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Abstract—The success of deep neural networks usually relies
on a large number of labeled training samples, which unfortu-
nately are not easy to obtain in practice. Unsupervised domain
adaptation focuses on the problem where there is no labeled
data in the target domain. In this paper, we propose a novel deep
unsupervised domain adaptation method that learns transferable
features. Different from most existing methods, it attempts
to learn a better domain-invariant feature representation by
performing a category-wise adaptation to match the conditional
distributions of samples with respect to each category. A self-
paced learning strategy is used to bring the awareness of label
information gradually, which makes the category-wise adaptation
feasible even if the labels are unavailable in target domain. Then,
we give detailed theoretical analysis to explain how the better
performance is obtained. The experimental results show that our
method outperforms the current state of the arts on standard
domain adaptation datasets.

I. INTRODUCTION

In recent years, deep learning has shown its great power in
solving computer vision problems and becomes a standard tool
in computer vision [1]. However, its success seriously relies
on a large number of labeled training samples, which may be
unavailable in practice.

Domain adaptation is proposed to address this problem. It
utilizes the knowledge discovered from some related domains
and thus reduces the number of required training samples.
Unsupervised domain adaptation is an important topic which
focuses on the scenario where label information is unavailable
in the target domain [2]. For instance, we might expect to adapt
an object recognition model trained in one scene (the source
domain) for some other scenes (the target domain). Even if
we get only some unlabeled samples in each new scene, the
trained model can still adapt well to the new scenes.

There have been a large amount of unsupervised domain
adaptation approaches proposed during the past decade. Most
of the researchers devote their efforts to matching the marginal
distributions of the two domains [3]–[8]. However, these
approaches do not consider the label information which plays
an important role in learning the transformation.

To make use of the label information, we propose a
category-aware adaptation network for unsupervised domain
adaptation which makes the features with respect to the
same class inseparable across domains. In this way, a better
feature transformation is obtained by aligning the conditional
distributions of each class. It is notable that there is no labeled

data in the target domain, and thus the conditional distributions
cannot be aligned directly. To overcome this obstacle, we
use the classifier trained on the labeled data in the source
domain to predict a pseudo label for each sample in the target
domain (both on the learned domain-invariant features), which
is then used to learn the features that align the conditional
distributions. During the training process, the adaptation neural
network and the pseudo labels are updated alternately.

However, such an alternating optimization process is not
guaranteed to converge to its optimal solution, which obvious-
ly depends on the initial point. One way to deal with this prob-
lem is to use the technique of self-paced learning(SPL) [9].
The key idea of SPL is to firstly use the easy examples and
then gradually include the difficult examples, which helps to
avoid bad local minimum. With such the self-paced approach,
the process converges to a good solution.

Then we give a detail theoretical analysis to explain the
benefits of our method. From the theoretical perspective,
one key issue of unsupervised domain adaptation problem is
approximately minimizing the target domain generalized error
of a classifier through evaluating and minimizing its upper
bound. Thus, the domain adaptation method will benefit from
tightening the corresponding upper bound. In this paper, we
show that the upper bound given by our method is tighter than
the bound proposed by Ben-David et al. [10], which further
demonstrates the effectiveness of our method.

We evaluate our method on several popular adaptation
datastes. The experimental results show that by matching
the conditional distributions, the classification accuracies are
effectively increased.

II. RELATED WORK

A. Unsupervised Domain Adaptation

There have been a large amount of unsupervised domain
adaptation approaches proposed during the past decade.

Transfer Component Analysis (TCA) [4] and Geodesic
Flow Kernel (GFK) [5] are two typical methods for shallow
models. TCA uses Maximum Mean Discrepancy(MMD) as the
evaluation criterion of the similarity between two distributions
and learns the transfer components in a Reproducing Kernel
Hilbert Space. GFK derives an infinite number of interme-
diate subspaces to bridge the source and target domains by
constructing the geodesic flows.



Since the shallow models’ capability is limited by their
poor feature representation abilities, many researchers devote
their efforts to combine the adaptation strategies above with
deep models. Deep Domain Confusion (DDC) [6] and Deep
Adaptation Network (DAN) [7] learn the transferable features
by matching distributions of single or multiple task-specific
layers using MMD. Reverse Gradient (RevGrad) [8] aligns the
distributions by making them indistinguishable for a discrimi-
native domain classifier. Joint Adaptation Network (JAN) [11]
learns transferable features by matching the joint distributions
of features and labels using MMD.

The central idea of the above methods is to align the
marginal or joint distributions of both source and target
domains. However, the method of aligning the marginal dis-
tributions cannot make use of the label information in source
domain. While matching the joint distributions cannot be
effectively met when the label distributions of two domains
are different. In this paper, we design a deep model to
learn domain-invariant features by matching the conditional
distributions.

B. Self-Paced Learning

Inspired by the learning process of human being, Kumar
et al. [9] proposes self-paced learning (SPL) model , the
key idea of which is to firstly learn the easy examples and
then gradually include the difficult examples. By virtue of
generality of SPL, it has been successfully applied to a series
of problems, such as category discovery [12], long term
tracking [13] and matrix factorization [14].

In this work, we use SPL strategy to alleviate the bad local
optimum problem of the alternating optimization process.

III. CATEGORY-AWARE ADAPTATION NETWORKS

A. Problem Definition and Notations

Consider a classification problem with input space X and
label space Y . Assuming that there are C categories, the label
space should be the set of them Y = {1, · · · , C}. In the
unsupervised domain adaptation problem, we are given an
unlabeled sample set in the target domain Dt = {(xtj)}

nt
j=1, a

labeled sample set in the source domain Ds = {(xsi , ysi )}
ns
i=1.

The distributions of them are different. The task is to predict
the labels of the samples in the target domains.

To make a simpler description, we define the union set
including all samples {xs1, · · · ,xsns

,xt1, · · · ,xtnt
} as D =

{x1, · · · ,xk, · · · ,xn}, where n = ns+ nt. A binary variable
dk is used to indicate whether the k-th sample xk ∈ D is from
the source domain (dk = 0) or target domain (dk = 1).

B. A Self-Paced Alternating Algorithm For Category Aware-
ness Adaptation

It is intuitive that matching the conditional distributions
of source and target domains is an efficient method for
domain adaptation. However, this method requires the labels
of the samples in target domain, Yt, which are unavailable in
unsupervised domain adaptation problems.

To solve this problem, we use the label predictor trained on
Ds to estimate a pseudo label ŷti for each target sample xti.
Denoting the feature extractor as φ(·) which maps the input
space to the feature space, the optimization problem to match
the conditional distributions of two domains can be written as

min
φ

∑
c=1..C

L
(c)
d (φ(x1), · · · , φ(xn), wc1, · · · , wcn) (1)

where L
(c)
d evaluates whether the marginal distributions of

source and target samples re-weighted by {wc1, · · · , wcn} are
similar. wci is set to 1(ysi = c) if xi is the source sample and
1(ŷti = c) otherwise. 1(y = c) is set to 1 if y is equal to c
and 0 otherwise.

Due to the discrepancy between the two domains, there are
some pseudo labels incorrectly labeled. Nevertheless, as long
as the majority of the pseudo labels are correct, it will help to
learn a better feature. Furthermore, the better feature makes
the pseudo labels more accurate. The estimation of pseudo
labels and the learning of features are performed alternately
and their accuracies are improved mutually.

However, it is obvious that such an approach is not guar-
anteed to converge to a good solution and the initial steps
are critical to the final results. To solve this problem, we
implement the strategy of SPL [9] which can avoid the
iteration procedure trapping in a bad minimum. The core idea
of SPL is training the model with “easy” samples firstly, and
incrementally involving more “difficult” samples into learning.

In previous SPL methods, the difficulty of a sample depends
on the value of the loss function on it. However, in our model,
Ld is determined by the whole of all samples in two domains
instead of any individual sample, and thus those methods
cannot be used directly. A suitable criterion of judgment is
whether the sample is easy to be determined by the classifier
trained on the source samples. Take softmax regression for
example, and denote the probability of a sample xi belongs
to c-th class as pci . If the sample xi is classified to be of the
c-th class and pci is the large, then the samples xi is easy for
the problem of matching the distributions of source and target
samples in c-th class. As a result, the weight wci for xi should
be larger. If a sample xi is determined to be not of the c-th
class, then the less pci is, the easier samples xi is, and the less
weight wci should be.

Therefore, a simple SPL strategy is to use pci as the weight
wci for the i-th sample with label c. The new optimization
problem to match the conditional distributions of two domains
is formalized as

min
φ

∑
c=1..C

L
(c)
d (φ(x1), · · · , φ(xn), pc1, · · · , pcn)

where pci is the sample weight of xi in L
(c)
d . It is not only

coincide with the intuition, but also has deep theoretical
support (shown in Section III-D).

C. Network Architecture For Category-Wise Adaptation

Although there are a variety of choices for the loss function
evaluating the difference between distributions Ld, we choose
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Fig. 1: The figure shows the feed-forward network architecture
of our method.

the domain classifier loss [8] in this paper because it shows a
good performance and is easy to implement. The architecture
of our category-wise adaptation network is composed of three
parts as shown in Figure 1.

The first part is a multi-layer feed-forward neural network
which maps the input image x to a D-dimensional feature
vector f ∈ RD. We denote it as Gf (x; θf ) where θf is the set
of network parameters.

The second part Gy(f ; θy) is a softmax regression which
maps the feature to the label distribution. It learns the dis-
criminative information between different classes during the
training procedure. The objective of this part is to minimize
the prediction loss of Gy(Gf (x)) on the labeled samples :

Liy(θf , θy) = Ly(Gy(Gf (x
s
i , θf ), θy); y

s
i ). (2)

The third part is used to learn the domain-invariant features.
In RevGrad [8], the feature is learned by making the samples
in two domains indistinguishable for a discriminative domain
classifier. Our purpose is to make the learned feature to align
samples of the same category. To achieve the purpose, this
part is composed of C domain classifiers where c-th one
G

(c)
d (f ; θd) is used to judge whether a sample xi is from

source domain or target domain, and the loss outputted by
the classifier is re-weighted by pci = G

(c)
y (Gf (xi, θf ), θy)

as mentioned in Section III-B. The loss function of domain
classifiers for the sample xi can be written as

Lid(θf , θd) =
∑
c=1..C

pciL
(c)
d (G

(c)
d (Gf (xi, θf ), θd); di). (3)

During the training process, each domain classifier captures
the discrepancy between the features belonging to a specific
class from two domains. Then the feature extractor learns to
eliminate the discrepancy by maximizing the domain classfier
losses.

We define the total loss function as

E(θf , θy, θd) =
∑
i=1..n
di=0

Liy(θf , θy)− µ
∑
i=1..n

Lid(θf , θd). (4)

We obtain θf and θy through minimizing E(θf , θy, θd), and
obtain θd through maximizing E(θf , θy, θd).

To minimize and maximize E(θf , θy, θd) simultaneously,
the gradient reversal layer (GRL), proposed by Ganin and
Lempitsky [8] is introduced. We add GRL between the first
part (the feature extractor) and the third part (the domain
classifiers). With the help of it, we only need to minimize
(Liy + µLid) at the end of the network.

In the forward propagation process of our network, the
samples’ weight will be estimated by label classifier. And in
the backward propagation process, the feature extractor will be
updated to match the conditional distribution of two domains.

D. Theoretical Analysis

To analyze our method, we first propose a new upper bound
on the target domain generalization error of a classifier, which
is tighter than the bound proposed by Ben-David et al. [10].
Then we use it to explain the merits of our method.

1) Triangle Inequality: A hypothesis is defined as a func-
tion h : X → (p1, . . . , pc, . . . , pC)

T , where pc means the
probability of the input sample x belong to c-th class estimated
by h. And the labeling functions gs and gt, which project the
sample to its truth label, also can be seen as hypotheses. Then
we denote the label distribute for input x predicted by the
hypothesis h as h(x) = (h1(x), . . . , hc(x), . . . , hC(x))T .

The probability according to the distribution PS that a
hypothesis h0 disagrees with other hypothesis h1 is defined
as

εS(h0, h1) =

∫
[1− hT0 (x)h1(x)] dPS(x). (5)

Especially, replacing h0 and h1 in (5) with the hypothesis h
and labeling functions gs, we can get the source risk of h,
εS(h, gs). And εS(h, gs) is denoted as εS(h) for short. We
use similar notation εT (h0, h1), εT (h, gt) and εT (h) for the
target domain.

Before obtaining the upper bound of εT (h), we prove that
the following triangle inequality for classification error is
always true for any domain,

ε(h0, h1) ≤ ε(h0, h2) + ε(h1, h2). (6)

Proof. Assume the largest item in the vector h0(x) + h1(x)
is hm0 (x) + hm1 (x). For any input x ∈ X ,

1− hT0 (x)h1(x) = 1−
L∑
l=1

hl0(x)h
l
1(x)

≤ 1− hm0 (x)hm1 (x) ≤ 2− [hm0 (x) + hm1 (x)]

= 2−
C∑
c=1

[hm0 (x) + hm1 (x)]hc2(x)

≤2− hT0 (x)h2(x)− hT1 (x)h2(x) .

Supporting from the aforementioned inequality, we can get

ε(h0, h1) =

∫
[1− hT0 (x)h1(x)] dP (x)

≤
∫
[2− hT0 (x)h2(x)− hT1 (x)h2(x)] dP (x)

= ε(h0, h2) + ε(h1, h2).



Thus the triangle inequality (6) holds.

Though this triangle inequality (6) is similar as the one
given by Ben-David et al. [10] in the form, the former one can
be applied to the case of multi-classification while the latter
is applicable only to binary classification problem. Therefore,
this triangle inequality and the later proofs based on it would
fit the real classification problem better.

2) Error Upper Bound: We define the ideal hypothesis as
the hypothesis which minimizes the combined error

h∗ = argmin
h∈H

εS(h) + εT (h)

and denote the combined error of the ideal hypothesis by λ =
εS(h

∗) + εT (h
∗).

Now we can give a tighter upper bound on target error.

Theorem 1. Let H and H′ be two hypothesis space, and
h∗ ∈ H′ is the ideal hypothesis. The target error of h0 ∈ H
satisfying the following inequality,

εT (h0) ≤ εS(h0) + λ′ + sup
h1∈H′

(εT (h0, h1)− εS(h0, h1))

(7)

where λ′ = minh∈H′ εS(h) + εT (h).

Proof. Using the triangle inequality (6), we have

εT (h0) ≤ εT (h∗) + εT (h0, h
∗)

= εT (h
∗) + εS(h0, h

∗) + εT (h0, h
∗)− εS(h0, h∗)

≤ εS(h0) + λ′ + εT (h0, h
∗)− εS(h0, h∗)

≤ εS(h0) + λ′ + sup
h1∈H′

(εT (h0, h1)− εS(h0, h1)).

The error bound given by Ben-David et al. [10] is as
following:

εT (h0) ≤ εS(h0) + λ+ sup
h1,h2∈H

|εT (h2, h1)− εS(h2, h1)|,

(8)

where λ = argminh∈H εS(h)+εT (h), h2 ∈ H is a hypothesis,
and other symbol definitions are the same as Theorem 1.
Comparing with the error bound (8), our error bound benefits
from several advantages as follows:

Firstly, in Theorem 1 the hypothesis space H of the can-
didate hypothesis h0 and the hypothesis space H′ of the
ideal hypothesis h∗ can be different. Practically speaking, the
ideal hypothesis h∗ could possibly be outside the selected
hypothesis space H, thus our theorem is consistent with the
real situation better.

Secondly, our error bound is tighter than their error bound
when H and H′ are identical,

sup
h1∈H

(εT (h0, h1)− εS(h0, h1))

≤ sup
h1,h2∈H

(εT (h2, h1)− εS(h2, h1))

≤ sup
h1,h2∈H

|εT (h2, h1)− εS(h2, h1)|.

In the problem of unsupervised domain adaptation, one key
issue is minimizing the target domain generalized error of
a classifier, εT (h0), but it can’t be evaluated or minimized
directly. A reasonable approach to approximately minimize
εT (h0) is minimizing the upper bound of it. The upper bound
is tighter, and the bound is closer to the truth value of εT (h0).
Then during the process of minimizing the tighter upper
bound, the truth value are more likely to decrease obviously.

3) The Relationship Between Our Method and This Theory:
The tighter error bound of the hypothesis h0 in (7) can
be attained by seeking a hypothesis h1 ∈ H to maximize
(εT (h0, h1)− εS(h0, h1)). Let’s keep a close watch on this
term:

εT (h0, h1)− εS(h0, h1)

=
1

nt

nt∑
i=1

[1− hT0 (xi)h1(xi)]−
1

ns

ns∑
j=1

[1− hT0 (xj)h1(xj)]

=

C∑
c=1

{ 1

nt

nt∑
i=1

hc0(xi)[1− hc1(xi)] +
1

ns

ns∑
j=1

hc0(xj)[h
c
1(xj)]

}
− 1 (9)

From the formula (9), we can get several important conclu-
sions as follows: Assuming the outputs of the hypothesis h0
only are 0 or 1 to facilitate understanding, then maximizing
[εT (h0, h1) − εS(h0, h1)] is equal to finding a hypothesis
h1 which classifies the source samples the same as h0, but
classifies the target samples different from h0. In the more
general case that the outputs of h0 are the probabilities of
sample belonging to each class, the condition h1 should satisfy
is nearly identical except that the samples have been re-
weighted by the outputs of h0.

Directly finding a multi-class classifier h1 to satisfy the
condition proposed above is hard, so we replace h1 by C
binary-class classifiers. The c-th classifier determines whether
a sample belongs to the c-th class. In this case, maximizing (9)
is equal to minimizing the domain loss function (3). Leaving
the error of the ideal hypothesis λ out of account, minimizing
the total loss function (4) can be regarded as minimizing the
tighter error bound (7).

IV. EXPERIMENTS

A. Datasets

Office-31 dataset [15] is a standard benchmark for domain
adaptation, comprising three real world object domains: Ama-
zon (images downloaded from amazon.com), Webcam (low-
resolution images captured by a web camera) and DSLR (high-
resolution images captured by a digital SLR camera). Figure
2 shows sample images from these data sets. By selecting two
different domains as the source domain and target domain
respectively, we construct 3 × 2 = 6 cross-domain object
recognition datasets: A → W , A → D, W → A, W → D ,
D → A, D →W .
MNIST, MNIST-M and SVHN are three databases used
for digit classification. The MNIST database [16] consist
of handwritten digits which are sampled from a larger set,



Amazon Webcam DSLR

Fig. 2: The samples from Amazon, Webcam and DSLR

NIST. The MNIST-M database [8] is a synthetic database
in which the samples are otained by blending digits from
MNIST over the patches randomly extracted from color photos
from BSDS500 [17]. Street-View House Numbers (SVHN)
database [18] is obtained from house numbers in Google
Street View images. Figure 3 shows sample images from these
data sets and clearly highlights the differences between them.
For these datasets, we construct three cross-domain classi-
fication datasets: MNIST→MNIST-M, MNIST-M→MNIST,
SVHN→MNIST.

MNIST MNIST-M SVHN

Fig. 3: The samples from MNIST, MNIST-M and SVHN

B. Setup

Baselines. We compare our approach with six state-of-the-
art transfer learning and deep learning methods: TCA [4],
GFK [5], AlexNet [19], DDC [6], DAN [7], RevGrad [8] and
JAN [11]. We have introduced these methods in the Section
II. The output of fc7 in Convolutional Neural Network(CNN)
is taken as the original features to domain adaptation for
the shallow models, including TCA and GFK. The method
of “AlexNet” means fine-tuning AlexNet only using source-
domain data. For other methods, we use the classification
accuracy which is published by the original papers. For several
absent results of RevGrad, we obtained them with the help of
the source code released by the authors.
Network Architectures. We implement our deep model based
on the Caffe framework. For Office dataset we fine-tune from
CNN model of AlexNet [19] which is pre-trained on the
ImageNet dataset. As mentioned previously, the conv1-fc7
layers are considered as feature extractor and fc8 is seen as
the label classifier. We use the three fully connected layers
(x → 1024 → 1024 → 31) for domain classifier connected
to the fc7 layer. And for the digit recognition tasks, we use
the same architecture of Ganin and Lempitsky [8], expect that
their domain loss is replaced by ours. For loss functions, we set
Ly and L(l)

d to be the logistic regression loss and the binomial
cross-entropy respectively.

The model is trained on 128-sized batches. A half of
each batch is the samples from source domain, the rest is
the ones of target domain. Images are preprocessed by the

mean subtraction. We use the adaptation factor µ instead of
fixing to suppress noisy signal from the domain classifier
at the early stages of the training procedure. µ changes
from 0 to µ0 gradually by using the following strategy,
µ = µ0

[
2

1+exp(−γ∗p) − 1
]
, where p is the iteration numbers,

µ0 and γ were set to 0.1 and 10 respectively in all experiments.
We set stochastic gradient descent (SGD) with 0.9 momen-

tum and the learning rate annealing strategy implemented in
Caffe, using the following formula, lr = lr0 ∗ (1+γ′ ∗ p)(−β).
In the object recognition tasks, the inital learning rate lr0 =
0.001, γ′ = 0.0001 and β = 0.75. While in the digit
recognition tasks, lr0 = 0.01, γ′ = 0.00001 and β = 0.75.
Evaluation Protocols. For these two datasets, we follow the
evaluation protocols for unsupervised domain adaptation [8].

C. Results and Discussion

TABLE I: Accuracy evaluation of different domain adaptation
approaches on Office-31 dataset

Method
Source A D W A D W
Target W W D D A A

TCA [4] 0.610 0.932 0.952 0.608 0.516 0.509
GFK [5] 0.604 0.956 0.950 0.606 0.524 0.481

AlexNet [19] 0.642 0.961 0.978 0.668 0.516 0.498
DDC [6] 0.618 0.950 0.985 0.644 0.521 0.522
DAN [7] 0.685 0.960 0.990 0.670 0.540 0.531

RevGrad [8] 0.730 0.964 0.992 0.729 0.550 0.526
JAN [11] 0.749 0.966 0.995 0.718 0.583 0.551

Ours Method 0.765 0.972 0.996 0.759 0.589 0.580

Accuracy Evaluation on Office Dataset. The classification
accuracy results on the Office-31 dataset are shown in Ta-
ble I. Several points can be concluded from the experimental
results. Firstly, the performances of JAN and our method are
significantly better than the other ones. Making the best of
the pseudo labels of target samples is the main common point
of JAN and our method which distinguishes from other deep
adaptation methods obviously. This point illustrates that the
pseudo labels, despite being imprecise, are especially valuable
to unsupervised domain adaptation. Secondly, our method is
more effective than JAN. This may be attributed to the reasons
as follows: (1) The method based on A-distance is more
compatible to the theoretical error bound of target domain
deduced in Section III-D; (2) The SPL strategy prevents our
algorithm falling into a bad local minima successfully.

Overall, our method outperforms all comparison methods
on all transfer tasks of the dataset. These results prove the
validity of the approach of matching conditional distributions
estimated by pseudo labels and the directive importance of the
tighter error bound.
Accuracy for Digit Image Classifications. The classification
accuracy results on digit image datasets are shown in Table II.
We compare the classification accuracy of our network against
RevGrad and the model without domain adaptatin. Our method
still outperforms other methods whether the tasks are hard or
easy. The more significant improvement might benefit from
the large numbers of training samples in source and target



TABLE II: Classification accuracies of digit image classifica-
tions for different source and target domains.

METHOD
Source MNIST MNIST-M SVHN
Target MNIST-M MNIST MNIST

Source Only 0.523 0.972 0.549
RevGrad 0.767 0.975 0.739

Ours Method 0.860 0.987 0.828

domains which can help us estimate and match the conditional
distributions more precisely.

D. Empirical Analysis
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(a) RevGrad [8]: source=A
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(b) RevGrad [8]: target=W
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(c) Our Method: source=A
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(d) Our Method: target=W

Fig. 4: The t-SNE visualization of the network activations
generated by RevGrad and our method, respectively.

Feature Visualization We use t-SNE projection [20] to visu-
alize the distributions of the feature learned by RevGrad and
our method in Figure 4, where each category is represented
by a type of color. For these two methods, the distributions
of source and target samples are similar and the samples
tend to aggregate into clusters. But comparing the results in
Figure 4(b) and Figure 4(d), the distances of some clusters
in the former is smaller, especially the two clusters closed in
the dashed ellipses are almost connected. This phenomenon
leads to that the samples in different classes are confused with
the RevGrad features and suggests that our method is a more
effective approach to unsupervised domain adaptation.

V. CONCLUSION

In this paper, we have proposed a new approach for unsu-
pervised domain adaptation which matches the conditional dis-
tributions in source and target domains. The label information
in target domain and the domain-invariant transformation are
learned alternately, and their accuracies are enhanced mutually
through self-paced learning. We also give a theoretical analysis
of our method to show that it is equal to optimizing a

tighter error bound. Experimental results on standard domain
adaptation benchmarks show that our model is more effective
than previous methods.
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