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ABSTRACT
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) are two typical kinds of neural networks.
While CNN models have achieved great success on image
recognition due to their strong abilities in abstracting spa-
tial information from multiple levels, RNN models have not
achieved significant progress in video analyzing tasks (e.g.
action recognition), although RNN can inherently model tem-
poral dependencies from videos. In this work, we propose a
Sequential Convolutional Neural Network, denoted as SCN-
N, to extract effective spatial-temporal features from videos,
thus incorporating the strengths of both convolutional opera-
tion and recurrent operation. Our SCNN model extends RNN
to directly process feature maps, rather than vectors flattened
from feature maps, to keep spatial structures of the inputs.
It replaces the full connections of RNN with convolutional
connections to decrease parameter numbers, computational
cost, and over-fitting risk. Moreover, we introduce asymmet-
ric convolutional layers into SCNN to reduce parameter num-
bers and computational cost further. Our final SCNN deep
architecture used for action recognition achieves very good
performances on two challenging benchmarks, UCF-101 and
HMDB-51, outperforming many state-of-the-art methods.

Index Terms— SCNN, Recurrent Neural Networks, Con-
volutional Neural Networks, Action Recognition

1. INTRODUCTION

Recognition of human actions in videos has long been a
fundamental computer vision problem [1, 2, 3, 4, 5] with
many important applications, such as intelligent surveillance,
human-machine interaction, and video retrieve. Unlike object
recognition in images, action recognition in videos needs to
jointly model the spatial-temporal information, which makes
it a very difficult problem.

In the last five years, Convolutional Neural Network (C-
NN) models have exhibited amazing performance on many
image related tasks like image classification [6, 7, 8], object
detection [9], and pose estimation [10], to name a few. The
main reason is due to its strong ability to extract discrimi-
native spatial patterns at multiple levels. For human action
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recognition in video, however, CNN models are not so suc-
cessful as those tasks in image, although many attempts have
been made [2, 4, 5]. This is because temporal information is
missed in the typical pipeline of a CNN model, i.e., weights
shared convolution operation on two dimensional images fol-
lowed by max/average pooling operation.

To capture temporal information, Recurrent Neural Net-
work (RNN) models [11, 12] provide an appropriate choic-
es, since its current prediction bases on not only the current
observation but also history information restored in hidden s-
tates. Due to this reason, RNN models are wildly applied into
action recognition to model the dynamic motion features from
videos [3, 13, 14, 15]. A general pipeline for these methods is
to extract spatial features using a CNN model and then flatten
the feature maps as input vectors to the RNN model for clas-
sification. Since these methods extract the spatial features and
model the temporal dependencies at two independent phases,
they may not extract effective spatial-temporal features for ac-
tion recognition. Also, flattening the two dimensional feature
maps into one dimensional feature vectors is likely to loss the
spatial structure information about scene and actors in videos.

In order to simultaneously model the spatial structure in-
formation and temporal dynamic information of video, we
propose a Sequential Convolutional Neural Network (SCNN)
layer, which inherits the strength of convolutional operation
and recurrent operation, then stack several SCNN layers with
convolutional layers to construct a SCNN model for human
action recognition, which is shown in Fig. 1. The most signif-
icant point of our deep architecture is the extensively adoption
of our proposed SCNN model, which directly feeds the two
dimensional convolved feature maps into the recurrent model.
This designation makes the learning of the spatial information
and temporal information into a single framework and permits
better spatial-temporal feature representations.

Some attempts have been made to design sequential con-
volution in speech recognition [16] and machine translation
[17] tasks. The employed sequential convolution is still per-
formed on one dimensional vector and is thus different from
ours. Other attempts to fuse convolutional network and re-
current network can also be found in other domains, such as
dialogue topics tracking [18], precipitation nowcasting [19],
scene labeling [20], image classification [21] and supper res-
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Fig. 1: The architecture of our SCNN model.

olution [22]. Also in action recognition [23, 24], GRU-RCN
[23] models spatial-temporal features in two phases. Firstly,
it extracts layer-wise convolutional features for each frame,
and then feed them to the correspond layers of Gated Recur-
rent Network to model temporal dependencies. VideoLSTM
[24] introduces convolutional operation into Attention LSTM
to classify actions, which extracts spatial-temporal features
from weighted RGB frames and the weights are computed
from soft-attention LSTM network [25]. Meanwhile, the ar-
chitecture of our SCNN model, as shown in Fig. 1, is different
from that of the GRU-RCN and VideoLSTM models.

To summaries, the main contributions of this work are
three-fold as follows:

• We propose a SCNN layer, which incorporates the ad-
vantages of convolutional operation and recurrent oper-
ation, to feed two dimensional feature maps recurrently
and learn better spatial-temporal features.

• We design a “double deep” architecture both in spatial
and temporal domains by stacking the SCNN layers and
convolutional layers, which is end-to-end trainable and
adapted to the action recognition task.

• We evaluate SCNN models on two most challenging
action datesets, UCF-101 and HMDB-51, with very
competitive performance compared to many state-of-
the-art methods.

2. THE PROPOSED SCNN MODELS

In this section, we firstly propose a method to formulate the
general SCNN layer from convolutional operation and recur-
rent operation. Then in order to model long-short term motion
patterns from actions, we propose the Long-term Sequential
Convolutional Neural Network (L-SCNN) built on the LST-
M model. At last, we describe the designation of our SCNN
based deep architecture for action recognition.

2.1. General SCNN Model

CNN model abstracts spatial information from local receptive
fields and extracts multi-level features with better invariance
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Fig. 2: (a) The general SCNN layer, which simultaneously models
the spatial structure information and temporal dynamic information
from videos. (b) The specific unit of L-SCNN layer, which intro-
duces LSTM into SCNN model to extract long term motion features.

using weights sharing and localized pooling mechanism. De-
note the weights of convolutional kernel as W and the bias as
b. The operation of convolutional layer is defined as:

F (X|W, b) =W ∗X + b, (1)

where ∗ represents convolution operation. Recurrent network
is designed to learn temporal dependencies from sequential
data by remembering the history information in hidden states.
Let Ht denote the tth hidden states of recurrent layer and it is
computed as follows:

Ht =WxhX +Wh′hHt−1 + b, (2)

where t = 1, ..., T , Wxh and Wh′h are the weights of input-
hidden and hidden-hidden connections of recurrent layer.

Traditional recurrent network accepts vectors as input,
which ignores the spatial structure information. Moreover,
the full connections between input, hidden and output units
involve too many parameters, which are costly. On the con-
trary, the convolutional layers share weights in local regions,
which abstracts spatial information effectively and decreas-
es the parameter numbers dramatically. To incorporate the
convolutional operation and recurrent operation into a single
framework, we replace full connections of recurrent network
with convolutional connections, as shown in Fig. 2 (a). Based
on Eq. 1 and Eq. 2, we compute the tth hidden states of
SCNN layer as follows:

Ht = F (X|Wxh, b1) + F (Ht−1|Wh′h, b2) + b (3)
= Wxh ∗X +Wh′h ∗Ht−1 + b′. (4)

The SCNN layer models the spatial and temporal informa-
tion simultaneously, which enables it extract effective spatial-
temporal feature representations.

2.2. Long-term SCNN Mode (L-SCNN)
General recurrent networks have difficulties in learning long-
term dependencies due to the vanishing gradient problem
[26]. The LSTM [12] is proposed to address this problem by
adding a memory unit to decide remembering or forgetting
previous hidden states. In order to let LSTM operate on two
dimensional convolved feature maps directly, we introduce
convolutional operation into the LSTM and propose Long-
term Sequential Convolutional Neural Network (L-SCNN).
A single unit of L-SCNN layer is shown in Fig. 2 (b). The
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Table 1: The architectures of SCNN deep models.
SCNN-M(L1) L-SCNN-M(L2) L-SCNN-16

input (224× 224× 16 frames)

conv (7, 2, 96) conv (7, 2, 96) conv (3, 1, 64)
conv (3, 1, 64)

maxpool (3, 2) maxpool (3, 2) maxpool (3, 2)

conv (5, 2, 256) conv (5, 2, 256) conv (3, 1, 128)
conv (3, 1, 128)

maxpool (3, 2) maxpool (3, 2) maxpool (3, 2)

conv (3, 1, 512) conv (3, 1, 512)

conv (3, 1, 256)
conv (3, 1, 256)
conv (3, 1, 256)
maxpool (3, 2)

conv (3, 1, 512) L-SCNN (3, 1, 512)

conv (3, 1, 512)
conv (3, 1, 512)

L-SCNN (3, 1, 512)
maxpool (3, 2)

SCNN (3, 1, 512) L-SCNN (3, 1, 512)
conv (3, 1, 512)
conv (3, 1, 512)

L-SCNN (3, 1, 512)
maxpool (3, 2) maxpool (3, 2) maxpool (3, 2)

FC (4096) FC (4096) FC (4096)
FC (2048) FC (2048) FC (4096)

FC (101/51)

forget gates, input gates, output gates and candidate cell states
of the L-SCNN layer at tth timestep are denoted as Ft, It, Ot

and Gt respectively. Let Ct represent the cell states at the tth

timestep and Ht be the hidden states of L-SCNN layer. The
forward pass of the L-SCNN layer is defined as follows:

Ft

It
Ot

Gt

 =


σ
σ
σ

tanh

 (Wih ∗Xt +Wh′h ∗Ht−1 + b), (5)

Ct = Ft � Ct−1 + It �Gt, (6)

Ht = Ot � tanh(Ct), (7)

where tanh(x) = ex−e−x

ex+e−x , σ(x) = 1
1+e−x , and the � repre-

sents element-wise operation on 3D tensors, such as the gates
It, Ft, Ot, the candidate cell states Gt, cell states Ct, Ct−1
and hidden states Ht, Ht−1. The two dimensional convolu-
tional weights Wih and Wh′h enable traditional LSTM pre-
serve spatial structure information from successive frames.

To model complex dynamic motion features from videos,
more convolutional layers in hidden-hidden connections of
SCNN layer can be added. Unfortunately, it will increase
computational cost dramatically because every convolution-
al layer in hidden-hidden connections of SCNN layer will be
propagated T times. We thus introduce asymmetric convo-
lutional layers into hidden-hidden connections of SCNN lay-
er, which improves temporal representative ability without in-
creasing parameter numbers and computational cost.

2.3. Overall Architecture
To reduce feature map size and computation cost, we stack
several convolutional layers and max pooling layers in fron-
t of SCNN layers to construct SCNN deep models. The
architecture of our SCNN models is illustrated in Table 1.
The SCNN-M(L1) replaces the last convolutional layer of
VGG-M-2048 [8] with single SCNN layer, including R-
SCNN-M(L1) and L-SCNN-M(L1), using the general SCNN
layer and L-SCNN layer correspondingly. The second SCNN
model stacks two L-SCNN layers on convolutional layers of

Table 2: Evaluating the effectiveness of convolutions in SCNN lay-
ers on the UCF-101 dataset.

Models Parameter numbers Performance

SpatialNet [4] 90.62M 72.8
LRCN-fc6 [3] 86.24M 70.84

R-SCNN-M(L1) 92.98M 73.58
L-SCNN-M(L1) 107.13M 73.75

VGG-M-2048, referred to as L-SCNN-M(L2). To extract
more representative spatial-temporal features from videos,
we design a very deep SCNN model by combining VGG-16
[6] with two L-SCNN layers, referred to as L-SCNN-16.

3. EXPERIMENTS

3.1. Experimental Settings

We evaluate our model on two challenging datasets, UCF-101
[27] and HMDB-51 [28] datasets. The UCF-101 dataset in-
cludes 101 action categories with 13320 videos. We report the
average accuracy of the three splits. The HMDB-51 dataset
contains 6849 clips divided into 51 action categories. We use
the standard splits from [28]. We initialize our SCNN models
from CNN models, VGG-M-2048 [8] or VGG-16 [6]. Then
we pre-trained the SCNN models on the FCVID dataset to
initialize the SCNN models more carefully.

We train our SCNN models by Stochastic Gradient De-
cent (SGD) and Back Propagation Thought Time (BPTT). We
set the batch-size as 8, the momentum as 0.9, the weight-
decay as 0.0005, and the clip-gradient as 5. We use initial
learning rate 0.001, divide it by 10 after every 20K iterations,
and stop at 50K iterations. We perform data augmentation
techniques like randomly clipping, multi-scale cropping and
randomly flipping to avoid over-fitting. During test, we ran-
domly sample 10 clips from each video, and use the standard
10-views of each clip. We weight predictions from RGB and
optical flow networks using weights of 1

3 and 2
3 respectively.

3.2. Evaluation of Sequential Convolution

In the first experiment, we test two designations of our SCN-
N models, R-SCNN-M(L1) and L-SCNN-M(L1), compared
with LRCN-fc6 [3] and SpatialNet [4] models, to evaluate the
effectiveness of convolutional operation in SCNN layers. To
make a fair comparison, we modify the convolutional layers
of LRCN-fc6 same as VGG-M-2048 [8] and the four model-
s in this experiment are initialized from VGG-M-2048. We
test all the models on the UCF-101 dataset and list parameter
numbers and performances in Table 2.

As shown in Table 2, LRCN-fc6 [3] achieves 70.84% on
the UCF101 dataset, which is weakly lower than 71.12% re-
ported in [3], but it is much lower than 72.8% of Spatial-
Net, which indicates the LSTM in LRCN-fc6 cannot learn ef-
fective temporal dependencies from flattened feature vectors.
The two SCNN-M(L1) models outperform both the Spatial-
Net and LRCN-fc6 models. It indicates: 1) our SCNN mod-
els can learn effective temporal dependencies from two di-
mensional feature maps, compared with SpatialNet; 2) feature
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Table 3: Evaluating the fusion of deep SCNN models on UCF-101
and HMDB-51 datasets.

Models UCF-101 HMDB-51
RGB Flow fusion RGB Flow fusion

Two-stream [4] 73.0 83.7 86.9 40.5 54.6 58.0
Deeper Two [29] 78.4 87.0 91.4 - - -

LRCN-fc6 [3] 71.12 76.95 82.92 - - -
L-SCNN-M 77.53 85.14 87.76 50.12 57.45 59.34
L-SCNN-16 84.13 89.17 91.98 56.73 61.32 64.47

maps are better than flattened vectors for recurrent networks
to extract spatial-temporal features, compared with LRCN-
fc6, because feature maps preserve useful spatial structure in-
formation. L-SCNN-M(L1) does not show much advantages
against R-SCNN-M(L1), partially because L-SCNN-M(L1)
has more parameters without appropriate initialization.

3.3. Evaluation of SCNN Architecture

In the second experiment, we design deeper SCNN models
by two techniques. Firstly, we stack more L-SCNN layers on
convolutional layers, which is referred to as L-SCNN-M(L2).
Secondly, we use two asymmetric convolutional layers, 5× 1
and 1× 5, in the hidden-hidden connections of L-SCNN lay-
ers, referred to as L-SCNN-M(L2+asy). All the models are
initialized from VGG-M-2048. After that, the SCNN mod-
els are pre-trained on the FCVID video dataset. We evaluate
these SCNN models on the UCF-101 dataset.

In Fig. 3, all the L-SCNN-M variants outperform S-
patialNet [4]. Especially, the L-SCNN-M(L2+asy) surpasses
SpatialNet around 2%. This indicates the L-SCNN-M models
learn effective temporal dependencies from videos. The per-
formance of L-SCNN-M(L2) is weakly lower than L-SCNN-
M(L1) without pre-training because the L-SCNN-M(L2) has
more parameters and higher risk of over-fitting. Howev-
er, with better initialization by pre-training on the FCVID
dataset, The L-SCNN-M(L2) outperforms L-SCNN-M(L1)
over 1%. Comparing with L-SCNN-M(L2), the L-SCNN-
M(L2+asy) with asymmetric convolutional layers improves
the performance a lot. So we employ asymmetric convolu-
tional layers and two L-SCNN layers in the next experiments.

In the third experiment, we evaluate the very deep SC-
NN model and fusion prediction of two networks fed with
RGB and optical flow respectively. In Table 3, we compare
our models, L-SCNN-M and L-SCNN-16, with Two-stream
[4], Deeper Two-stream [29] and LRCN-fc6 [3] models on
UCF-101 and HMDB-51 datasets. Our L-SCNN-M model
outperforms Two-stream by 1.34% on HMDB-51 dataset and
outperforms LRCN-fc6 about 5% on UCF-101 dataset. When
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Fig. 3: Evaluating several variants of L-SCNN-M models on UCF-
101 dataset with different initialization.

Table 4: Comparing with current state-of-the-art methods.
UCF-101 HMDB-51

Wang et al. [1] 85.9 Wang et al. [1] 57.2
Peng et al. [30] 87.9 Peng et al. [30] 61.1

Simonyan et al. [4] 88.0 Simonyan et al. [4] 59.4
Sun et al. [31] 87.9 Sun et al. [31] 58.6

Wang et al. [29] 91.4 Wang et al. [32] 63.4
Christoph et al. [33] 92.5 Wu et al. [34] 56.4
Donahua et al. [3] 82.3 Zhu et al. [35] 63.3
Ballas et al. [23] 90.8 Wang et al. [36] 63.2

L-SCNN-16 92.0 L-SCNN-16 64.5

fed with RGB only, L-SCNN-M outperforms Two-stream
over 9% on HMDB-51 dataset and outperforms LRCN-fc6
over 6% on UCF-101 dataset. The L-SCNN-16 and Deeper
Two-stream are both extended from VGG-16. And the L-
SCNN-16 outperforms Deeper Two-stream by 5.63%, 2.22%
and 0.58% for RGB, optical flow and fusion accuracies on
the UCF-101 dataset respectively. From the last two rows
of Table 3, we can conclude that increasing the spatial depth
of the SCNN models can improve the performance of action
recognition significantly.

3.4. Comparisons with State-of-the-arts
In Table 4, we list the results of current state-of-the-art meth-
ods for action recognition on UCF-101 and HMDB-51 bench-
marks. The L-SCNN-16 model outperforms all the tradition-
al methods [1, 30] on two datasets. It also outperforms many
deep learning based methods. On the UCF-101 dataset, our
model outperforms Two-stream [4] by 4% and outperform-
s GRU-RCN [23] by 1.2%, and the L-SCNN-16 model is
comparable with Deeper Two-stream [29] models and Fusion
Two-stream [33]. On the HMDB-51 dataset, our SCNN mod-
el outperforms Two-stream [4] over 5%, FstCN [31] by 5.9%
and Action-Transformation [32] over 1%. All these results
demonstrate the effectiveness of our proposed model.

4. CONCLUSION

In this work, we have incorporated the convolutional opera-
tion and recurrent operation to propose SCNN models, which
are end-to-end trainable and “double deep” in spatial and tem-
poral domains. SCNN model permits feeding two dimension-
al convolved feature maps directly and extracting effective
spatial-temporal features for action recognition. We have in-
troduced asymmetric convolutional layers into hidden-hidden
connections of SCNN layers to decrease the parameter num-
bers and improve the performance of action recognition fur-
ther. And our SCNN models have demonstrated good perfor-
mance on the two challenging datasets.
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