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ABSTRACT

Background modeling or change detection is often used as a
preprocessing step in many computer vision tasks especially
for intelligent surveillance. Despite various methods have
been proposed to deal with this problem, they often involve
complex parameter settings and have poor adaptability to
scene changes. In this paper, we propose a fast and ro-
bust approach for background modeling with self-adaptive
ability. Like ViBe [7], each pixel model is represented by a
sequence of historical samples based on sample consensus.
To adapt various changes in complex scenes, a flexible feed-
back scheme is presented to automatically adjust the model
parameters. Moreover, a selective diffusion method is em-
ployed to overcome the problems like incomplete foregrounds
or false detections brought by intermittent moving object-
s. Experiment results on ChangeDetection benchmark 2014
show that the proposed approach outperforms state-of-the-
art approaches with a speed of 60 fps on CPU for a 640 x 480
image sequence.
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1. INTRODUCTION

Background modeling or change detection algorithms are
used to detect regions of interest (changing or moving areas)
and remove background noise in video sequences, which play
a significant role in high level surveillance applications, such
as object detection, crowd counting, tracking and abnormal
detection, etc. Most of state-of-the-art approaches are based
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on background subtraction, where each frame is matched
against the learnt background model to classify pixels in-
to foregrounds and backgrounds. However, most of these
methods are sensitive to illumination changes, weather con-
ditions, background/camera motion, shadows, and intermit-
tent moving objects, etc. Moreover, the model parameters
need manual setting for different application scenarios.

Background modeling can be approached in many differ-
ent ways. Gaussian Mixture Modeling(GMM) [4] was a typ-
ical representative for pixel based approaches. It assumes
that historical color intensities at each pixel can be modeled
by a set of Gaussian probability density functions. Ker-
nel Density Estimation (KDE) [1] adopted a non-parametric
model based on local intensity observations to estimate back-
ground probability density functions at each pixel location.
Based on stochastic sampling, ViBe [7] was to model each
pixel as a collection of historical observations using a ran-
dom observation replacement strategy. The codebook mod-
eling method [6] clustered observations into codewords and
stored them in local dictionaries, keeping a wider range of
representations in the background model.

To automatically adjust model parameters for the back-
ground complexity, some feedback mechanisms are present-
ed. Pixel-Based Adaptive Segmenter (PBAS) [5], which used
“background dynamics” to adjust thresholds and updating
rates, established a feedback scheme to adaptively adjust
model parameters. ViBe™ [11] exploited “blinking pixels” to
detect dynamic pixels in the current frame to make the feed-
back loop more robust. SuBSENSE (Self-Balanced SENsi-
tivity SEgmenter) [10] further combined LBSP features and
color features with a pixel-level feedback strategy to reduce
sensitivity and enhance the generalization capacity. Some
model sharing schemes are proposed to effectively exploit
the spatial-temporal context for complex scenes, e.g., shared
GMM [2] and multi-features based shared models[3].

In this paper, we present a high-efficient and self-tuning
background modeling method. Each pixel model is repre-
sented by a sequence of historical samples base on sample
consensus. Local decision thresholds and update rates of
background pixels are adjusted automatically according to
the unstable segmentation behaviors and “blinking pixels”.
Since the initial value of feedback scheme has significant in-
fluence on the self-adjusting process, in our method, these
initial values of parameters also considered into a feedback
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Figure 1: Overview of the proposed approach. Dotted lines are the initialization and the self-tuning process.

loop. Furthermore, we designed a selective-diffusion way to
avoid the background updating problems brought by inter-
mittent moving objects.

2. METHODOLOGY

The overview of the proposed approach is illustrated in
Figure 1. For an input video sequence, firstly, we build a
sample based background model. Then a initial value ad-
justment is used to adjust the local distance threshold R,
to a appropriate value. Then pixels in input frames are
classified into foregrounds and backgrounds by segmenta-
tion decision. Finally, the raw segmentation result before
post-processing will be used in feedback loop to adjust the
local distance threshold R, and local updating rate 77, and
a selective diffusion rule is designed to adjust diffusion strat-
egy based on the final segmentation result.

2.1 Pixel Modeling with Sample Consensus

Like [7], we adopt a simple background modeling way
based on sample consensus. The background model, named
B, is formed by a series of pixel models, each of which con-
tains a set of N recent background samples:

B(z) = {Bi(x), Bz(), ..., Bn ()} (1)

where N is the number of background samples, which is used
to balance the precision and sensitivity of sample consensus.
More samples lead to more accurate models but less sensitive
for background noise. Additionally, more samples will limit
the processing speed. Therefore, in this paper we fixed N =
35 to balance accuracy and speed. A pixel z at time t is
labelled as foreground 1 or background 0 by matching with
B(z) as,

1 if#{dist(Ii(x), Bn(x)) < R,Vn} < #min
Si(z) = { 0 otherwise
(2)

where dist(I:(z), Bn(x)) is the distance between pixel = with
a given background sample. R is the distance threshold and
#min is the minimum number of matches required for a
background classification. We set #min to 2 as in [7]. The
background model B is updated based on the “time sub-
sampling factor” (or the model update rate) 7. A randomly
selected sample in B has a 1/T probability to be replaced
by current observation I;(z).

2.2 Feedback Loop

R and T are two most important parameters in this mod-
eling process. A small R means very accurate segmenta-
tion decision but sensitive to the background noise, while a

larger R results in better capacity against background dis-
turbances (dynamic background, camera shake, etc) or ir-
relevant changes (illumination variation, shadow, etc), but
makes the segmentation decision harder to detect completely
foreground objects when they are very similar to the back-
ground. Similarly, “time subsampling factor” 7" is also hard
to choose in these conditions, especially in dealing with inter-
mittent moving objects. A small T will make the slow mov-
ing or stationary objects disappeared in the segmentation
results, vice versa, a larger T leads to a false detection when
the background object moves suddenly. Therefore, a glob-
al strategy is difficult to deal with complex scene changes,
and the model parameters should be automatically adjusted
according to current local situations.

Similar to [5] and [10], we consider R and T as two pixel-
level states variables. Two frame-size maps are defined to
store the current values of R and 7. In feedback loops,
they are decided by recursive moving average map dmin and
blinking pixels accumulators v. The recursive moving aver-
age map dmin is to measure the background dynamics, which
is calculated by the distance between samples and current
observations.

in () = dinin(2) (1 = @) + dmin (2) - ®3)

where dpnin is the minimal normalized distance between sam-
ples in B(z) and I:(z). « is the update rate. Through up-
dating current distance into dmin, areas with dynamic back-
ground would have a high value Aomin.- However, when fore-
ground objects stay in the same place for a long time, dmin
will also reach a high value. To deal with this situation, the
frame with blinking pixels Fj, is exploited by [11]. F} is com-
puted by using an XOR operation between current binary
segmentation result S; and previous result S;_1,

Fy(z) = Se(z) ® Si—1(z) (4)

The segmentation results S; and Si;—1 here are the raw re-
sult without post-processing. Since the borders of moving
foreground objects would also be include in Fj, F; will be
filtered by the intersection with the post-processed and di-
lated version of S; [10]. The blinking pixel accumulators v
is used to calculate variation size of R according to F,

’U(IL’) _ { ’U(ZB) + Viner Zbe(l’) =1 (5)

U(Z) — Ugeer  Otherwise

With dmin and v, the distance threshold R, is adjusted frame
by frame,

R(z) +v(z) if R(x) > dmin(x) - Rscate ()
— otherwise
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Figure 2: Two different cases for intermittent mov-
ing objects. (a) and (c) are input frames, (b) and
(d) are the ground truth. The region in red circle
in (a) is foreground area of the box, and the region
with red circle in (b) is the foreground area which
will be falsely detected since the background object
(the box) is removed.

where Uscqare and Rscqle are fixed parameters. Similarly, the
model update rate is adjusted by:

T(x) = { Tle)+ m if Si(z) =1

T(z) — D:ﬁ(:zw) otherwise

(7)

In the process of a foreground object moving slowly or hav-
ing a stop, T'(z) will increase to keep the object completely.
But for the sudden moving of background objects, T'(z) in-
creases too, which will lead to false detection results. So
a selective diffusion method is designed to deal with this
problem section 2.3.

In general, to avoid oscillation in feedback loops, the vari-
ation scale of R(z) is restricted to a smaller value conserva-
tively. Therefore, the initial value of R(z) and T'(x) has a
significant influence on segmentation performance. For in-
stance, scenes with lower light condition needs a small initial
value R(z). The automatic adjustment of initial value R; is
decided by the number of foreground pixels in F} as,

Ri=Ri(1— ) if #{Fy(x) = 1} < #min’ (8)

where L, is the average illumination of the current frame.
n is the iterations number. In the beginning, R; has a large
initial value, according to light condition of current frame,
R; will decrease to an appropriate value frame by frame until
the number of blinking pixels exceeds #min’.

2.3 Selective Diffusion

In ViBe [7], a blind diffusion process was used to update
the background model: one sample of random neighbors of
B(z) can be replaced by Ii(z) with probability 1/7, which
helped the background model to adapt some scenes like dy-
namic background or camera jitter. But it cannot deal with
the problem brought by intermittent moving objects. ViBe™
[11] proposed a inhibitory propagation rule to solve this con-
dition. But it relies on the gradient on the inner border of
background blobs, which limits the processing speed.

As illustrated in Figure 2, the intermittent moving ob-
jects can be classified into two categories: one is the moving
object staying in a same area for a long time, the other is
the background object suddenly moving. Two examples are
shown in (a) and (c) in Figure 2. By the analysis of the
difference between the local background model and current
observations, we apply a selective diffusion scheme to guide
the process of model update. In Figure 2(a), the pixels in
the foreground area of the box are different from surround-
ing background pixels. While in Figure 2 (c), since pixels on
the box have been updated into the background model, the
area behind the box will be falsely classified into foreground
pixels for traditional approaches. Contrary to the situation
in Figure 2(a), the pixels in the foreground area the box left
are similar to surrounding background pixels. So we just
need to compute the distance between current observations
S; in foreground area and surrounding background samples
in background model B(z), by using decision method in E-
q.2. If the distance exceeds a given threshold, we accelerate
the diffusion speed of the surrounding pixels, otherwise, we
decelerate it. As shown in Figure 2(b), the surrounding ar-
eas are detected by computing average gray values in two
kinds of sliding windows (window sizes 5 x 1 and 1 X 5) in
final foreground results (after post-processing, most holes in
foreground objects are filled, the pixels in holes will not be
treated as surrounding pixels).

With the selective diffusion process, slow moving or sud-
den stopping objects are kept completely as well as false
detection caused by background objects moving can be re-
moved. In addition, another advantage of the selective dif-
fusion is to speed up the ghost removing rate.

3. EXPERIMENTS

To evaluate the performance of the proposed approach,
we perform our experiments on the public ChangeDetection
benchmark 2014 (CDnet 2014) [12], which provides a realis-
tic, camera-captured, diverse set of videos and contains 53
scenes. To simulate the realistic condition in visual surveil-
lance, we fixed initial parameters of background models in
whole experiment process.

3.1 Comparison with the State-of-the-art

Table 2 shows the comparison results between our ap-
proach with several state-of-the-art approaches. The results
of compared approaches are obtained in the implementation
of BGSLibrary [8]. Since we fixed initial value, there is s-
lightly difference with the results reported in CDnet 2014.
Our approach achieves the best overall performance and the
best individual performance in five of eleven categories, es-
pecially in the category “Intermittent Object Motion”, our
method exceed the second result over 10%. For the self-
tuning of the initial value, our approach achieves best perfor-
mance in scenes with low light conditions like “Night Video”
and “Thermal”. Furthermore, without any optimization in
the ¢/c++ implementation, our approach runs 60 frames per
second for 640 x 480 pixels on Intel i7 CPU 3.4 GHz.

4. CONCLUSIONS

In this paper, we present a high-efficient and self-tuning
background modeling approach. With the dynamic back-
ground information and blinking pixels, all the parameters
are automatically adjusted through feedback loops, includ-



Table 1: F-measures for subset of CDnet 2014 benchmark [12]. BW: Bad Weather; Ba: Baseline; CJ: Camera
Jitter; DB: Dynamic Background; IOM: Intermittent Object Motion; LF: Low Framerate; NV: Night Video;
Sh: Shadow; Th: Thermal; Tu: Turbulence; Overall is the average F-measure of 11 categories.

Approach Ba BW CJ DB IOM LF NV PTZ Sh Th Tu Overall
SuBSENSE[9] 0.9490 0.8551 0.7752 0.8146 0.5967 0.6254 0.4811 0.3839 0.8995 0.6827 0.8684 0.7211
ViBe[7] 0.8604 0.6967 0.5703 0.4845 0.4965 0.3714 0.3765 0.06241 0.7973 0.6477 0.4520 0.5287
GMM1[4] 0.4520 0.3593 0.2902 0.2474 0.2387 0.4773 0.3647 0.2457 0.4361 0.2982 0.2304 0.3309
GMM2[14] 0.5198 0.2481 0.4270 0.3622 0.2140 0.6490 0.3502 0.2470 0.3924 0.2322 0.1092 0.3410
KDE[1] 0.6756 0.4563 0.6102 0.2097 0.3817 0.4460 0.1703 0.0345 0.6097 0.3996 0.5066 0.4091

MutltiLayerBGS[13] 0.7450 0.4177 0.6728 0.5672 0.3166

0.5895 0.4253 0.3251 0.7434 0.3138 0.6510 0.5243

Proposed 0.9011 0.8423 0.6982 0.8177 0.7898 0.6922 0.5148 0.3170 0.8695 0.7215 0.8663 0.7300

GT GMM[14] KDE[1]

ViBe[7] SuBSENSE[9] Proposed

Figure 3: Visual comparison of foreground detection results.

ing the initial value of model parameters. What’s more,
we present a selective diffusion scheme to solve the problem
brought by intermittent moving objects, which simply relies
on distance analysis between foreground and surrounding
background pixels. Experimental results show that our ap-
proach outperforms the state-of-the-art approaches in CD-
net 2014.
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