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Abstract— In this paper, we investigate the task-space adap-
tive control problem for free-floating space manipulators with
uncertain kinematics and dynamics and with an unmodifiable
inner joint control loop. The existence of an unmodifiable inner
joint control loop makes most torque-based control algorithms
in the literature inapplicable. We propose a dynamic modularity
(DM) approach to resolve this problem, and this is hopeful for
bridging the potential gap between the advanced control theory
for (free-floating) space manipulators and practical engineering
applications. Adaptive outer loop controllers are developed and
shown to be able to guarantee the convergence of the task-space
tracking errors. The performance of the proposed DM approach
is shown by a numerical simulation.

I. INTRODUCTION

The on-orbit servicing (OOS) with the aid of robot manip-
ulators has recently become active in the space industry and
academic community (see, e.g., [1], [2], [3]). The research
on the system composed of a spacecraft and one or multiple
manipulators mounted on it (known as space manipulator),
however, dates back to the quite early years, covering the
system kinematics, dynamics, and control (see, e.g., [4], [5],
[6], [7]), and we may also note that the concept of space
manipulator has already spread quite a lot (e.g., tethered
space robots [8], [9]). The expectation of space manipu-
lators to maneuver various classes of objects flexibly and
intelligently motivates the sustaining research on developing
adaptive controllers for space manipulators [10], [11], [12],
[13], [14], [15], and the study of similar systems using
adaptive algorithms also appears in the context of robots on
a moving platform [16].

Dealing with the control of complex nonlinear systems
is challenging, and one desirable situation that we may
intuitively expect is the separation or relative independence
of different system loops (i.e., achieving certain degree of
modularity). One such case occurs in the adaptive control of
fixed-base robots [17], [18]. Specifically, the kinematic and
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dynamic loops are separated and performance improvement
is achieved in [17] by employing an adaptive kinematic
regressor matrix and the inverse Jacobian feedback (unlike
the results in [19], [20], [21], [22]), and a dynamic modu-
larity (DM) approach is proposed in [18] to accommodate
the users’ needs and the interest of the robot manufacturers
where the designs of the outer loop (for users) and the
inner loop (for robot manufacturers) can be performed in-
dependently and more desirably the stability of the whole
system can still be rigorously guaranteed. This motivates us
to extend the DM approach in [18] to free-floating space
manipulators (FFSMs), which have important applications
in space activities and show particular advantages in terms
of safe manipulation and energy conservation [5], [23]. The
control scheme in [12] is torque-based and thus inapplicable
to FFSMs that do not allow the torque input design [for
instance, in many robotic applications, it is well known that
the joint velocity (or position) command rather than joint
torque can be directly specified]; in addition, the perfor-
mance of the transpose Jacobian control used in [12] is not
guaranteed to be satisfactory, as is stated in [24]. Due to
the similar reason, the application of the inverse-dynamics-
based adaptive controller in [14] to free-floating systems with
a manipulator that does not admit the joint torque design is
also challenging.

In this paper, we propose a DM approach for FFSMs with
uncertain kinematics and dynamics, which can be considered
as an extension of [25], [18] to the case of robots with a free-
floating base. Specifically, we propose a design approach for
the joint velocity (or position) command as well as parameter
adaptation laws (which can also be referred to as adaptive
outer loop controller) to address the dynamic effects and
parametric uncertainties of the system consisting of both
the manipulator and its free-floating base. It is shown that
the proposed adaptive outer loop controllers can ensure the
stability and convergence of the FFSM system with an inner
unmodifiable PD/PID (proportional-derivative/proportional-
integral-derivative) controller. In addition, the feedback con-
trol as well as the kinematic parameter adaptation law
used here can be interpreted as adaptive inverse-Jacobian-
like control (extending the results in [26], [27], [17] to
address the case of a free-floating base), which tends to yield
the improved performance in comparison with the adaptive
transpose Jacobian controller in [12] (see, e.g., [17]). From
an application perspective, thanks to the achieved dynamic
modularity, the proposed approach can be applied to most
engineering space robotic systems with an unmodifiable
inner control loop (e.g., the ETS-VII space manipulator).
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Furthermore, the proposed dynamic modularity control ap-
proach may seem more promising in that it would potentially
decrease the cost of development of high-performance space
robotic systems due to the dynamic modularity and that
it might also help promote the commercialization of space
robotic projects.

II. KINEMATICS AND DYNAMICS OF FREE-FLOATING
SPACE MANIPULATORS

Consider a FFSM with zero initial linear and angular
momenta. Let x ∈ Rn be the position of the end-effector of
the FFSM in the task space (e.g., Cartesian space or image
space), and it is relevant to the manipulator joint position
and spacecraft attitude via a nonlinear mapping (see, e.g.,
[5], [28]). The end-effector velocity ẋ can be written as [5],
[28]

ẋ = Jb(ϵb, qm)ωb + Jm(ϵb, qm)q̇m (1)

where qm ∈ Rn is the manipulator joint position, ϵb ∈ R4 is
the Euler parameter vector that corresponds to the spacecraft
attitude matrix (see, e.g., [29]), ωb ∈ R3 is the angular
velocity of the spacecraft with respect to the inertial frame
expressed in the spacecraft frame, and Jb(ϵb, qm) ∈ Rn×3

and Jm(ϵb, qm) ∈ Rn×n are the Jacobian matrices. For
conciseness, Jb(ϵb, qm) and Jm(ϵb, qm) are denoted by Jb
and Jm in the sequel, respectively. The kinematics (1) has
the following linearity-in-parameters property [19], [26].

Property 1: The kinematics (1) depends linearly on a
constant kinematic parameter vector ak, which gives rise to

Jbψ1 + Jmψ2 = Z(ϵb, qm, ψ)ak (2)

where ψ1 ∈ R3, ψ2 ∈ Rn, ψ =
[
ψT
1 , ψ

T
2

]T , and
Z(ϵb, qm, ψ) is the kinematic regressor matrix.

The equations of motion of the FFSM taking into consid-
eration the actuator model can be written as [10], [30]

M(qm)q̈ + C(qm, q̇)q̇ +

[
03
Bq̇m

]
=

[
03
Ku

]
(3)

where q̇m is the manipulator joint velocity, q̇ =
[
ωT
b , q̇

T
m

]T
,

M(qm) =

[
Mbb Mbm

MT
bm Mmm

]
is the inertia matrix, C(qm, q̇) =[

Cbb Cbm

Cmb Cmm

]
is the Coriolis and centrifugal matrix, Mbb ∈

R3×3 is the inertia matrix of the spacecraft, Mbm ∈ R3×n is
the coupled inertia matrix between the spacecraft and the
manipulator, Mmm ∈ Rn×n is the inertia matrix of the
manipulator, Cbb ∈ R3×3 is the Coriolis and centrifugal
matrix of the spacecraft, Cbm ∈ R3×n is the coupled
Coriolis and centrifugal matrix between the spacecraft and
the manipulator, Cmb ∈ Rn×3 is the coupled Coriolis
and centrifugal matrix between the manipulator and the
spacecraft, Cmm ∈ Rn×n is the Coriolis and centrifugal
matrix of the manipulator, B ∈ Rn×n is a diagonal positive
definite matrix, K ∈ Rn×n is a diagonal positive definite
matrix, and u ∈ Rn is the armature voltage. Three well-
recognized properties associated with (3) are listed as follows
(see, e.g., [5], [10], [31]).

Property 2: The inertia matrix M(qm) is symmetric and
uniformly positive definite.

Property 3: The Coriolis and centrifugal matrix C(qm, q̇)
can be suitably chosen so that Ṁ(qm)− 2C(qm, q̇) is skew-
symmetric.

Property 4: The dynamics (3) depends linearly on a
constant dynamic parameter vector ad, which yields

Mbbζ̇1 +Mbmζ̇2 + Cbbζ1 + Cbmζ2

= Yb(qm, q̇, ζ, ζ̇)ad (4)

MT
bmζ̇1 +Mmmζ̇2 + Cmbζ1 + Cmmζ2 +Bζ2

= Ym(qm, q̇, ζ, ζ̇)ad (5)

where ζ1 ∈ R3 and ζ2 ∈ Rn are differentiable vectors, ζ =[
ζT1 , ζ

T
2

]T
, ζ̇ is the derivative of ζ, and Yb(qm, q̇, ζ, ζ̇) and

Ym(qm, q̇, ζ, ζ̇) are regressor matrices.

III. ADAPTIVE OUTER LOOP CONTROL

In this section, we investigate the adaptive outer loop
controller design for the FFSM system given by (1) and (3)
with u being specified by the PD control action (the case of
PID control is discussed later)

u = −KD(q̇m − q̇mc)−KP (qm − qmc) (6)

where qmc and q̇mc act as the joint position and velocity
commands, respectively, and KD and KP are diagonal
positive definite matrices and typically unknown to the user.
This is a major difference between our work and most results
in the literature (e.g., [11], [12], [13], [14]), and it is well
known that an inner PD or PID controller is typically adopted
in most industrial/commercial robots (see, e.g., [32], [33])
and in most space robotic applications (e.g., the ETS-VII
space manipulator). The control objective is to realize the
asymptotic end-effector trajectory tracking, i.e., x− xd → 0
as t → ∞, where xd ∈ Rn denotes the desired trajectory
and it is assumed that xd, ẋd, and ẍd are all bounded. For
facilitating the controller design in the sequel, we rewrite (6)
as

u = −KD [(q̇m − q̇mc) +KP (qm − qmc)] (7)

where KP = K−1
D KP = diag[wP ] with wP being an n-

dimensional vector.
We first define a spacecraft reference velocity ωbr by

M̂bbω̇br+M̂bmq̈mr+Ĉbbωbr+Ĉbmq̇mr = Kb(ωb−ωbr) (8)

where Kb is a symmetric positive definite matrix, q̇mr and
q̈mr will be defined later, and the matrices M̂bb, M̂bm, Ĉbb,
and Ĉbm are obtained by replacing the parameter ad in
Mbb, Mbm, Cbb, and Cbm with its estimate âd, respectively.
The definition of ωbr given by (8) is based on [12], and
the difference is that here the estimated transpose Jacobian
feedback is no longer needed. The interesting point may lie
in the fact that the above definition, although for the case
of task-space trajectory tracking, is the same as the one for
the case of joint-space trajectory tracking in [34]. Using ωbr

defined by (8), we define a sliding vector

sb = ωb − ωbr. (9)
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Next, following [12], we define a manipulator joint reference
velocity

q̇mr = Ĵ−1
m (ẋr − Ĵbωbr) (10)

where ẋr = ẋd − α∆x with α being a positive design
constant and ∆x = x−xd, and Ĵb and Ĵm are the estimated
Jacobian matrices and are obtained by replacing ak in Jb and
Jm with its estimate âk, respectively. Differentiating (10)
with respect to time yields

q̈mr = Ĵ−1
m (ẍr − Ĵbω̇br − ˙̂

Jbωbr − ˙̂
Jmq̇mr). (11)

We now define a sliding vector

sm = q̇m − q̇mr. (12)

From (9) and (12) and using (1), (10), and Property 1, we
have that

Jbsb + Jmsm =ẋ− Jmq̇mr − Jbωbr

=∆ẋ+ α∆x+ Z(ϵb, qm, q̇r)∆ak (13)

and equation (13) can further be written as

∆ẋ = −α∆x− Z(ϵb, qm, q̇r)∆ak + Js (14)

where q̇r =
[
ωT
br, q̇

T
mr

]T
, s =

[
sTb , s

T
m

]T
, ∆ak = âk − ak,

and J =
[
Jb Jm

]
. The formulation (13) and (14) is made

by introducing a kinematic regressor matrix Z(ϵb, qm, q̇r)
that depends on the reference velocity q̇r (in contrast to [12]),
which extends the results in [26], [27], [17] to consider the
case of a free-floating base.

The joint velocity command is given as

q̇mc + K̂P qmc =q̇mr + K̂P qmr + diag[ŵi, i = 1, . . . , n]

× [Ym(qm, q̇, q̇r, q̈r)âd] (15)

where

qmr = qmr(0) +

∫ t

0

q̇mr(σ)dσ, (16)

ŵi is the estimate of the inverse of the i-th diagonal entry
of K∗

D = KKD which is denoted by wi, i = 1, . . . , n,
and K̂P = diag[ŵP ] with ŵP being the estimate of wP . wi

can be explicitly expressed as wi = (kiikD,ii)
−1 with kii

denoting the i-th diagonal entry of K and kD,ii denoting the
i-th diagonal entry of KD, i = 1, . . . , n. The adaptation laws
for the estimated parameters âk, âd, ŵ = [ŵ1, . . . , ŵn]

T , and
ŵP are given as

˙̂ak = ΓkZ
T (ϵb, qm, q̇r)∆x (17)

˙̂ad = −ΓdY
T (qm, q̇, q̇r, q̈r)s (18)

˙̂w = −Λdiag[Ym(qm, q̇, q̇r, q̈r)âd]sm (19)
˙̂wP = ΛPdiag[qmc − qmr]sm (20)

where Γk and Γd are symmetric positive definite matrices,
Λ and ΛP are diagonal positive definite matrices, s =[
sTb , s

T
m

]T , and

Y (qm, q̇, q̇r, q̈r) =
[
Y T
b (qm, q̇, q̇r, q̈r) Y T

m (qm, q̇, q̇r, q̈r)
]T
.

Substituting (8) into the upper portion of (3) and using
Property 4 gives

Mbbṡb +Mbmṡm + Cbbsb + Cbmsm

= −Kbsb + Yb(qm, q̇, q̇r, q̈r)∆ad (21)

where ∆ad = âd − ad. Combining (15), (7), and the lower
portion of (3) gives (using Property 4)

MT
bmṡb +Mmmṡm + Cmbsb + Cmmsm

=− (K∗
D +B)sm −K∗

P

[∫ t

0

sm(σ)dσ + δ0

]
+K∗

Ddiag[∆w]Ym(qm, q̇, q̇r, q̈r)âd

−K∗
Ddiag[qmc − qmr]∆wP

+ Ym(qm, q̇, q̇r, q̈r)∆ad (22)

where δ0 = qm(0) − qmr(0) is a constant vector, ∆w =
ŵ − w with w = [w1, . . . , wn]

T , ∆wP = ŵP − wP , and
K∗

P = KKP . Let us write (21) and (22) compactly as

M(qm)ṡ+ C(qm, q̇)s

=−K∗s−

[
0T3 ,

[
K∗

P

(∫ t

0

sm(σ)dσ + δ0

)]T]T

+
[
0T3 , (K

∗
Ddiag[∆w]Ym(qm, q̇, q̇r, q̈r)âd)

T
]T

−
[
0T3 , (K

∗
Ddiag[qmc − qmr]∆wP )

T
]T

+ Y (qm, q̇, q̇r, q̈r)∆ad (23)

where K∗ = diag [Kb,K
∗
D +B].

We are presently ready to formulate the following theorem.
Theorem 1: Suppose that K̂P is uniformly positive definite.

Then the adaptive outer loop controller given by (15), (17),
(18), (19), and (20) for the FFSM system given by (1) and
(3) under the inner PD controller (6) ensures the convergence
of the task-space tracking errors, i.e., ∆x→ 0 and ∆ẋ→ 0
as t→ ∞.

Proof: Consider the Lyapunov-like function candidate

V1 =
1

2
sTM(qm)s+

1

2

[∫ t

0

sm(σ)dσ + δ0

]T
K∗

P

×
[∫ t

0

sm(σ)dσ + δ0

]
+

1

2
∆wTK∗

DΛ−1∆w

+
1

2
∆wT

PK
∗
DΛ−1

P ∆wP +
1

2
∆aTd Γ

−1
d ∆ad (24)

and its derivative along the trajectories of (23), (18), (19),
and (20) can be written as (using Property 3)

V̇1 = −sTK∗s ≤ 0. (25)

This leads us to immediately obtain that s ∈ L2 ∩ L∞,∫ t

0
sm(σ)dσ ∈ L∞, ŵ ∈ L∞, ŵP ∈ L∞, and âd ∈ L∞.
Due to the well-recognized fact that J is bounded, we

obtain that Js ∈ L2. Hence, there must exist a positive
constant ℓM such that

∫ t

0
sT (σ)JT (σ)J(σ)s(σ)dσ ≤ ℓM

for ∀t ≥ 0. Consider the following quasi-Lyapunov function
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candidate

V2 =
1

2
∆xT∆x+

1

2
∆aTk Γ

−1
k ∆ak

+
1

2α

[
ℓM −

∫ t

0

sT (σ)JT (σ)J(σ)s(σ)dσ

]
(26)

where the use of the last term in V2 follows the standard
practice (see, e.g., [35, p. 118]). Differentiating V2 with
respect to time along the trajectories of (14) and (17) yields

V̇2 = −α∆xT∆x+∆xTJs− 1

2α
sTJTJs. (27)

From the standard result concerning the basic inequalities,
we have that

∆xTJs ≤ α

2
∆xT∆x+

1

2α
sTJTJs, (28)

using which, we obtain from (27) that

V̇2 ≤ −α
2
∆xT∆x ≤ 0. (29)

The result given by (29) immediately yields the conclusion
that ∆x ∈ L2 ∩ L∞ and âk ∈ L∞. From (10), we obtain
that Ĵbωbr + Ĵmq̇mr = ẋr ∈ L∞. Due to the result that
Ĵbsb+Ĵmsm ∈ L∞, we then obtain that ˆ̇x = Ĵbωb+Ĵmq̇m ∈
L∞ where ˆ̇x is the estimate of ẋ. According to [6], the
angular momentum conservation equation can be written
as Rb(Mbbωb + Mbmq̇m) = 0 with Rb being the attitude
matrix of the spacecraft with respect to the inertial frame,
and then we obtain that ˆ̇x = (Ĵm − ĴbM

−1
bb Mbm)q̇m. If

the matrix Ĵm − ĴbM
−1
bb Mbm is nonsingular, q̇m = (Ĵm −

ĴbM
−1
bb Mbm)−1 ˆ̇x ∈ L∞ and thus ωb ∈ L∞ based on the

above angular momentum conservation equation. From the
kinematics (1), we obtain that ẋ ∈ L∞ and hence ∆ẋ ∈ L∞
and ẍr ∈ L∞. Therefore, ∆x is uniformly continuous. From
the properties of square-integrable and uniformly continuous
functions [36, p. 232], we obtain that ∆x→ 0 as t→ ∞.

The fact that q̇ ∈ L∞ and s ∈ L∞ implies that q̇r ∈ L∞.
Then, we obtain from (17) that ˙̂ak ∈ L∞, giving rise to the
boundedness of ˙̂

Jb and ˙̂
Jm. Equations (8) and (11) can be

rewritten compactly as[
M̂bb M̂bm

Ĵb Ĵm

]
︸ ︷︷ ︸

H

[
ω̇br

q̈mr

]
=

[
−Ĉbbωbr − Ĉbmq̇mr +Kbsb

ẍr − ˙̂
Jbωbr − ˙̂

Jmq̇mr

]

(30)
From the standard matrix theory, the invertibility of H is

equivalent to that of H∗ =

[
M̂bb M̂bm

0n×3 Ĵm − ĴbM̂
−1
bb M̂bm

]
and

further that of M̂bb and Ĵm−ĴbM̂−1
bb M̂bm. Therefore, if M̂bb

and Ĵm − ĴbM̂
−1
bb M̂bm are invertible, we obtain from (30)

that ω̇br ∈ L∞ and q̈mr ∈ L∞. Equation (15) can further be
written as

q̇mc − q̇mr + K̂P (qmc − qmr)

= diag[ŵi, i = 1, . . . , n]Ym(qm, q̇, q̇r, q̈r)âd (31)

and since K̂P is uniformly positive definite and bounded,
we obtain that qmc − qmr ∈ L∞ and q̇mc − q̇mr ∈ L∞

from the standard linear system theory. On the other hand,∫ t

0
sm(σ)dσ = qm − qm(0) − [qmr − qmr(0)] ∈ L∞

and therefore qm − qmr ∈ L∞, which then implies that
qm−qmc ∈ L∞. Due to the result that q̇mr ∈ L∞, we obtain
that q̇mc ∈ L∞. From (23) and using Property 2, we obtain
that ṡ ∈ L∞, and consequently, ω̇b ∈ L∞ and q̈m ∈ L∞.
This immediately leads to the result that ẍ ∈ L∞ according
to the differentiation of the kinematics (1). Thus, ∆ẍ ∈ L∞,
implying that ∆ẋ is uniformly continuous. According to
Barbalat’s Lemma [31], we obtain the result that ∆ẋ → 0
as t→ ∞. �

Remark 1: The proposed controller requires that the esti-
mated inertia matrix M̂bb, the estimated generalized Jacobian
matrices Ĵm − ĴbM

−1
bb Mbm and Ĵm − ĴbM̂

−1
bb M̂bm (i.e.,

the estimated versions of the generalized Jacobian matrix
in, e.g., [4], [6]), and the estimated Jacobian matrix Ĵm are
all invertible, which is the same as the case in [12]. The
parameter projection algorithms [37] can be adopted to fulfill
this requirement in the adaptation process (see, e.g., [38],
[19], [20]). Furthermore, the condition that K̂P is uniformly
positive definite can also be straightforwardly guaranteed by
using the projection algorithms [37] since K̂P is diagonal.

IV. ADAPTIVE OUTER LOOP CONTROL WITH AN INNER
PID CONTROLLER

In this section, we present the adaptive outer loop con-
troller design as an inner PID controller is embedded in the
space robotic system. In this case, the armature voltage u
takes the following form

u =−KD(q̇m − q̇mc)−KP (qm − qmc)

−KI

∫ t

0

[qm(σ)− qmc(σ)]dσ (32)

where KD, KP , and KI are diagonal positive definite
matrices. Due to the incorporation of the integral action,
the previous outer loop controller generally cannot ensure
the stability of the system. To this end, we introduce the
following quantity based on the joint reference velocity given
by (10)

q̇∗mr = q̇mr −Kc(qm − qmr) (33)

where Kc is a diagonal positive definite matrix. The joint
velocity command is now defined as

q̇mc + K̂P qmc + K̂I

∫ t

0

[qmc(σ)− qmr(σ)]dσ

=q̇∗mr + K̂P qmr + diag[ŵi, i = 1, . . . , n]

× [Ym(qm, q̇, q̇
∗
r , q̈

∗
r )âd] (34)

where q̇∗r =
[
ωT
br, q̇

∗T
mr

]T , q̈∗r is the derivative of q̇∗r , and
K̂I = diag[ŵI ] with ŵI being an n-dimensional vector. The
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adaptation laws for âd, ŵ, ŵP , and ŵI are given as

˙̂ad = −ΓdY
T (qm, q̇, q̇

∗
r , q̈

∗
r )ξ (35)

˙̂w = −Λdiag[Ym(qm, q̇, q̇
∗
r , q̈

∗
r )âd]ξm (36)

˙̂wP = ΛPdiag[qmc − qmr]ξm (37)

˙̂wI = ΛIdiag

[∫ t

0

[qmc(σ)− qmr(σ)]dσ

]
ξm (38)

where ξm = q̇m − q̇∗mr = sm +Kc

[∫ t

0
sm(σ)dσ + δ0

]
, ξ =[

sTb , ξ
T
m

]T , and ΛI is a diagonal positive definite matrix. The
adaptation law for âk remains the same as (17).

Theorem 2: Suppose that Kc is chosen so that M =
(KD +K−1B)Kc +KP −KIK

−1
c is positive semidefinite

and that the system

z̈∗ + K̂P ż
∗ + K̂Iz

∗ = 0 (39)

with z∗ ∈ Rn is uniformly exponentially stable. Then the
adaptive outer loop controller given by (34), (17), (35), (36),
(37), and (38) for the FFSM system given by (1) and (3)
under the inner PID controller (32) ensures the convergence
of the task-space tracking errors, i.e., ∆x→ 0 and ∆ẋ→ 0
as t→ ∞.

Following similar steps as in [18] and in the proof of
Theorem 1, we can complete that of Theorem 2.

V. SIMULATION RESULTS

In this section, we use the simulation example in [14] [i.e.,
a two-DOF (degree-of-freedom) space manipulator moving
in a plane] to show the system performance under the
proposed adaptive outer loop control. We here consider the
case of using an inner PD controller. The sampling periods
for the inner and outer loops are set as 0.5 ms (fast) and 20
ms (slow), respectively.

The gains for the inner PD controller are set as KD =
10.0I2 and KP = 20.0I2, and the diagonal matrices
K and B are set as K = diag[100.0, 60.0] and B =
diag[12.0, 6.0], respectively. The controller parameters for
the outer control loop are chosen as Kb = 200.0, α =
15.0, Λ = 0.001I2, ΛP = 500.0I2, Γd = 120.0I10, and
Γk = 160.0I4. The initial kinematic and dynamic param-
eter estimates are set as âk(0) = [0.6, 1.2, 2.8, 2.9]

T and
âd(0) = [1.8, 1.8, 1.8, 1.8, 1.8, 155.0, 50.0, 10.0, 0.0, 0.0]T ,
and the initial values of ŵ and ŵP are set as ŵ(0) =
[0, 0]T and ŵP (0) = [1.0, 1.0]T , respectively. The desired
trajectory in the task space is given as xd = [2.85 +
0.25 cos(0.8πt),−0.38 + 0.25 sin(0.8πt)]T . The simulation
results are shown in Fig. 1 and Fig. 2.

VI. CONCLUSION

The purpose of our study here is to develop task-space
adaptive outer loop controllers for free-floating space ma-
nipulators with uncertain kinematics and dynamics so as
to approach the objective of dynamic modularity for space
robotic systems. The proposed outer loop controllers are in
the form of joint velocity (or position) command, which is
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Fig. 1. Position tracking errors.
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Fig. 2. Joint velocity commands.

dynamically and adaptively generated to address both the dy-
namic effects of the system and the parametric uncertainties,
and the inner joint servoing controller is assumed to take
the form of PD or PID control. It is shown that the task-
space tracking errors converge to zero asymptotically. The
performance of the proposed control approach is shown by
numerical simulation results.
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