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ABSTRACT

Recent progress in semantic segmentation has been driven
by improving the spatial resolution under Fully Convolution-
al Networks(FCNs). To address this problem, we propose
a Densely Connected Deconvolutional Network (DCDN) for
semantic segmentation. In DCDN, multiple shallow decon-
volutional networks, which are called as DCDN units, are s-
tacked one by one to make the structure deeper and guaran-
tee the fine recovery of localization information, meanwhile,
the inter-unit and intra-unit dense connections are designed
to make the network easy to train since the connections im-
prove the flow of information and gradients throughout the
network. Besides, the intermediate supervisions are applied
to each DCDN unit to ensure the fast convergence. Exten-
sive experiments on two urban scene datasets, i.e.,CamVid
and GATECH, demonstrate that the proposed model achieves
better performance than some state-of-the-art methods with-
out using any post-processing, pretrained model, nor temporal
information, whilst requiring less parameters.

Index Terms— Dense connection, Deconvolutional Net-
work, Semantic Segmentation, Intermediate supervision

1. INTRODUCTION

Semantic segmentation is to predict the category of individual
pixels in an image, and it has been one of the most importan-
t fields in computer vision. Recently, most of the semantic
segmentation methods are based on the architecture of Full
Convolutional Networks (FCNs) [1] which usually adopts a
certain pretrained classification network and outputs a prob-
ability map per class for arbitrary-sized input. However, the
classification network with necessary downsampling opera-
tions sacrifices the spatial resolution of feature maps to obtain
the invariance to image transforms. The resolution reduction
results in poor object delineation and small spurious regions
in segmentation output.

Many approaches have been proposed to solve the above
problem. One way is to apply dilated convolutions [2, 3] to
enlarge the receptive field and capture larger context infor-
mation without losing resolution. Another type of methods
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Fig. 1. Overall architecture of our approach. (Best viewed in
color.)

is to recover the spatial resolution by an upsampling or de-
convolutional path [4, 5, 6, 7], which is also our focus in this
paper. In those methods, the deconvolutional and unpooling
layers are appended with a symmetric structure of the cor-
responding convolutional and pooling layers. However, the
symmetric structure almost doubles the parameter size of the
original convolutional structure. This brings much difficulty
in training models. To make the model easy to convergence,
Wang et al. [4] use VGG16 network [8] as pretrained weights
to obtain better initial parameters of deconvolutional network,
and Noh et al. [5] use two-stage training on single object im-
ages and multi-object images, respectively. The both works
are based on the VGG framework, which is a relatively shal-
low structure in contrast to the lastest popular deeper models,
e.g., ResNet [9] and DenseNet [10]. Consequently, the re-
stricted learning ability of such a shallow structure is also an
important problem that needs to be solved.

To address the above problems, we design a deeper and
easily optimized network called as Densely Connected De-
convolutional Network (DCDN) for semantic segmentation.
In DCDN, some shallow deconvolutional networks (called as
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Fig. 2. The structure of DCDN unit. (Best viewed in color.)

DCDN units in our work) are stacked one by one, i.e., feeding
the output of each unit as the input into its next unit. Com-
pared to the deconvolutional models [4, 6, 7], such a stacked
architecture increases the layers of the network by repeating
DCDN units and shortens the path between downsampling
and upsampling process with more shallow structure. In each
DCDN unit, we adopt the similar architecture of DenseNets
[10], but add an upsampling path to recover the full input res-
olution. As the number of the stacked DCDN units increas-
es, the difficulty in training models becomes a major prob-
lem. We solve the problem from the following three sides.
First, we apply the intermediate supervisions for DCDN unit-
s. Specifically, the outputs of each DCDN unit are mapped
to pixel-wise labeling maps by a classification layer, and the
result of the last unit is used to obtain the final prediction.
Second, we import intra-unit and inter-unit dense connections
to help the network optimization process. The dense connec-
tions as short paths from the early layers to the later layers are
beneficial to the flow of information and gradients throughout
the network. Specifically, the intra-unit dense connections are
the direct links from the inputs of previous layers to the ones
of back layers within a dense block, and the inter-unit dense
connections are the short paths between any two adjacent D-
CDN units, that is each unit inputs are the concatenation of the
previous unit outputs and its inputs. Third, in a single DCD-
N unit, skip connections are adopted to combine the feature
maps from the downsampling path with the upsampling out-
put, and a skip connection layer with convolution calculations
is used for better feature fusion. The details of the proposed
architecture are shown in Fig. 1. Our main contributions can
be summarized as follows:

• DCDN stacks multiple shallow deconvolutional net-
works to enhance the learning ability of the network,
and guarantee the fine recovery of localization infor-
mation.

• The intermediate supervisions for DCDN units, the
intra-unit and inter-unit dense connections, and the
skip connections jointly result in faster convergence of
the proposed network.

• The state-of-the-art performance on two challenging
benchmarks is achieved, without any post-processing,
pretrained model, nor any temporal information, whilst
requiring less parameters.

2. MODEL

The detailed structure of our proposed model is described in
this section. We first scan the basic architecture of DenseNets
[10] which is the pioneer work to introduce dense connec-
tions. Then we combine dense connections into the deconvo-
lutional framework to design a DCDN unit. Further on, we
build our network by stacking DCDN units for more refined
prediction, where inter-unit dense connections are employed.
Some implementation details of our model are represented.

2.1. Review of DenseNets

Recently, DenseNets [10] have shown strong learning abil-
ity with less memory cost and efficient feature reuse, which
achieve state-of-the-art performance on ImageNet [11]. Com-
pared with ResNets, DenseNets make full use of short paths to
avoid the vanishing gradient problem and improve the flow of
information. DenseNets mainly consist of dense blocks and
transition layers. The input of each convolutional layer with-
in a dense block is the concatenation of all feature outputs of
previous layers at a given resolution. Specifically, consider
xl is the output of the lth layer in a dense block, xl can be
computed as follows:

xl = Hl ([x0, x1, . . . , xl−1]) (1)
where [x0, x1, . . . , xl−1] stands for the concatenation of the
feature maps x0, x1, . . . , xl−1, and x0 is the input of the dense
block. Meanwhile, Hl is defined as a composite function of
operations: Batch Normalization (BN)[12], a Rectified Lin-
ear Unit (ReLU), a 3 × 3 convolution operation (Conv) and
dropout[13]. Each dense block is followed by a transition lay-
er, which do convolution and pooling to change the number
and the size of feature maps. Finally, a softmax classifier is
attached to make prediction.

2.2. Shallow Deconvolutional Network (DCDN unit)

Inspired by the effectiveness of DenseNets [10], we import
intra-unit dense connections and skip connections to design
each DCDN unit, where a typical deconvolutional framework
including both downsampling and upsampling operations is
explored. It is noted that the dense connections in downsam-
pling and upsampling paths are different in our design, and
we will present the details in the following. The structure of
DCDC unit is illustrated in Fig. 2.



In the downsampling path of DCDN unit, we adopt con-
volutional dense blocks and down-transition layers to encode
features to a low resolution. In the block, the input of the con-
volutional layer (called as convolutional dense block layer) is
the concatenation of the input and output of its previous con-
volutional layer. Each convolutional dense block is followed
by a down-transition layer, which consists of a convolutional
layer and a max-pooling layer.

Meanwhile, we apply deconvolutional dense blocks and
up-transition layers to implement the upsampling operation.
As illustrated in Fig. 2, the input of the convolutional lay-
er (called as deconvolutional dense block layer) within a de-
convolutional dense block is obtained in the same way as the
convolutional dense block layer, while the block output is
the concatenation of outputs of its convolutional layers. This
dense connection pattern avoids the linear growth in the num-
ber of feature outputs of blocks, which reduces computational
cost and memory demanding, meanwhile bring efficient fea-
ture reuse. Each deconvolutional dense block is followed by
an up-transition layer which enlarges the size of feature maps
through a deconvolutional operation.

Moreover, we use skip connection with a convolutional
layer to connect the convolutional dense block layer with cor-
responding up-transition layer of the same resolution, which
conveys spatial information from downsampling path to up-
sampling path. In order to obtain global perspective as much
as possible, we stack more layers in the first deconvolutional
dense block, which has lowest resolution in a DCDN unit.

2.3. Densely Connecting DCDN units

We extend on a single DCDN unit by stacking multiple D-
CDN units one-by-one with inter-unit dense connections. As
illustrated in Fig. 1, the input of each DCDN unit is the con-
catenation of all previous unit outputs as well as the first unit
input. For example, the input of the third unit is the concate-
nation of the output of the first two units, as well as the input
of the first unit. The inter-unit dense connections make gradi-
ents spread easily from the later units to front units and make
feature maps reused forwardly.

Meanwhile, intermediate supervision is also applied in
our model to assist training. The output of each DCDN u-
nit is fed to a classification layer with a bilinear interpolation
layer attached to recover the spatial resolution of feature map-
s. In the cascade, the early predictions are coarse, while the
subsequent DCDN units conduct refinements to the previous
ones progressively.

As shown in Fig. 1, our highest resolution of DCDN unit
is set to a quarter of input images. The reason for this design is
that we can reduce GPU memory usage of a single DCDN u-
nit to stack more units. Based on this design, the full network
starts with a convolutional layer followed by convolutional
dense blocks and down-transition layers to bring the resolu-
tion down to a quarter of input images. Then DCDN units are

stacked to increase layers of the network. Finally, the feature
maps from the last DCDN unit are fed to up-transition layers
and dense blocks to recover the resolution of the feature maps
to input images. Skip connection layers are also used for a
finer information recovery. The pixel-wise cross-entropy loss
is applied to all predictions in the network.

2.4. Implementation Details

In our design, all convolutional layers within a dense block
are composed of BN, ReLU, and 3 × 3 Conv followed by
dropout with probability 0.2. Down-transition layer is com-
posed of BN, ReLU, 1×1 Conv, and dropout with probability
0.2, followed by 2× 2 max pooling. Up-transition layer con-
sists of a 4× 4 deconvolution with stride 2. Skip convolution
layer is composed of BN, ReLU, and 1 × 1 Conv. For the
first deconvolutional dense block, we stack 8 convolution lay-
ers for better global perspective, while other blocks have 4
convolutional layers. The channel numbers of convolutional
layers in a dense block are all set to 16.

We implement our network with Caffe [14], and optimize
it using RMSprop [15], with batchsize of 20. We train our
models in two stages. In the first stage, data augmented with
random crops of 224 × 224 is used, and the initial learning
rate is set to 0.001. In the second stage, we finetune our model
with full images resized to 320×320, and learning rate of 1e-
4. During inference, we also resize full images to 320 × 320
before fed into network. Meanwhile, we use the image and
its mirror in both training and inference.

3. EXPERIMENTS

Extensive experiments are conducted on CamVid [16] dataset
and CATECH [17] dataset. Our approach is compared with
some of the state-of-the-art methods, and we achieve the best
performance without any post-processing, pretrained mod-
el, nor any temporal information. Following [18], we apply
Global Avg (Percentage of correctly labeled pixels over the
whole annotated pixels) and Mean IoU (Percentage of cor-
rectly labeled pixels in a class over the union set of pixel-
s predicted to this class and groundtruth, and then averaged
over all classes) to evaluate our approach.

3.1. Results on CamVid Dataset

CamVid [16] is a street scene understanding dataset which
consists of 5 video sequences. Following [6], we split the
dataset into 367 training images, 100 validation images, and
233 test images. The resolution of each image is 360 × 480
and all images belong to 11 semantic categories. Results on
the CamVid test set are reported in Table 1.

First, we verify the effect of stacking multiple DCDN u-
nits. As shown in Table 1, we refer to the network stacking
k DCDN units as DCDNMk . We find that the performance



Table 1. Semantic segmentation results on CamVid
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SegNet [6] Yes 29.5 M 55.6 88.5
Bayesian SegNet [7] Yes 29.5 M 63.1 86.9

DeconvNet [5] Yes 252 M 48.9 85.9
DeepLab-LFOV [2] Yes 37.3 M 61.6 -

Dilation8 + FSO [19] Yes 140.8 M 66.1 88.3
HDCNN-448+TL [20] Yes 29.5 M 65.9 90.9
FC-DenseNet56 [18] No 3.5 M 65.8 90.8

FC-DenseNet103 [18] No 9.4 M 66.9 91.5
DCDNM 1 No 2.4 M 65.5 90.8
DCDNM 2 No 4.4 M 66.4 91.0
DCDNM 3 No 6.5 M 66.9 90.9

DCDNM 2+ No 12.8 M 66.8 91.3
DCDNM 4 No 8.7 M 68.4 91.4

increases with the growth of DCDN unit number. Particu-
larly, the Mean IoU improves from 65.5 to 68.4 with the unit
number increasing from 1 to 4. The noticeable trend indicates
that, with increasing number of stacked units, the model ben-
efits from deeper network as well as more parameters. More-
over, stacking multiple DCDN units makes a coarse-to-fine
prediction process, thus improving the network performance.
However, it also leads to more computational stress and hard-
er optimization, so we stack up to 4 DCDN units as more units
bring too slight improvements.

Second, we explore the effect of stacked network design.
It is to compare the performance between the network stack-
ing more DCDN units with shallow structure and the one
stacking less DCDN units with deep structure at the same
network depth. To this end, we design a new DCDN unit
and refer to the corresponding network as DCDNMk+, where
the number of convolutional layers in dense blocks are dou-
bled. We compare a two-stacked network DCDNM 2+ and a
four-stacked network DCDNM 4 which are of almost the same
depth. As shown in Table 1, the performance of DCDNM 4 is
1.6 percent higher than DCDNM 2+. Moreover, the parame-
ters of DCDNM 4 is much less than DCDNM 2+. The compar-
ison indicates that stacking multiple shallow DCDN units is
more effective and efficient than employing deep DCDN units
at the same network depth, as shallow DCDN units with the
stacked design are more conducive to the flow of information,
optimization of the network.

When compared with other methods[2, 5, 6, 7, 19, 20,
18], our model DCDNM 4 achieves new state-of-the-art per-
formance with less parameters. Among the methods, [19,
20] apply spatio-temporal information to boost their perfor-
mance. And [6, 7, 2, 5, 19, 20] use the model pretrained
on large-scale datasets to initialize the network which im-
proves the performance remarkably. Besides, [2, 20] refine
the outputs of the model by using CRF post-processing. It

Table 2. Semantic segmentation results on GATECH
Temporal Global Mean

Method Info Avg IoU
3D-V2V-scratch [21] Yes 66.7 -
3D-V2V-finetune [21] Yes 76.0 -
FC-DenseNet103 [18] No 79.4 -
HDCNN-448+TL [20] Yes 82.1 48.2

DCDNM 4 No 83.5 49.0

should be noticed that our model outperforms all the meth-
ods above, where any post-processing, pretrained model, and
temporal information are all not applied to our model. While
these processes are complementary to our approach and could
bring additional improvements. Particularly, [18] also em-
ploys DenseNet based on a FCN-like [1] fashion for semantic
segmentation. Our model DCDNM 4 performs much better
than their best model FC-DenseNet103, as our model benefits
from the stacked deconvoluational structure as well as more
appropriate dense connections and skip connections.

3.2. Results on GATECH Dataset

In order to verify the generalization of our models, we eval-
uate our network on GATECH [17] dataset, which is much
larger than CamVid. GATECH dataset is a large video set
of outdoor scenes which consists of 63 videos with 12241
frames for training and 38 videos with 7071 frames for test-
ing. The dataset is labeled with 8 semantic classes which
are sky, ground, solid, porous, cars, humans, vertical mix,and
main mix.

Our results on GATECH test set are reported in Table 2.
We employ the model DCDNM 4 pretrained on CamVid and
finetune it on GATECH. Our model outperforms all curren-
t state-of-the-art methods, which confirms the effectiveness
of our approach. Specially, our model trained without us-
ing any temporal information performs better than the models
[21, 20] which exploit spatio-temporal relationships between
video frames.

4. CONCLUSION

We have presented Densely Connected Deconvolutional Net-
work (DCDN), a novel deep network architecture for seman-
tic segmentation. We stack multiple DCDN units to make
network deeper and realize a coarse-to-fine learning process,
meanwhile dense connections are adopted to promote net-
work optimization. Those designs are inspired by a general
observation that deeper networks have stronger learning abil-
ity, and dense connections improve the information flow and
feature reuse. We achieve the state-of-the-art performance
on two challenging benchmarks for urban scene understand-
ing, i.e. CamVid [16] and CATECH [17], without any post-
processing, pretrained model, nor any temporal information.
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