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Abstract

Regression based facial landmark detection methods
usually learns a series of regression functions to update the
landmark positions from an initial estimation. Most of ex-
isting approaches focus on learning effective mapping func-
tions with robust image features to improve performance.
The approach to dealing with the initialization issue, how-
ever, receives relatively fewer attentions. In this paper, we
present a deep regression architecture with two-stage re-
initialization to explicitly deal with the initialization prob-
lem. At the global stage, given an image with a rough face
detection result, the full face region is firstly re-initialized
by a supervised spatial transformer network to a canonical
shape state and then trained to regress a coarse landmark
estimation. At the local stage, different face parts are fur-
ther separately re-initialized to their own canonical shape
states, followed by another regression subnetwork to get the
final estimation. Our proposed deep architecture is trained
from end to end and obtains promising results using differ-
ent kinds of unstable initialization. It also achieves superior
performances over many competing algorithms.

1. Introduction
Facial landmark detection, or face alignment, is to locate

some predefined landmarks on the face given the face de-

tection result, providing a representation of the face shape.

It is one of the most important tasks in the field of computer

vision and has been a key component of many other com-

puter vision tasks, e.g., 3D face reconstruction [1, 11], face

animation [4] and face recognition [12, 3, 40].

In the past decades, computer vision researchers have de-

voted great efforts to solving this task, and have made sig-

nificant progress [7, 8, 9, 41, 30, 33, 5, 21, 16, 29, 2, 35,

38, 39]. Among all these developments in years of studies,

∗These authors contributed equally to this study.

regression based algorithms [30, 9, 33, 5, 21, 16, 29, 2, 35,

38, 39] currently dominant the approach to solving this task.

Compared with the methods using parameterized models to

describe the face appearance and shape [7, 8, 41], regression

based methods directly learn a series of mapping functions,

i.e., regressors, to progressively update the estimations of

the landmark positions towards the true locations. Summa-

rizing the results from previous studies, the pose-indexed

robust features [9], the cascade regression structure [5], and

the regression model [30, 21, 16], are the three most im-

portant aspects in designing a high performance landmark

detection algorithm. By deploying these study results from

conventional methods to the powerful deep learning frame-

work, many promising deep learning based face alignment

algorithms have been developed [35, 24, 23, 36, 27, 20].

Although great progresses have been made in the last

decade, facial landmark detection still remains a very chal-

lenging problem. When the face images appear with large

view variations, different expressions, and partial occlu-

sions, even state-of-the-art algorithms may fail to locate

the landmarks correctly, which restricts the applications of

many facial landmark detection algorithms into practical

systems. To deal with these problems, many previous work

[41, 33, 27] devote much effort to learning robust image

features and effective regression functions. The approach

to initializing the regression based methods, however, re-

ceives relatively fewer attentions, which we believe is also

crucial to the solving of this problem.

Currently most of the facial landmark detection algo-

rithms depend on the face detection to provide a good rect-

angular face region as an initialization. According to recent

studies [31, 32, 21], if the initial detection rectangle dur-

ing testing varies from the one used in training stage, the

performances of many landmark detectors degrade a lot. In

many situations, users may have to choose other face detec-

tor different from the one used in training. Since different

face detectors often return various face bounding boxes with
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Figure 1. The pipeline of the proposed deep regression architecture with two-stage re-initialization for coarse-to-fine facial landmark

detection. At the global stage (I), the face region is firstly re-initialized to a canonical shape state (a), and then regress a coarse shape (b).

At the local stage (II), different face parts are further separately re-initialized to their own canonical shape states (c), followed by another

regression subnetwork to get the final detection(d).

Figure 2. Different types of face bounding boxes: boxes detected

by Viola-Jones detector, boxes detected by Dlib detector (green),

official boxes provided by 300-W dataset (blue), boxes bounded

by landmarks of ground truth (black).

different scales and center shifts (c.f. Figure 2), it would be

very useful if a facial landmark detection algorithm can pro-

duce robust results without depending so much on the face

detection results.

To explicitly deal with the initialization problem in re-

gression based landmark detection methods, we present a

deep regression architecture with two-stage re-initialization

learned from end to end. Figure 1 plots the framework of the

proposed deep architecture. Our two-stage re-initialization

model successively re-initializes a deep regression model

from coarse to fine, and global to local, to substantially

boost the landmark detection performance. At the global

stage, there are two subnetworks: the global re-initialization

subnetwork, and the global regression subnetwork. At the

re-initialization subnetwork, providing a face image with a

rough bounding box, the face image is re-initialized to spa-

tially transformed to a canonical state, i.e., making the face

with the same reference center, scale, and angle. This sub-

network can deal with the initialization variety problem by

a large amount. With the globally normalized face state,

the global regression subnetwork is trained to estimate the

coarse landmark positions. There are also two subnetworks

at the local stage, different parts of the face shape are fur-

ther separately re-initialized to their own canonical states in

the local re-initialization subnetwork, followed by the lo-

cal regression subnetwork to get the final results based on

the coarse landmark positions. It is very helpful to dispose

the expression variations and partial face occlusions. Our

whole architecture is effectively trained from end to end,

exhibits more robustness to various kinds of initialization,

and achieves very promising landmark detection results. On

the two recent face alignment benchmarks, 300-W [22] and

AFLW [17], it obtains superior results over many compet-

ing facial landmark detection algorithms.

To summarize, in this paper we make the following main

contributions:

• We present a deep regression architecture with two-

stage re-initialization to explicitly deal with problem

of initialization variety for facial landmark detection.

• We formulate both the global and local re-initialization

modules as a supervised spatial transformer learning

3692



problem which are simultaneously trained with the

whole architecture from end to end.

• We conduct extensive experiments to demonstrate that

our model achieves good robustness to different kinds

of initialization and state-of-the-art performances on

two large benchmark datasets.

2. Related Work

Recent facial landmark detection is usually formulated

as a regression problem and many of recent developments

demonstrate very promising results [9, 5, 30, 21, 16, 29, 2].

With the fast development and deployment of deep learning

models in computer vision, deep learning based algorithms

have greatly boosted the landmark detection performance.

In the following, we mainly focus on regression based and

deep learning based methods, and discuss those related to

our approach.

The most direct way to adopt deep learning to facial

landmark detection is to let the deep model learn the

features and regressors end-to-end in a cascade manner

[24, 37]. To improve the performance, the architectures of

these deep models are usually designed in a coarse-to-fine

structure [37, 35, 23, 18, 38, 25] to progressively update

the results. Some of methods jointly optimize facial land-

mark detection together with other tasks of facial attributes

[36, 20]. These methods mainly devote efforts to learning

features and regression networks, however, the initialization

problem which is also important for landmark detection is

ignored by these approaches.

A recent experimental study [31] evaluates and analyzes

the impacts of different factors on facial landmark detec-

tion. This work shows that most methods are sensitive to

different face scales, translations and initial shapes. The

study in [21] finds that an ”alignment friendly” detector can

boost the accuracy of facial landmark detection. However,

these work do not mention how to avoid bad initialization

without knowing the ground truth of landmarks. We in this

work are motivated to find a way which is not only robust

to different poses, but also to various kinds of initialization

brought by different face detectors.

The head pose assisted model [32] applies a shape which

has a similar pose with real shape as the initialization. The

coarse-to-fine face alignment model [13] takes a normalized

full face image and then multi-scale local image patches to

perform cascade regression. The competition winner model

in [28] presents a progressive initialization strategy for de-

tection which manually selects different subsets of land-

marks at different regression stages. Work [38] explores the

whole shape space during all the stages of the coarse-to-fine

framework. The normalization and regression steps of these

above mentioned work are independent to each other using

a series of modules, while our network is end-to-end trained

with automatically learned initialization parameters.

Recently, the Spatial Transformer Network (STN) [14]

is proposed to learn instance-specific transformations of the

training samples to an underlying reference sample state,

which provide a way to learn invariance to different kinds

of image transformations. Inspired by its good performance

on the task of image classification, we present a normaliza-

tion network to generate better states for the global and local

facial landmark detection. Also inspired by the STN model,

the DDN model [34] transforms the landmarks rather than

the input image for the refinement cascade. Its point trans-

former network aims to learn the optimal local deformation

that maps the initialized landmark to its final position, and

the shape bases of the network is learned by a separated

PCA procedure. Different from their work, our transformer

network normalizes the input images by using the coarse

landmarks and the finer landmarks learned simultaneously

with the whole regression networks. Our proposed deep ar-

chitecture not only learns how to provide good initialization

for the global and different parts of face images, but also

gets better results than that of model in [34] on benchmark

datasets.

3. Our Two-Stage Re-initialization Deep Re-
gression Model

In Figure 1, we plot the framework of our two-stage re-

initialization deep regression architecture for facial land-

mark detection. It consists of two stages, the global stage

and the local stage. In the following, we first elaborate the

design of the global stage and the local stage, then introduce

implementation details of the whole model.

Given an initial image I , the objective of facial land-

mark detection is to locate the predefined landmarks S =
[x1, y1, ..., xn, yn]

T ∈ �2n×1 on the face, as a registration

of face shape. Different from previous work, the ground

truth shapes S∗ in our architecture are not fixed during train-

ing, G∗ and L∗ denote the target shapes at the global and lo-

cal stage, respectively. In order to facilitate the subsequent

formulation, we also denote the following formulation:

S = M(S) = (x1, ..., xn; y1, ..., yn) ∈ �2×n,

as the matrix form of S. In a similarly way, the matrix rep-

resentations of G and L are G, L.

3.1. Global Stage

Previous work [21, 31] study different preprocessing

steps on the face regions for facial landmark detection and

find that face boxes bounding by the ground truth shapes

provides the best initialization for landmark regression. Al-

though it is unpractical to use these boxes as the initializa-

tion in real applications, our global stage, however, can take

advantage of them to learn such good or even better initial-

ization of face regions.
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For an initial image I , the global stage only needs the

face detector to provide a rough bounding box R to extract

the face region IR. Unlike many previous deep regression

methods which directly regress the landmark locations from

the face image, the global stage first learns to crop the best

image region from the roughly detected face region and then

learn to normalize the cropped face region to a specified

canonical state with the same face size and rotation angle1.

The cropped and normalized face image are then feed to a

following regression subnetwork to get the global detection

result.

3.1.1 Global Re-initialization Subnetwork

Inspired by STN, we build a global re-initialization subnet-

work crops the best face region and normalizes the whole

face for the following regression learning by directly learn-

ing transformation parameters θg . Before introducing this

subnetwork, we firstly briefly review STN. It is a dynamic

mechanism to spatially transform an image by producing

an appropriate transformation for each input sample. It can

be split into three parts: 1) a localization network, which

predicts transformation parameters by taking a number of

hidden layers, 2) a sampling grid, which is a set of points

where an input image should be sampled to produce the

transformed image, and 3) a sampler, it takes an input image

and the grid to produce a transformed image.

To model the cropping and normalization operations on

the input face F ∈ �H×W×3 (resized by the face image IR
to a fix-resolution image, W and H represent the width and

the height of F , respectively), we employ affine transfor-

mation (other transformer functions are also feasible, e.g.,
similarity transformation, projective transformation.) as the

learning objective for the localization network. The trans-

formation shifts the face to the center of the image, rotate

the face to upright viewpoint with some skew deformations,

and cut out most of unnecessary backgrounds from rough

face detection result. We employ a CNN structure, e.g.,
TCDCN[36], as the localization model to predict the trans-

formation parameter θg . A transformation matrix Tθg can

be constructed by the 6-dimensional affine transformation

parameter θg , i.e.,

Tθg =

(
θ11 θ12 θ13
θ21 θ22 θ23

)
.

The transformed face image with a high resolution is de-

noted as image Fg ∈ �H′×W ′×3, where H ′, W ′ is the

width and height of Fg , larger than that of F . Then the

point (xt
i, y

t
i) on Fg can be formed by a grid using Tθg and

1In essence, any rotation angle can be used to train the model. We adopt

upright face in the experiment as commonly used in other approaches.

Figure 3. The results of the global re-initialization subnetwork.

Top row: the input initial face images with initial face boxes. Bot-

tome row: the transformed face images output by the global re-

initialization subnetwork.

the point (xs
i , y

s
i ) on F as follows:

(
xs
i

ysi

)
= Tθg

⎛
⎝ xt

i

yti
1

⎞
⎠ . (1)

A bilinear sampler A(F ′, Tθg ) is taken to interpolate

each pixel values of Fg from the pixels around F ′ ∈
�H′×W ′×3 which is a higher resolution image of F :

Fg = A(F ′, Tθg ). (2)

The grid generator and sampler are both differentiable, it

allows gradients to be back propagated through from the

sampler A(F ′, Tθg ) to θg [14]. In the original STN model

for handwriting digit recognition [14], the transformation

parameters are learned from the gradients back-propagated

from final classification loss. For the task of landmark de-

tection, due to the complexity of various faces, it is difficult

to guarantee the convergence of the STN model using only

the following landmark regression loss. Therefore, we for-

mulate a loss function for the transformation parameter θ as

a supervised STN to speed up the convergence in the early

training iterations:

Lθg = ||θ̂g − θ∗g ||22, (3)

where θ∗g is the parameter which is able to transform F to

face regions bounded by G∗ (G∗ represents the transformed

frontal shape of the ground truth S∗). The image trans-

formed by θ∗g are not be able to always provide the best

canonical state for the initialization. After several iterations

of training when θg is close to the target θ∗g , the loss func-

tion is removed to let the network continue learning θ̂g only

propagated by the subsequent layers.

Examples of the canonical states are shown in Figure 3.

Compared with the initial face image F , we observe that

Fg has a frontal in-plane viewpoint, less unnecessary back-

grounds, and it is similar to the frontal face bounded by the

landmarks of ground truth, but not exactly the same.
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3.1.2 Global Regression Subnetwork

With the cropped and normalized face regions, the training

samples are re-initialized to a more consistent state, mak-

ing the following regression learning more feasible. After

Fg and G∗ are obtained, a global deep regression subnet-

work is introduced to learn positions of the coarse shape G
in Fg . This subnetwork can be built based on a deeper struc-

ture than the previous subnetwork, e.g. VGG-S network [6],

which comprises eight learnable layers, five among them

are convolutional and the last three are fully-connected. We

modify the output of last layer from 1000 to 2n for pre-

dicting the n landmark positions. Following the work [27],

we use L2, normalized by inter-ocular distance instead of

standard Euclidean distance as the global loss of landmark

detection for faster convergence:

Lg =
||Ĝ−G∗||22

d
, (4)

, where Ĝ is the predicted shape in the global stage, d repre-

sents the inter-ocular distance of G∗, which is projected into

the coordinate of the image F ′ by S∗ for shape regression

learning. The transformed target shape G∗ can be obtained

by using the ground truth S∗ and inverse matrix of Tθg :

G∗ = T−1
θg

(
S∗

1

)
. (5)

3.2. Local Stage

Due to the non-rigid property of human faces, the glob-

ally re-initialized face shape and the regressed landmark po-

sitions may still not capture all the variations of the face

shape, especially for the local face parts like eyes, mouths,

and noses, since they have different shapes from different

identities, views and expressions. To deal with the defor-

mations of the local face parts, we design the local stage to

re-initialize the local face parts to their own canonical states

for finer landmark regression, which is essential to further

improve the result.

The local stage refines the shape after getting the trans-

formed image Fg and the coarse shape Ĝ. We divide land-

marks of the inner face into four parts, e.g., shape of left

eye Gl1 , shape of right eye Gl2 , shape of nose Gl3 , shape of

mouth Gl4 (as shown in Figure 4), while ignoring the part

of contour landmarks for its accuracy are more difficult to

improve in the local regression than that of inner landmarks.

Based on the jth shape part Glj , there are two subnetworks,

the re-initialization subnetwork and the regression subnet-

work for finer landmark detection.

3.2.1 Local Re-initialization Subnetwork

Similarly with the usage of re-initialization subnetwork in

the global stage, different parts of the face shape are further

(a) (b)

Figure 4. Four parts of landmarks in the local re-initialization sub-

network, (a) 68 landmarks of 300-W, (b) 19 landmarks of AFLW.

Figure 5. The results of the local re-initialization subnetwork.

separately re-initialized to their own canonical states in this

re-initialization subnetwork. It consists of only one fully-

connected layer, the input of which is the jth shape part Ĝlj

generated by the global stage. The output of this subnet-

work, which also produces a 6-dimetnsinal transformation

parameter θlj and the local transformation matrix Tθlj
, is

able to transform the face image Fg to a local normalized

state Flj for the further regression of jth shape part. As the

canonical state for each part shown in Figure 5, most sam-

ples of the face part are aligned to the center of the patch

with frontal view and retain a few of contexts.

3.2.2 Local Regression Subnetwork

With re-initialized face parts, the local regression subnet-

work refines the shape after getting the transformed image

Fln and the coarse shape Ĝln . This subnetwork can be ini-

tialized by the first subnetwork in the global stage to mini-

mize the loss function of shape increment:

Ll = ||ΔL̂ln −ΔLln ||22, (6)

where ΔLln represents the shape increment between the

two shapes: the ground truth of local shape L∗ln transformed

by G∗ln and Tθln
, Ĝt

ln
transformed by Ĝln and Tθln

. The

finer predicted landmarks L̂ln on Fln can be calculated:

L̂ln = Ĝt
ln +ΔL̂ln . (7)

For the ground truth of landmarks has a transformation

while the initial face image is transformed, we add a new

layer called shape inverse transformer layer, in which the

3695



predicted shape of local stage L̂ln on Fln can be projected

to Ŝln in the coordinate space of initial image I by using

Tθg , Tθln
and the rectangle geometric transformation TR of

initial face box R:

Ŝln = TRTθgTθln

(
L̂ln

1

)
. (8)

While omitting the variable Tθln
, each landmark of contour

part can be projected on the initial image I from the global

transformed image Fg also by using Equation 8.

3.3. Implementation Details

After the face is detected by using any kind face detector,

the face bounding box is extended with a certain scale ra-

tio of 0.2. Multiple samples are generated for each training

image by disturbing the face boxes by translation and scal-

ing, whose distributions are calculated by the differences

between the initial boxes and the ground truth landmarks.

As points of the sampling grids in the re-initialization net-

works are normalized to the range [-1, 1] by the sizes of face

images, the predicted and ground truth shapes in the archi-

tecture are also transformed to the same coordinate space.

Stochastic gradient descent (SGD) is adopted for our

model training. We use the min-batch size of 128, the

weight decay of 0.0002, the momentum of 0.9, and itera-

tions of 20k. There are four steps of the whole architecture

training. The learning rate starts from 0.01 and 0.001 at the

first three step and the last step respectively, polynomial de-

cay is adopted for dynamically adjust the learning rate. The

details of the training process are described as follows:

1. The global re-initialization subnetwork is trained at the

first step. PReLU [10] is adopted as the activation

functions. We warm up the training by using a small

learning rate of 0.0001 at the beginning 1000 iterations

and after that set it to 0.01. The input size of the sub-

network is a 60× 60 resolution image.

2. Next, we fix the weights of global re-initialization

subnetwork and train the global regression subnet-

work. This network is initialized with an ImageNet-

pre-trained model and the transformed face with size

of 224× 224 is employed as the input data.

3. At the third step, we fix the weights of the global stage

and train the network of the local stage. The fully

connected layer of each re-initialization subnetwork

is initialized by using the transformation parameters

which are calculated from the pre-defined canonical

face parts. Each local regression subnetwork is ini-

tialized with the model of the global re-initialization

subnetwork with the same input image size of 60×60.

4. At last, all the transformation parameters loss layers

are removed and the whole network is fine-tuned end-

to-end for shape regression.

Table 1. The comparison of NME without and with using our pro-

posed method on 300-W dataset based on different face detectors.

B1, B2, P−, P indicates the results with using the Baseline1,

Baseline2, Propose−, Propose method respectively.

Detectors Common Challenging Full Set

Subset Subset

VJB1
8.90 14.39 9.98

DlibB1
6.88 12.40 7.96

ODB1 5.43 8.97 6.12

GTB1 5.24 7.65 5.71

VJB2 6.19 10.15 6.96

DlibB2 5.30 9.13 6.05

ODB2
5.03 8.43 5.69

GTB2
5.04 7.64 5.55

VJP− 4.95 8.36 5.62

DlibP− 4.87 8.30 5.55

ODP− 4.56 8.16 5.27

GTP− 4.43 7.08 5.05

VJP 4.50 7.89 5.16
DlibP 4.42 7.80 5.09
ODP 4.36 7.56 4.99
GTP 4.36 7.42 4.96

4. Experiments

In the following sections, we first evaluate the robust-

ness of our approach for various initialization, then com-

pare it with other state-of-the-art methods on the benchmark

datasets. In order to verify the advantages of the proposed

method, we train four different models for the comparisons:

the model which uses TCDCN network for training (de-

noted as Baseline1 or B1), the model which uses VGG-

S network (see in section 3.1.1) for training (denoted as

Baseline2 or B2), the model which uses the global sub-

network for training (denoted as Proposed− or P−), and

the model uses both the global and local subnetworks for

training (denoted as Proposed or P ). The above four mod-

els are all implemented on Caffe platform [15].

4.1. Experimental Settings

In order to prove the effectiveness or our approach, we

evaluate its performance on the two following benchmark

datasets:

300-W [22]: The dataset consists re-annotated five ex-

isting datasets with 68 landmarks: iBug, LFPW, AFW, HE-

LEN and XM2VTS. We follow the work [38] to use 3, 148

images for training and 689 images for testing. The testing

dataset is splitted into three parts: common subset (554 im-

ages), challenging subset (135 images) and the full set (689
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Table 2. The comparison of NME without and with using our pro-

posed method on 300-W dataset based on different face extended

scales (a), translations (b), rotations (c).

(a) Different Scales

Scale 0.1 0.2 0.3 0.4 0.5

Baseline1 6.12 7.11 9.98 15.67 24.43

Baseline2 5.69 6.27 7.05 9.59 13.54

Proposed− 5.27 5.17 5.30 5.65 6.13

Proposed 4.99 5.03 5.11 5.39 5.93

(b) Different Translations

Translation 0.05 0.10 0.15 0.20 0.25

Baseline1 6.29 6.96 8.51 11.86 18.67

Baseline2 5.75 6.01 6.91 8.48 12.84

Proposed− 5.28 5.46 5.61 5.96 6.46

Proposed 5.01 5.15 5.26 5.36 5.77

(c) Different Rotations

Rotation (◦) 5 10 15 20 25

Baseline1 6.35 6.98 7.91 9.35 11.71

Baseline2 6.11 6.57 7.36 8.40 9.90

Proposed− 5.48 5.60 5.75 6.03 6.43

Proposed 5.13 5.24 5.42 5.77 6.20

images).

AFLW [17]: It contains totally 24, 386 faces with a large

variety in appearance (e.g., pose, expression, ethnicity and

age) and environmental conditions. This dataset provides at

most 21 landmarks for each face, we ignore two landmarks

of ears and evaluate our method by using the other 19 land-

marks. Following the experimental settings of work [39],

we use the same 20, 000 image training set and 4, 386 test

set for our evaluation.

We use the normalized mean error (NME) to evaluate

performance of different methods. Following work [21],

inter-ocular distance is employed to normalize mean error

on 300-W. As there are many profile faces with inter-ocular

distance closing to zero, we use face size instead as the nor-

malization reference on AFLW dataset.

4.2. Robustness to Various initialization

We first evaluate the impact of different face detectors

for facial landmark detection on 300-W dataset. There are

four types of face bounding boxes to be compared: 1) Viola-

Jones (denoted as VJ) detector [26], a cascade face detector

based on Haar-like features. 2) Dlib detector [19], an SVM

detector on HOG features. Besides of them, 300-W dataset

itself provides two types of face bounding boxes, 3) ground

truth (denoted as GT), which is the tight bounding boxes

of the shapes. 4) official detector (denoted as OD), which

is very close to GT. Detectors of VJ and Dlib can not de-

Table 3. The performance of our proposed method compared with

other methods on 300-W dataset.

Method Common Challenging Full Set

Subset Subset

RCPR [2] 6.18 17.26 8.35

SDM [30] 5.57 15.40 7.52

ESR [5] 5.28 17.00 7.58

CFAN [35] 5.50 16.78 7.69

DeepReg [23] 4.51 13.80 6.31

LBF [21] 4.95 11.98 6.32

CFSS [38] 4.73 9.98 5.76

TCDCN [36] 4.80 8.60 5.54

DDN [34] - - 5.59

MDM [25] 4.83 10.14 5.88

Baseline1 5.43 8.97 6.12

Baseline2 5.03 8.43 5.69

Proposed− 4.56 8.16 5.27

Proposed 4.36 7.56 4.99

tect all of faces due to difficulty of some faces (e.g. large

pose, exaggerated expression, or severe occlusion), we use

the corresponding official boxes as a complement.

The comparison of NME on 300-W dataset are shown

in Table 1. It shows that GT provides the best initializa-

tion for landmark detection, while others have more or less

decreased accuracies. It can be easily explained that the

ground truth box tightly bound all the landmarks, the re-

gression difficulty from initial images to target shapes is

the smallest. Our method significantly improve the perfor-

mance of the baseline under the same face detector, even

under GT.

In order to further evaluate robustness of our architec-

ture, we produce artificial face boxes by disturbing the offi-

cial detectors with different scales, translations. We extend

the face bounding boxes by a set of ratios that ranges from

0.1 to 0.5, the results are shown in Table 2 (a). Then we set a

set of random ratios which are from 0.05 to 0.25 of the face

box size to translate center of face box, Table 2 (b) shows

the comparison of different ratios. We also rotate face im-

ages in-plane from 0◦ to 25◦ to evaluate two methods under

various rotations in-plane (See Table 2 (c)). It is noted that

our method is the most robust to various input with different

spatial transformations.

4.3. Comparison with the State-of-the-arts

This section shows the performance of different facial

landmark detection methods on the 300-W and AFLW

datasets. We compare our approach with recently proposed

methods [30, 33, 5, 16, 21, 2, 38, 34, 25], see in Table 3

and 4. The results show that Proposed− and Proposed
both get better performance than other methods on the two
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Figure 6. The comparison of facial landmark detection results on 300-W dataset (left) and AFLW dataset (right): The images are the results

of Baseline1 method, the Baseline2 method, the Proposed− method and the Proposed method from top to bottom of the single line.

Table 4. Mean Error normalized by face size on AFLW dataset compared with other state-of-the-art methods .

Method CDM [33] RCPR SDM ERT [16] LBF CFSS CCL [39] Baseline1 Baseline2 Proposed− Proposed

NME 5.43 3.73 4.05 4.35 4.25 3.92 2.72 2.99 2.68 2.33 2.17

datasets, and further prove that our approach is able to pro-

vide a better initialization and leads to a better landmark de-

tection in-the-wild environment. Specifically, the fact that

Proposed gets the best results shows that the local stage

of our method is able to further improve the accuracy of

landmark detection by the re-initialization and finer regres-

sion for each shape part. The comparison of detection ex-

amples of our proposed method and the baseline methods

are shown in Figure 6. The method of Proposed− and

Proposed are able to run at 111 FPS and 83 FPS respec-

tively, which are evaluated based on an unoptimized Matlab

interface of Caffe code with Nvidia Titan X GPU. The code

and models will be made publicly available online.

5. Conclusion and Future Work

In this paper, we focus on improving the initialization

part of landmark detection, which is ignored by most pre-

vious work. We present a deep regression with two-stage

re-initialization architecture which is more robust to vari-

ous kinds of initialization and achieves the state-of-the-art

performance on benchmarks of landmark detection. From

the global stage to the local stage, the initial face images are

transformed to the normalized states which are more insen-

sitive to various input derived from different face detectors

and more suitable for finer landmark localization. In the

future, we will continue to improve our detection perfor-

mance by introducing more flexible transformations, e.g.,

3D transformation, and explore an end-to-end architecture

to directly detect landmarks from an input image even with-

out face detection module.
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