective binary hashing
representations. The desirable properties of final binary
codes are obtained by distilling the knowledge of the prede-
fined target code. Specifically, we constructs hash functions
as a latent layer in a deep neural network, and the model
is trained in the way of jointing target coding and classi-
fication. Moreover, we introduce an additional variable to
mitigate the disparity of the intra-class. The experimental
results validate the effectiveness of our model.
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