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ABSTRACT   

This paper presents an offline signature verification approach using convolutional Siamese neural network. Unlike 

the existing methods which consider feature extraction and metric learning as two independent stages, we adopt a deep-

leaning based framework which combines the two stages together and can be trained end-to-end. The experimental 

results on two offline public databases (GPDSsynthetic and CEDAR) demonstrate the superiority of our method on the 

offline signature verification problem.  
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1. INTRODUCTION  

Signature verification aims to verify the identity of a person based on his/her chosen signature, i.e. it classifies 

signature samples as “genuine”(created by the claimed individual) or “forgery”(created by the impostor) [1]. Because of 

non-invasive and familiar in daily life, signature verification has huge potential for  financial security and information 

safety and has been widely used to verify a person's identity in legal, financial and administrative areas [2]. Therefore, it 

is a very important research topic in pattern recognition areas.  

In offline signature scenario, the signature is captured after the completeness of writing process, by scanning the 

document containing the signature, and represented as a digital image [3]. Therefore the dynamic information such as 

position and velocity of the pen over time is absent, which makes the problem very challenging. 

The essence of offline signature verification is very similar to other verification problems, such as face verification 

and person re-identification. The core problem is to find good representation and metric to evaluate the similarities 

between samples. During last few decades, many researchers have done some works on the problem. All these works 

include two separate stages: feature extraction and metric learning for classifying signature samples as “genuine” or 

“forgery”. 

In the feature extraction stage, recent works explored a variety of different feature descriptors: such as contour 

feature [4] which encodes directional properties of signature contours and the length of regions enclosed inside letters; 

curvelet transform which uses the energy of the curvelet coefficient computed from the whole of the handwritten 

signature image [5]; surroundedness feature [6] which contains both shape and texture property of signature image; local 

features(Histogram of Oriented Gradients, Local Binary Patterns) [7] which are based on gradient information and 

neighboring information inside local regions of signature image in order to capture the signature's stable parts and 

alleviate the difficulty of global matching. 

In the metric learning stage, there are two main approaches: writer-dependent which are mostly used and writer-

independent. In the former case, a specialized metric model is learned for each individual during training phase, using 

the individual's either only the genuine signatures or genuine and forged signatures. In the testing phase, the learned 

metric model makes a classification on the signature claimed to be written by the particular individual as genuine or 

forgery. In the writer-independent scenario, there is only a single metric model for all users. In this case, a distinct set of 

users is used for training and testing. The model trained with difference vectors of a pair of signatures' feature of all users 

in the training set, learns how to metric the importance of different type of dissimilarities. The classifiers used for this 

stage, besides the most basic classifier (e.g. simple thresholding and nearest-neighbors), include neural networks [6], 

Hidden Markov Model [8], Support Vector Machines [5, 6, 7] and ensemble of these classifiers [9]. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-4477X94-C&_user=8734945&_coverDate=01%2F31%2F2002&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1568438089&_rerunOrigin=google&_acct=C000056894&_version=1&_urlVersion=0&_userid=8734945&md5=b3c791e6ebaf0ba8b5de1e505356f3da&searchtype=a#bib1#bib1


All the existing methods for solving offline signature verification problem consider feature extraction and metric 

learning as two independent stages. In other similar problems, such as face verification and person re-identification, 

researchers have combined feature extraction and metric learning in a unified framework [10, 11, 12, 13]. These works 

achieved better performance on corresponding databases compared to traditional works. Therefore, we adopt the Siamese 

neural network framework [14] which can assess the similarity of two signature images in the pair for solving offline 

signature verification problem, and combine the separate modules together that is feature extraction and metric learning 

in a unified framework. Compared with existing methods, our method has some advantages: 

1. The system can learn a similarity metric from signature image directly. All layers in network are optimized by 

the same objective function, which are more effective than hand-crafted features in traditional methods. 

2. The multi-channel filters learned in network can capture the global and local feature information simultaneously, 

which are more reasonable than the simple fusion strategies in traditional methods. 

3. The structure of our system is flexible and more easily deployed in a real application. 

The rest of this paper is organized as follows: Section 2 describes the system framework and method of our work. 

Section 3 presents the experimental results on two public databases (GPDSsynthetic [15] and CEDAR [16]). Section 4 

concludes the paper with some suggested works in the future. 

 

2. SYSTEM DESIGN 

Unlike most of pattern recognition problems, the input of neural network is a sample and the output is a predicted 

label. For signature verification problem, the “sample → label” style of neural network is not suitable, we constructed 

Siamese neural network which includes two sub-CNN which working in a “sample pair → label” mode [11]. The 

framework of our method is shown in Figure 1. The input of the system is a pair of signature images and the output can 

be viewed as one of two classes (class I: both of two signature images are from the same writer and class II: two 

signature images are from different writers). The input images in the pair were first preprocessed in the same size and fed 

into the CNN in Siamese neural network to extract respective feature. After that, we used the metric method in our 

unified framework to calculate the distance of the respective extracted feature in the pair as the metric for the final 

classification. The whole system can be trained end-to-end. The following subsections we will introduce the preprocess, 

feature extraction and metric learning in details. 

 
Figure 1.  The diagram of the proposed signature verification system. 

 

2.1 Preprocessing 

Preprocessing is a very important step for solving any document analysis problem. The signature images from 

GPDSsynthetic and CEDAR databases are shown in Figure 2, from which we can see there are some differences 

between these signature images. 



 
Figure 2.  Some samples from the CEDAR (first row)  and GPDSsynthetic (second row) signature databases. 

The signature images in CEDAR database are skewed and not clean in background. Therefore, compared with the 

signature images in GPDSsynthetic database, we need more steps to preprocess the signature images in CEDAR 

database. For these images, firstly, we binarized the images using Otsu's method [17]; secondly, we used connected 

component analysis to clean grain noise, we chose a threshold T (T = 7, selected experimentally), and isolated particles 

of size less than T pixels were removed; thirdly, we used Hough Transform to detect and remove some lines which are 

not part of the signature images. After these steps, we got binary images of the original images. At next step we would 

process the original images according to the binary images. Specifically, we only remained the signature pixels 

unchanged where in corresponding binary image the pixels values were 1, and the other pixels values of the original 

images were set to be 255. Finally, we used the skew correction method introduced in [16] to rectify the image. After all 

these steps a sample of original images and preprocessed images is shown in Figure 3. 

 
Figure 3.  The left is the original signature image and the right is the signature image after skew correction. 

After specific steps for preprocessing the signature images of CEDAR database, we further preprocessed images in 

both of two databases with the same strategy. We extracted the signature regions from images and found that the 

signature regions from both of two databases have a variable size. In GPDSsynthetic database, the sizes range from 

80 24 pixels to 2792 1158 pixels and in CEDAR database the sizes range from 168 48  pixels to 1054 440  

pixels. However, when training a convolutional neural network, all inputs are needed to be the same size. So we 

normalized the signature images by the method introduced in [2]. We first normalized the image to the largest image size, 

by padding the images with white background. Next, in terms of CEDAR database we centered the signatures in a 

canvas of size 1060 450 pixels, for GPDSsynthetic database we centered the signatures in a canvas of size 

2800 1200 pixels, aligning the center of mass of the signature to the center of the image. After that, we resized all the 

signature images to a fixed size of 224 512 pixels, using bi-linear interpolation. Note that we performed rescaling 

without deformations. That is, when the original image had a different width-to-height ratio, we padded the less in the 

smaller dimension. 

2.2 Feature extraction 

The feature extraction module in our system is Siamese neural network which is composed of two convolutional 

neural network branches sharing the same parameters. So, we extracted features through CNN with the power of 

automatic feature learning. However, in offline signature verification problem, the famous network architectures such as 

AlexNet [18], VGG [19] and ResNet [20] are not suitable. So we designed a novel CNN which based on the property of 

these famous CNN architectures to fit signature verification problem. The architecture of our network is depicted in 

Figure 4. 



 
Figure 4.  The CNN architecture of our system. 

The first layer in our network is a convolutional layer with 11 11  kernel (including spatial normalization layer and 

rectifier layer) which makes the feature map compact. Then the feature maps produced by the first convolution and max 

pooling layer are processed by two paths. One path is composed of five convolutional layer with shortcut inspired from 

ResNet and four max-pooling layers. The second path is to make use of low level features.  The details of the second 

path are as follows: assuming the feature map size after the first convolutional layer and max-pooling layer is w h , 

where ,w h  are the width and height of the feature map; Because the discriminative feature in the feature map may 

appear at horizontal or vertical direction, so we used max-pooling operation on the feature map on horizontal and vertical 

directions respectively; After the operation, the sizes of the output maps of second path are 1h and 1w . Before last 

fully connected layer, the response maps from two paths are flattened then concatenated and fed to the following fully-

connected layer. Finally, we got 6000 dims feature used for metric learning. 

2.3 Metric learning 

Assuming that the feature pair extracted from CNN learning feature module is
1 2, df f  . Now we need to 

evaluate the similarity between a feature pair. Usually, Cosine or Euclidean distance is the way to measure similarity 

between a feature pair. The Euclidean and Cosine distances are formulated in Eq. (1) and Eq. (2), respectively. 
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From these two equations, we can see that Euclidean distance is the summation of square differences in each 

dimension and Cosine distance is summation of correlations in each dimension. Inspired by the paper [13], we proposed 

a hybrid similarity layer which combines the property of Euclidean and Cosine distances. It is composed of two parts, the 



element-wise absolute difference and multiplication of a feature pair. The forward propagation of the hybrid similarity 

layer is formulated as follows: 
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Where Eq. (4) means element-wise absolute difference of a feature pair which utilizes the absolute difference to replace 

the square difference for further simplifying the computation, compared with Euclidean distance, and Eq. (5) means the 

element-wise multiplication. 

Then we added a linear layer to project the feature vector hybridf  to a 2-dim vector 
^ ^
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, which represents the 

predicted probability that the two signature images belong to the same identity. The whole metric learning module is 

shown as in Figure 5. 

 
Figure 5.  The metric learning scheme of our system. 

We treated signature verification as binary-class classification problem and used cross-entropy loss. 
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Where p  is the target class(same/different) and 
^

p   is the predicted probability. If the signature images in the pair 

belong to the same writer 1 21, 0p p  ; if not 1 20, 1p p  . 

 

3. EXPERIMENTAL RESULTS 

We carried out experiments on two public databases, namely GPDSsynthetic and CEDAR signature databases 

separately. Because the most challenging job for offline signature verification problem is to discriminate between 

genuine signature and skilled forgery, so in this paper, we only considered skilled forgery. Descriptions of data and 

experimental setup are as follows. 

3.1 Experimental setup 

GPDSsynthetic Signature database is an offline signature database. It contains data from 4000 synthetic 

individuals: 24 genuine signatures for each individual, plus 30 forgeries of his/her signatures. All the signatures were 

generated with different modeled pens. 

The database is large and we followed the method in paper [6], divided it equally, and made training and testing set. 

It means the signature images of randomly selected 2000 individuals are used for training and the rest are used for testing. 

Since for each individual there are 24 genuine and 30 forged signatures, we got
2

24 276C  genuine-genuine pairs of 



signatures and
1 1

24 30 720C C  genuine-forged pairs of signatures for each individual. The number of genuine-forged 

pairs is significantly larger than that of genuine-genuine pairs. To avoid the classes imbalance problem, we applied 

undersampling on genuine-forged pairs to make the number of genuine-forged pairs are the same as genuine-genuine 

pairs. Totally, we had 2000 2 276 1104000   signature pairs for training and testing separately. 

CEDAR database is an offline signature database with much smaller size compared to GPDSsynthetic Signature 

database. It contains signatures of 55 volunteer signers belonging to versatile cultural backgrounds. There are 24 genuine 

signatures and skilled forged signatures for each individual. Totally, the database comprises of 1320 genuine and 1320 

forged signatures of 55 signers. 

Since the CEDAR database contains only 55 signature writers, following the divided method in paper [6], we 

selected 5 individuals randomly as testing data and used the signatures of remaining 50 individuals as training data. For 

each individual there are 24 genuine and 24 forged signatures, we got
2

24 276C  genuine-genuine pairs and 

1 1

24 24 576C C  genuine-forged pairs of signatures for each individuals. Similarity, as discussed in GPDSsynthetic 

Signature database, finally we got 2 50 276 27600    pairs as training samples and 2 5 276 2760   pairs as 

testing samples. Because we only selected 5 individuals as testing set, to avoid the effect of selection, we repeated the 

experiment 10 times and reported the average performance on CEDAR database. 

3.2 Model training 

In our verification system, feature learning and metric learning are unified in one framework trained by end-to-end 

with SGD algorithm on torch7 [21] platform. 

For GPDSsynthetic database, we trained the model with hyper-parameters listed in Table 1: 

Table 1 The training hyper-parameters of GPDSsynthetic database. 

Parameter Value 

Initial learning Rate 0.01 

Learning Rate schedule 0.1LR LR   (every 3 epochs) 

Weight Decay 
45e

 

Momentum 0.9 

Batch Size 120 

Epoch times 10 

Table 2 The training hyper-parameters of CEDAR database. 

Parameter Value 

Initial learning Rate 0.001 

Learning Rate schedule 0.1LR LR   (every 10 epochs) 

Weight Decay 
45e

 

Momentum 0.9 

Batch Size 120 

Epoch times 30 

For CEDAR database, we used the model trained in GPDSsynthetic database for fine-tuning, similar to training 

strategy in GPDSsynthetic with small modification. The training hyper-parameters of CEDAR database are listed in 

Table 2: 



3.3 Experimental result 

There are two metrics for evaluating the offline signature verification system: False Rejection Rate (FRR) and False 

Acceptance Rate for skilled forgeries ( skilledFAR ). The first one is fraction of the genuine signatures classified as 

forgery, while the second one is fraction of skilled forgery classified as genuine signatures. These two metrics heavily 

depend on suitable selection of threshold values. ROC analysis [22] is commonly consulted to get a suitable threshold. 

We drew an ROC curve for GPDSsynthetic and CEDAR databases to determine the equal error rate (EER) where FAR 

rate is the same as FRR rate. The ROC curve of GPDSsynthetic and CEDAR databases are shown in Figure 6, 7. 

 
Figure 6.  A typical ROC curve for GPDSsynthetic database. 

 
Figure 7.  A typical ROC curve for CEDAR database. 

We compared our system's result with other results on GPDS corpus and CEDAR database; the comparisons are 

shown in Table 3, 4. 

From Table 3, 4 we can see that the proposed system outperforms all the compared methods on GPDS corpus and 

achieves comparable result with the state-of-the-art in CEDAR database. The GPDSsynthetic is the biggest public offline 

signature database; the performance on this database is more persuasive which demonstrate the superiority of our system. 

Our proposed method also has advantage in its workability as writer independence system. However, most of the 

systems in the Table 3, 4 (expect surroundness features by Kumar et al. [6]) work depending on the writer, which is not 

economical if a new writer is introduced these systems have to be updated. Finally, our proposed method combines 

feature learning and metric learning in a unified framework which is simple and elegant with good performance. We also 

evaluated different metric methods. The result in Table 5 shows the hybrid similarity learning is better than simple 

Cosine and Euclidean distances which is consistent with the theory inference introduced in metric learning subsection. 



To evaluate the effects of undersampling, we did experiments with and without undersampling on training sets and 

testing sets. These results are listed in Table 6. We can see that understanding influences the performance only slightly. 

This demonstrates the robustness of our system. 

Table 3 Comparison between proposed and other published method on CEDAR database. 

Systems #Signer Accuracy EER 

Chen et al. [23] 55 83.60 16.30 

Kumar et al.[24] 55 88.41 11.59 

Kumar et al.[6] 55 91.67 08.33 

Ours 55 91.50 08.50 

Table 4 Comparison between proposed and other published method on GPDS signature corpus. 

Systems #Signer Accuracy EER 

Ferrer et al.[25] 160 86.65 13.35 

Vargas et al.[26] 160 87.67 12.23 

Kumar et al.[6] 300 86.24 13.76 

Soleim et al.[27] 4000 86.70 13.30 

Ours 4000 89.63 10.37 

Table 5 The EER results of our system with different metric learning method on GPDSsynthetic database. 

Metric Method EER 

Cosine Distance 20.46 

Euclidean Distance 12.30 

Hybrid Similarity learning 10.37 

Table 6 The EER results of our system with different sampling on GPDSsynthetic database. 

sampling on train sampling on test EER 

No No 10.65 

Yes No 10.87 

Yes Yes 10.37 

 

4. CONCLUSION 

This paper proposed an offline signature verification approach for combining feature extraction and metric learning 

in a unified framework using convolutional Siamese neural network. We designed CNN module and metric learning 

module suitably for offline signature verification problem. The performances on two public databases GPDS and 

CEDAR demonstrate the superiority of the proposed approach. In the future, we will design better network architecture 

which extracts more discriminative feature and make the whole system more practical. 
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