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Abstract
In this paper, we investigate the problem of face
clustering in real-world videos. In many cases,
the distribution of the face data is unbalanced. In
movies or TV series videos, the leading casts ap-
pear quite often and the others appear much less.
However, many clustering algorithms cannot well
handle such severe unbalance between the data dis-
tribution, resulting in that the large class is split
apart, and the small class is merged into the large
ones and thus missing. On the other hand, the data
distribution proportion information may be known
beforehand. For example, we can obtain such in-
formation by counting the spoken lines of the char-
acters in the script text. Hence, we propose to make
use of the proportion prior to regularize the cluster-
ing. A Hidden Conditional Random Field(HCRF)
model is presented to incorporate the proportion
prior. In experiments on a public data set from real-
world videos, we observe improvements on cluster-
ing performance against state-of-the-art methods.

1 Introduction
We investigate the problem of clustering faces in real-world
videos. It is an important problem in computer vision [Cinbis
et al., 2011; Wu et al., 2013; Xiao et al., 2014], which can
be applied to many fields, including automatically determin-
ing the cast of a feature-length film, content based video re-
trieval, rapid browsing and organization of video collections,
automatic collection of large-scale face data set, etc. How-
ever, this task is challenging. In real-world videos, lighting
conditions, facial expressions and head poses may drastically
change the appearance of faces.

Face clustering is traditionally viewed as an unsupervised
process. However, due to the difficulties mentioned above,
many efforts have been devoted to seeking for extra knowl-
edge beyond the data instances themselves to obtain weak
supervision for clustering. In videos, the most often used
knowledge is the relationships within and between the face
tracks (where each face track is a sequence of faces) [Wu et
al., 2013; Xiao et al., 2014; Zhang et al., 2009], which form
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two types of constraints during clustering: 1) the must-link
constraint: the faces in the same face track must belong to
the same person, no matter how different the appearances of
the faces look like; 2) the cannot-link constraint: if two face
tracks overlap in some frames, then faces in these two tracks
must belong to different persons, no matter how similar they
look like. Such kind of knowledge can be considered as the
“instance-level prior”. They cannot regularize the clustering
process globally.

Usually, most of the existing clustering algorithms cannot
well cluster the data with unbalanced distributions. However,
the unbalanced data are common in real-world applications.
In movies or TV series videos, the leading casts appear quite
often and the rest appear much less. However, many clus-
tering algorithms cannot well handle such severe unbalance
between the data distribution, resulting in that the large class
is split apart, and the small class is merged into the large ones
and thus missing. To deal with this problem, we propose to
make use of the data distribution proportion prior during clus-
tering to protect the large class from being split and the small
class from being merged. Such knowledge can be easily ob-
tained by exploiting the external sources such as the script
text. One can count the spoken lines of each character in the
script text to get the proportion information. Such kind of
knowledge can be considered as the “cluster-level prior”.

In this paper, we propose a probabilistic clustering model
named as Hidden Conditional Random Field (HCRF). This
model can incorporate both the instance-level prior and the
cluster-level prior in a unified framework. The must-link and
cannot-link constraints are naturally embedded in the pair-
wise potentials of the HCRF model. The proportion prior is
set as a regularizer when we optimize the posterior probabil-
ity of the model given the data.

Our HCRF model is different from the traditional CRF
model as the observation model of the traditional CRF is
learned in a supervised way. In our model, as there is no
class label information available for the hidden nodes dur-
ing model training, the parameters of the observation model
are optimized in an Expectation-Maximization (EM) fash-
ion. Our model is also different from the Hidden Markov
Random Fields (HMRF)[Koller and Friedman, 2009] which
is used in [Wu et al., 2013]. HMRF is a generative model
which focuses on describing how the labels can probabilisti-
cally “generate” observations, whereas HCRF is a discrim-
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inative model which does not expend modeling efforts on
the observations. It directly describes how to take observa-
tions and assign them labels [Sutton and McCallum, 2012;
Lafferty et al., 2001].

In summary, the contributions of our work include:
1. We propose to use the new proportion prior knowledge

generated from external textual sources in the face clus-
tering.

2. As there is no class label known during clustering, it
is difficult to determine which cluster best represents
which class. Hence, we design a regularizer using the
lower bound of KL divergence between the prior pro-
portions and the clustering proportions to minimize the
proportion loss.

3. By incorporating both the instance-level and cluster-
level knowledge on the video face data, a HCRF model
is developed for face clustering, whose effectiveness is
demonstrated in experiments on a public data set with
six real-world videos.

The rest of the paper is organized as follows. After re-
viewing relevant previous works in Section 2, we describe
the HCRF model and the use of proportion prior in Section
3, and provide the optimization in Section 4. Experimental
evaluations and comparisons of our method are reported in
Section 5 and Section 6 concludes the paper.

2 Related work
Face clustering in videos has become a hot topic in recent
years. The related works can be grouped into two categories:
purely data-driven methods and clustering with prior knowl-
edge. Most of the unsupervised methods[Fitzgibbon and Zis-
serman, 2002; 2003; R.Wang et al., 2008; Hu et al., 2011;
Arandjelovic and Cipolla, 2006] focused on obtaining a good
distance measure or mapping raw data to a new space for bet-
ter representing the structure of the inter-personal dissimilar-
ities from the unlabeled faces.

Above data-driven methods exploit the information inside
of the data instances without using any external knowledge.
In the videos, the easily available must-link and cannot-link
constraints generated from the relationships within and be-
tween the face tracks have been explored in the face cluster-
ing. In [Vretos et al., 2011], the constraints are exploited to
modify the distance matrix and to guide the clustering. How-
ever, the method is very computationally expensive. As re-
ported in [Vretos et al., 2011], it takes about 6 days on a data
set of 10000 faces. Cinbis et al. [Cinbis et al., 2011] pro-
posed an unsupervised logistic discriminative metric learning
(ULDML) method. A metric is learned such that must-linked
faces are close, while cannot-linked faces are far from each
other. More recently, Wu et al. [Wu et al., 2013] proposed a
probabilistic constrained clustering method based on the Hid-
den Markov Random Fields (HMRF) model for face cluster-
ing in videos. The latest work on face clustering with priors
was presented by Xiao et al. [Xiao et al., 2014]. They learn a
weighted block-sparse low rank representation (WBSLRR).
A weighted block-sparse regularizer on the data representa-
tion is designed to incorporate the available constraints, so
that the resultant data representation is more discriminative.

Face clustering using prior knowledge can be treated as a
constrained clustering problem, which has been studied in the
works such as COP-KMEANS [Wagstaff et al., 2001], con-
strained EM [Shental et al., 2004], HMRF-KMeans [Basu et
al., 2006] and Penalized Probabilistic Clustering(PPC) [Lu
and Todd, 2007]. However, most of the prior knowledge used
is on the instance level. Few works exploit the data distribu-
tion proportion prior in clustering, which has effects on the
cluster level. This is because during the clustering, there is
no class label known. It is difficult to determine which clus-
ter best represents which class. Hence, a few works use the
proportion prior on classification problems. Yu et al. [Yu et
al., 2013] proposed a method called proportion-SVM, which
explicitly models the latent unknown instance labels together
with the known group label proportions in a large-margin
framework. Lefort et al. [Lefort et al., 2011] addressed the
inference of probabilistic classification models using the pro-
portion prior.

3 Our method
The faces in videos are usually collected in the form of face
tracks. A video usually contains many face tracks appearing
along the timeline in the video. During the face clustering,
faces in a face track should belong to one cluster while the
faces from temporally overlapped face tracks should be as-
signed into different clusters. Therefore, the problem of face
clustering in videos with proportion prior can be defined as
follows:

3.1 Problem formulation
Given unlabeled data X = {x1, x2, · · · , xn|xi ∈ Rd}, our
goal is to partition X into K (predefined) disjointed clus-
ters. The latent categorical class label set is denoted as
Y = {y1, y2, · · · , yn}, y ∈ {1, 2, · · · ,K}. Further pro-
vided is the proportion prior for each class in the whole data
set, denoted as Π = {π1, · · · , πK}, where πi ∈ [0, 1] is
the proportion of class i; and the must-link and cannot-link
constraints, denoted as C = {Cml, Ccl}, where the must-
link constraint Cml(xi, xj) indicates that xi and xj should
belong to the same cluster while the cannot-link constraint
Ccl(xi, xj) indicates that xi and xj should be assigned into
different clusters. Based on this information, we want to find
a model f : X → Y which can best predict y ∈ Y for obser-
vations x ∈ X , pairwise constraints C and proportion prior
Π.

3.2 Hidden Conditional Random Field
We introduce a novel model by generalizing the traditional
CRF, named as Hidden Conditional Random Field (HCRF),
which is shown in Fig. 1. The label variables Y are unob-
served, and conditioning on the observations X . Y constitute
a Markov random field. The general formulation is given as
follows:

P (Y |X; Θ, β) =
1

Z(X)

n∏
i

ψu(yi|X; Θ)ψp(yi, yNi |X;β),

(1)
where ψu is the unary potential function, ψp
is the pairwise potential function, Z(X) =
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Figure 1: Hidden Conditional Random Field model∑
y

∏n
i (ψu(yi|X; Θ)ψp(yi, yNi

|X;β)) is the partition
function, yNi is the neighborhood set of yi, Θ and β are the
parameters.

A model with the same name “HCRF” was also given in
[Quattoni et al., 2007], which is different from ours. They
assume there is an additional latent layer between the obser-
vations X and the observed label variables Y . That HCRF is
a three-layer model, and used in supervised learning, while
our HCRF is a two-layer model, and used in unsupervised
learning.

Unary potential function
The unary potential models the relations between observa-
tions X and label variables Y . Different from the traditional
CRF in which the unary potential function is formulated as
the multi-class logistic regression, we adopt the simple expo-
nential function as follows:

ψu(yi|xi; Θ) =

K∏
k=1

(exp(θTk xi))
I(yi=k), (2)

where Θ = {θ1, · · · , θK}. I(·) denotes the indicator func-
tion: if a = 1, then I(a) = 1, otherwise I(a) = 0.

Pairwise potential function
The pairwise potential embeds the correlations between la-
bel variables Y . Since the initial pairwise constraint matrix
W that represents Constraints C is usually sparse, it provides
limited information to guide clustering. Constraint propaga-
tion based on the local smoothness assumption can produce
many soft constraints. We use the constraint propagation in
[Lu and Ip, 2010] to compute our neighborhood system V as
follows:

V = (1− α)2(I − αL)−1W (I − αL)−1, (3)
where α ∈ (0, 1) is the constraint propagation degree and L
is the laplacian matrix. V is a dense constraint matrix where
−1 ≤ vij ≤ 1. vij > 0 means the positive correlation,
i.e., yi and yj should be same; vij < 0 means the negative
correlation, i.e., yi and yj should be different; vij = 0 means
no correlation. |vij | indicates the constraint confidence.

Based on neighborhood system V , the pairwise potential
between yi and yj is defined as follows:
ψp(yi, yj |X;β) = exp(βφ(yi, yj))

= exp(β[P (yi = yj)− I(vij > 0)]vij),

(4)

where φ(yi, yj) denotes the pairwise energy function, P (yi =
yj) is the probability that yi = yj , β is the trade-off param-
eter between the unary and pairwise potentials, and it will be
learned. I(·) denotes the indicator function.

3.3 Cluster proportion loss
In order to deal with the unbalanced distribution of cluster
proportions, we use the KL divergence between prior propor-
tions and the actual proportions as the proportion loss. The
difficulty to use the proportion prior is that the class label of
each cluster is unknown in the clustering. Thus, we cannot
determine which prior proportion corresponds to which clus-
ter. There are K! possible correspondences between the prior
proportions and the clusters. It is computationally infeasi-
ble and unnecessary to enumerate all the correspondences to
find the most likely one that minimizes the KL divergence
between the two proportion distributions. Assume the actual
cluster proportions are denoted asB = {b1, · · · , bK}, we use
the KL divergence DKL(sort(Π)||sort(B)) as the propor-
tion loss, where sort(·) is the vector in which the elements
are sorted in the ascending(or descending) order.

Theorem 1. DKL(sort(Π)||sort(B)) is the lower bound
of DKL(Π||B).

Proof. Given any bijection correspondence between sets Π
and B in which any element of set Π corresponds to exactly
one element of setB, we sort elements of set Π in the ascend-
ing(or descending) order to get vector sort(Π) = π1 · · ·πK
while maintain the bijection relation to get another vector
B1 = b1 · · · bK , where πi corresponds to bi and 1 ≤ i ≤ K.
Then we choose any two elements bi and bj , subject to that
i < j and (πi − πj) ln bi

bj
≤ 0, i.e., (πi − πj)(bi − bj) ≤ 0,

and swap them until vector B1 becomes vector sort(B). The
change of the KL divergence for the hth swapping can be
computed as follows:

∇h = DKL(sort(Π)||Bh+1)−DKL(sort(Π)||Bh)

= πi ln
πi
bj

+ πj ln
πj
bi
− πi ln

πi
bi
− πj ln

πj
bj

= πi ln
bi
bj

+ πj ln
bj
bi

= (πi − πj) ln
bi
bj

≤ 0

where vector Bh becomes new vector Bh+1 after the hth
swapping. After all the swappings, the total change of
the KL divergence is ∇ = DKL(sort(Π)||sort(B)) −
DKL(sort(Π)||B1) =

∑
h∇h ≤ 0. There-

fore, DKL(sort(Π)||sort(B)) is the lower bound of
DKL(Π||B).

4 Objective function and optimization
4.1 Objective function
The goal is to find the optimal labels Y ∗ and parameters Θ∗

and β∗ that can best explain observations X , pairwise con-
straints C and proportion prior Π. Since computing the par-
tition function Z in Eq. (1) is intractable, we use the pseudo-
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Algorithm 1 EM for Hidden Conditional Random Field
Input: data X , cluster number K, neighborhood system V

and proportion prior Π
Output: optimal parameters Θ∗, β∗ and optimal labels Y ∗

1: Initialize Θ(0) and P (0)(Y |X) by Kmeans;
2: while not converge do
3: t=t+1;
4: learn Θ(t) based on P (t−1)(Y |X), β(t−1) and Π;
5: learn β(t) based on P (t−1)(Y |X), Θ(t) and Π;
6: get P (t)(Y |X) from P (t−1)(Y |X), Θ(t) and β(t);
7: end while
8: return Θ∗ = Θ(t), β∗ = β(t) and Y ∗ =

arg maxY P
(t)(Y |X)

likelihood to approximate it. In this way, the posterior proba-
bilities of data X can be factorized as follows:

P (Y |X; Θ, β) =
n∏
i

P (yi|xi, yNi ; Θ, β), (5)

with

P (yi|xi, yNi ; Θ, β) =
ψu(yi|xi; Θ)ψp(yi, yNi |X;β)

zi
, (6)

ψp(yi, yNi
|X;β) =

∏
j∈Ni

ψp(yi, yj |X;β), (7)

where zi =
∑
yi
ψu(yi|xi; Θ)ψp(yi, yNi

|X;β) is the local
partition function.

In order to avoid the extremely small values caused by the
production of many posterior probabilities, we turn to the log
likelihood. Therefore, the objective function based on the log
pseudo-likelihood can be written as follows:

Y ∗,Θ∗, β∗ = arg max
Θ,β

(logP (Y |X; Θ, β)

− µDKL(sort(Π)||sort(B)))

= arg max
Θ,β

(

n∑
i=1

logP (yi|xi, yNi ; Θ, β)

− µDKL(sort(Π)||sort(B))). (8)

4.2 Optimization
Our HCRF is first initialized via Kmeans and then optimized
in an expectation-maximization(EM) framework. The poste-
rior probabilities of each xi ∈ X in K different states are
expected and then parameters Θ and β are learned by max-
imizing the expectations. At last, the optimal labels Y ∗ can
be inferred with optimal parameters Θ∗ and β∗. The main
framework is given in Algorithm 1.

E step
We use the mean field theory to approximate the Markov de-
pendencies between label variables Y . In the tth EM itera-
tion, when estimating the probability of label variable yi in
state k, i.e., P (t)(yi = k|xi, yNi ; Θ(t), β(t)), we consider the
probabilities of its neighborhood label variables yNi in that
state, i.e., {P (t−1)(yj = k|xj , yNi

; Θ(t−1), β(t−1))}yj∈yNi

to compute the pairwise potentials of yi. For clarity, we ab-
breviate P (t)(yi|xi, yNi

; Θ(t), β(t)) as P (t)(yi|xi).

M step
In the tth EM iteration, given the posterior probability
P (t−1)(yi|xi), we update the parameters by maximizing the
expectation of the log pseudo-likelihood in Eq. (8). Parame-
ters Θ and β are learned once in a sequential manner. First,
parameter Θ can be optimized by maximizing the following
objective function.

Θ(t) = arg max
Θ

(
n∑
i=1

∑
yi

P (t−1)(yi|xi) logP (yi|xi, yNi
; Θ,

β(t−1))− µDKL(sort(Π)||sort(B)) + λ1‖Θ‖2),
(9)

where the regularization term λ1‖Θ‖2 is to prevent the over-
fitting of Θ. We set λ1 = 10−4 in the experiments. Vector
sort(Π) = π1 · · ·πK and vector sort(B) = b1 · · · bK have
the same sorted order. Since Θ = {θ1, · · · , θK}, we need to
compute K gradients. The gradient of Eq. (9) with respect to
θj(1 ≤ j ≤ K) is

∇θj =
n∑
i=1

xi(P
(t−1)(yi = j|xi)− P (yi = j|xi, yNi

; Θ,

β(t−1)))− µ
∑
k

πk(
∑
k

∂bk
∂θj

/
∑
k

bk −
∂bk
∂θj

/bk)

+ 2λ1‖θj‖, (10)
with

∂bk
∂θj

=
n∑
i=1

xiP (yi = k|xi, yNi
; Θ, β(t−1))(I(j = k)−

P (yi = j|xi, yNi ; Θ, β(t−1))), (11)

bk =
n∑
i=1

P (yi = k|xi, yNi
; Θ, β(t−1)). (12)

Then parameter β can be learned through maximizing the fol-
lowing objective function.

β(t) = arg max
β

(
n∑
i=1

∑
yi

P (t−1)(yi|xi) logP (yi|xi, yNi
;

Θ(t), β)− µDKL(sort(Π)||sort(B)) + λ2‖β‖2),
(13)

where λ2‖β‖2 it to avoid the overfitting of β. λ2 is set to 10−4

in the experiments. The gradient of Eq. (13) with regard to β
is

∇β =

n∑
i=1

∑
yi

(P (t−1)(yi|xi)− P (yi|xi, yNi ; Θ(t), β))φ(yi,

yNi
)− µ

∑
k

πk(
∑
k

∂bk
∂β

/
∑
k

bk −
∂bk
∂β

/bk)

+ 2λ2‖β‖, (14)
with
∂bk
∂β

=
n∑
i=1

P (yi = k|xi, yNi
; Θ(t), β)(φ(yi = k, yNi

)−∑
k

P (yi = k|xi, yNi
; Θ(t), β)φ(yi = k, yNi

)), (15)

2194



bk =
n∑
i=1

P (yi = k|xi, yNi
; Θ(t), β), (16)

where φ(yi = k, yNi
) =

∑
j∈Ni

φ(yi = k, yj) is the neigh-
borhood energy of yi in state k.

5 Experiments
5.1 Experimental settings
We evaluate the performance of our method in the public face
data set Big Bang Theory(BBT) given in [Bauml et al., 2013].
It contains episodes 1-6 in the first season of BBT. Each
episode has about 20 minutes with 4-6 characters. We get
their proportion prior from the script by counting their spoken
lines. The character proportions from both the groundtruth
and script in the 6 episodes are presented in Fig. 3. It can be
observed that the proportion distribution is unbalanced as the
biggest proportion is usually 3-10 times the smallest propor-
tion. We can also find that the prior proportion distributions
from the script are similar to the groundtruth proportion dis-
tributions. This verifies the rationality of our motivation to
use the script proportion prior to facilitate the face clustering
in the video.

We directly utilize the extracted face data in [Bauml et
al., 2013]. Each episode consists of a list of face tracks
and each face track has a sequence of faces. The feature of
each face is represented by a 240 dimensional Discrete Co-
sine Transform (DCT) vector. In the experiments, we use
the same data preprocessing and result statistics for all the
methods. Considering the huge amount of face data in the
videos and that the nearby faces in a face track are very sim-
ilar, we sample the faces to reduce the data volume. First,
we uniformly sample 3 faces from each face track. For all
the sampled faces in one video, we compute a laplacian ma-
trix in the which the k-nearest neighbor graph is used and
k = 10. Then the Laplacian Eigenmaps reduces the feature
dimension from 240 to the cluster number. After we get the
posterior probability of each sampled face belonging to each
cluster, we compute the posterior probabilities of each track.
The probability of track t being labeled with k is calculated
as p(t, k) = 1

n

∑n
i=1 P (yi = k|xi), where n is the sampled

face number and xi is the ith sampled face in a track. Then
we can get the track label by y(t) = arg maxk p(t, k). At
last, the face track labels are used to evaluate the clustering
performance based on the measures of both accuracy and nor-
malized mutual information(NMI).

5.2 Competing methods
We compare our method to [Wu et al., 2013] and [Lu and
Ip, 2010]. They both utilize the pairwise constraints in
the clustering and separately achieve state-of-the-art perfor-
mance when in comparison with different former methods.
[Wu et al., 2013] is based on the Hidden Markov Random
Fields(HMRF), while [Lu and Ip, 2010] is a constrained spec-
tral clustering called E2CP. Although WBSLRR[Xiao et al.,
2014] is more recent and achieves better results, it mainly
seeks for the better data representation to improve the cluster-
ing performance. Since our method focuses on the clustering

rather than the data representation, the comparison with it is
not provided. The Kmeans is used as the baseline.

Besides, since the proportion prior in the video face clus-
tering is first investigated in this work, we also design another
strategy to utilize it for the comparison. It is straightforward
to consider the proportion prior as the cluster prior and use
it in the Bayes’ rule. Thus, we use it as the third potential
function in our model. By incorporating the third potential
function, Eq. (6) becomes

P (yi|xi, yNi
; Θ, β) =

ψu(yi|xi; Θ)ψp(yi, yNi |X;β)πyi
zi

.

(17)
In order to use the proportion prior in this way, we need to
first find the correspondences between the clusters and the
prior proportions. In every iteration of the EM algorithm, we
use the cluster sizes as the cues to assign the priors to clusters.
We call this strategy as “Bayes prior” in later comparisons.

5.3 Experimental results and analysis
Since we use the EM algorithm to solve our HCRF, we want
to investigate how the face clustering performance changes
along with the iterations. Fig. 2 shows the average face clus-
tering performance curves of baseline HCRF and its exten-
sion with the KL divergence regularizer in 6 videos of BBT.
It can be observed that our HCRF largely improves the initial
Kmeans clustering accuracy and NMI by about 13% and 10%
and it converges quickly in only about 5 iterations. Adding
the KL divergence regularizer delays the the convergence but
brings obvious improvements over baseline HCRF by about
5% accuracy and about %6 NMI.

Tables 1 and 2 give the comparison of different meth-
ods measured by the clustering accuracy and NMI. We can
find that our HCRF largely outperforms HMRF and E2CP
by more than 7% in both accuracy and NMI. HMRF as-
sumes that the observation node given the hidden node fol-
lows the Gaussian distribution. The last step of E2CP is the
Kmeans clustering which also favors the Gaussian distribu-
tion assumption. If the Gaussian assumption better satisfies,
then the two approaches may perform better. However, in real
applications, it is known that the face data usually locate on
a manifold, thus do not follow the Gaussian distribution. In
contrast, our HCRF uses an exponential function to represent
the unary potential, which does not expend modeling efforts
on the distribution over the observations.

Based on Table 1 and Table 2, our two strategies of using
the script proportion prior can both promote the face clus-
tering performance. For the average improvements of accu-
racy and NMI on the basis of baseline HCRF, the Bayes prior
brings about 3.6% and 3.5%, while the KL divergence regu-
larizer contributes about 5.6% and 5.9%. Obviously, the KL
divergence regularizer performs better than the Bayes prior.
The reason can be explained as follows. For the Bayes prior
strategy, the prior proportions are assigned to the clusters
once in each EM iteration and then the correspondences be-
tween them are fixed in the iteration. This is a greedy as-
signment strategy. If the assignment is wrong, it cannot be
corrected in the current iteration and the wrongness may be
magnified in the later iterations. In contrast, the KL diver-
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(a)

(b)

Figure 2: Clustering performance in EM iterations. (a) and
(b) show clustering accuracy and NMI curves with the EM it-
eration number. KL denotes HCRF adding the KL divergence
regularizer.

gence regularizer is minimized in the optimization of param-
eters. During the optimization, the correspondences between
the prior proportions and the clusters are not fixed. In each
iteration of the gradient descent algorithm, the prior propor-
tions are reassigned to the clusters to compute the KL diver-
gence. By using some techniques to avoid many local mini-
mas, the gradient descent algorithm can take more advantage
of the KL divergence regularizer to find better clustering re-
sults.

Table 1: Clustering accuracies. “Bayes” and “KL” denote the
two strategies of using the proportion prior based on HCRF.

BBT1 BBT2 BBT3 BBT4 BBT5 BBT6 Avg.
Kmeans 0.588 0.523 0.587 0.476 0.433 0.459 0.512
E2CP 0.648 0.548 0.615 0.513 0.495 0.510 0.556
HMRF 0.668 0.564 0.649 0.543 0.488 0.523 0.574
HCRF 0.737 0.667 0.650 0.600 0.588 0.603 0.643
Bayes 0.784 0.699 0.659 0.612 0.624 0.637 0.679

KL 0.787 0.736 0.700 0.658 0.629 0.671 0.699

6 Conclusion
In this paper, we have presented the studying on data clus-
tering with cluster proportion prior. We have shown how to
exploit the readily available proportion prior to guide the face
clustering. A HCRF model has been proposed to predict the

(a) (b)

(c) (d)

(e) (f)

Figure 3: Character proportion distributions. (a)-(f) are the
proportion distributions of characters in the 6 BBT episodes.
The blue histogram is the groundtruth distribution of the
video faces, while the red histogram represents the name dis-
tribution from the script.

Table 2: Clustering NMIs. “Bayes” and “KL” denote the two
strategies of using the proportion prior based on HCRF.

BBT1 BBT2 BBT3 BBT4 BBT5 BBT6 Avg.
Kmeans 0.314 0.256 0.311 0.256 0.266 0.240 0.274
E2CP 0.352 0.280 0.344 0.291 0.290 0.277 0.305
HMRF 0.376 0.274 0.346 0.276 0.272 0.262 0.302
HCRF 0.426 0.371 0.351 0.332 0.381 0.379 0.375
Bayes 0.485 0.402 0.392 0.359 0.399 0.411 0.410

KL 0.491 0.454 0.400 0.401 0.403 0.440 0.434

class labels of observations. The parameters of the model
are learned with the regularization of the proportion loss term
in a unified iterative optimization framework. The proposed
method has been verified on one public face data set with six
real-world TV series episodes. The experiments demonstrate
that our HCRF largely outperforms previous state-of-the-art
methods and the proposed proportion prior can further im-
prove the face clustering performance.
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