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Abstract

The development of deep learning has empowered ma-
chines with comparable capability of recognizing limited
image categories to human beings. However, most exist-
ing approaches heavily rely on human-curated training da-
ta, which hinders the scalability to large and unlabeled vo-
cabularies in image tagging. In this paper, we propose
a weakly-supervised deep learning model which can be
trained from the readily available Web images to relax the
dependence on human labors and scale up to arbitrary tags
(categories). Specifically, based on the assumption that fea-
tures of true samples in a category tend to be similar and
noises tend to be variant, we embed the feature map of
the last deep layer into a new affinity representation, and
further minimize the discrepancy between the affinity rep-
resentation and its low-rank approximation. The discrep-
ancy is finally transformed into the objective function to
give relevance feedback to back propagation. Experiments
show that we can achieve a performance gain of 14.0% in
terms of a semantic-based relevance metric in image tag-
ging with 63,043 tags from the WordNet, against the typical
deep model trained on the ImageNet 1,000 vocabulary set.

1. Introduction
More recently, deep learning has achieved comparable

accuracy to human beings in image categorization tasks on

the limited vocabulary [10]. However, this result is far from

many real-world applications, such as image tagging, where

we often need tens of thousands of tags to describe the var-

ious image content [5, 8]. One of the major challenges is to

acquire sufficient and high-quality training data for a large
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Figure 1: The illustration of the proposed model. The deep

network is trained not only by the label supervision with

loss L, but also the minimization of the discrepancy be-

tween the affinity representation Ψ(X;W) and its low-rank

approximation Ψ(X;W∗). Note that a traditional CNN

model only follows the flowchart of the top green part, with-

out the feature relevance feedback indicated in the bottom

red part. Details are in Sec. 3. [Best viewed in color]

vocabulary, which is often too expensive to obtain. For

example, it took more than 25,000 AMT1 workers about

one year to construct the entire ImageNet dataset [6] (about

22,000 categories and 14.2 million images). Despite of it-

s wide adoption in research communities, ImageNet is still

a small subset of the nouns in WordNet2. There are huge

numbers of categories left unlabeled, making the existing

deep learning models hard to scale up. Therefore, how to

scale deep learning approaches to large and arbitrary cate-

gories without enormous human-cost appears to be a chal-

lenging yet urgent problem.

With the success of commercial image search engines,

learning from the Web has demonstrated one of the most ef-

fective solutions to collect massive training data [4, 9, 22].

1https://www.mturk.com/mturk/welcome
2http://wordnet.princeton.edu/
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Despite of the convenience using Web images to train mod-

els, the performance degradation is inevitable due to the

noises in Web image search results. A conventional deep

learning network is sensitive to noisy training images, as

it tries to fit all the training data without distinguishing the

authenticity of their labels. According to our experiments,

when 30% of the training images are mislabeled, the ac-

curacy of a conventional deep network drops at least 20%
in CIFAR-10 dataset. Therefore, designing a noise-robust

deep network is imperative to attenuate the influence of the

noises in Web images.

Although previous works have studied how to perform

the weakly-supervised object recognition or localization if

the accurate image-level labels can be provided [19, 24],

how to suppress the image-level noise effect has not been

fully explored yet. In this paper, we propose a robust

weakly-supervised deep learning network with the noisy

Web training data for image tagging. As the Web data is

readily available, the proposed approach can scale to arbi-

trary and unlabeled categories without heavy human effort.

To achieve this goal, we first start from embedding the fea-

ture map of the last deep layer into a new affinity representa-

tion that essentially explores the similarities among the deep

features of training samples. Second, by adopting the “few

and different” assumption about the noises, we minimize

the discrepancy between the affinity representation and its

low-rank approximation. Third, this discrepancy is further

transformed into the objective function to give those “few

and different” noisy samples low-level authorities in train-

ing.

The advantages of the proposed method are three folds.

First, except for the label supervision, we utilize the mutu-

al relationship of features as feedback in our formulation.

In this way, the learning process is mainly driven by the

dominant correct samples. To the best of our knowledge,

this idea has not been exploited by previous deep learning

works. Second, we conduct image tagging with the largest

vocabulary set of about 63,000 tags from the WordNet, and

achieve a significant improvement against the typical deep

learning model trained on the ImageNet 1,000 vocabulary

set. Third, our improvement is network-independent, so

that with the help of our model, any existing deep learning

network can be readily extended to unlabeled categories.

An illustration of the proposed model is shown in Fig. 1.

The rest of the paper is organized as follows. Sec.2 re-

views related works. In Sec.3, we introduce the proposed

approach and implementation details. The performance is

evaluated in Sec.4. Sec.5 concludes this paper.

2. Related Work
There are two schemes to handle the data noises in deep

learning. One aims to remove the noisy data before training

by preprocessing. The other is designed to make the deep

network itself robust to noises.

The preprocessing methods can be implemented either

by the conventional outlier detection, or by the pre-training

strategy in deep learning. First, the specific methods in out-

lier detection include PCA, Robust PCA [3], Robust Kernel

PCA [25], probabilistic modeling [11] and one-class SVM

[14]. These methods regard the outliers as those “few and

different” samples. However, the challenge of these meth-

ods is to distinguish “hard samples” from the truly noisy

samples. Second, recovering the clean training samples by

a layer-wise autoencoder or denoising autoencoder [23] in

the pre-training and then initializing a deep network by the

pre-trained model parameters is an effective method to re-

move global noises, which has been used in face parsing

[15]. However, these methods are mainly designed for cas-

es where noises are contained in correct images (e.g., back-

ground noises), while noises in web images are often those

mislabeled.

To train a robust deep learning model on noisy training

data, J.Larsen et al. proposed one of the pioneer works

which added noise modeling into the neural networks [13].

However, they make a symmetric label noise assumption,

which is often not true in real applications. V.Mnih et al.
proposed to label aerial images from noisy data where only

a binary classification was considered [17]. The most relat-

ed work to ours was proposed by S.Sukhbaatar et al. who

introduced an extra noise layer as a part of training process

in multi-class image classification [21]. They first trained

a base model on noisy training data with several iterations,

then activated the extra noise layer to absorb the noise from

the learned base model.

Compared with previous works, we propose a holistic

noise-robust model that handles noisy samples softly by

limiting their contributions in the learning process accord-

ing to their affinity to other samples. Besides, the algorithm

can affect the whole back propagation, rather than simply

relying on a certain layer.

3. Weakly-Supervised Deep Learning Model
Our goal is to design a noise-robust deep learning algo-

rithm. We use the convolutional deep neural network (CN-

N) [12] for its state-of-the-art performance in image catego-

rization. We will first analyze its limitation on noisy train-

ing samples and then propose the weakly-supervised deep

learning model.

3.1. Traditional CNN Model

The first several layers of the traditional CNN model are

convolutional and the remaining layers are fully-connected.

The exact number of layers generally depends on specif-

ic tasks. The output of the last fully-connected layer is

considered as an input to a softmax classifier which can

generate a distribution over the final category labels. Let
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X = [x1, ...,xN ] be the matrix of training data, where

xi is the feature vector of the ith image. N is the num-

ber of images. Denote Y = [y1, ...,yN ]T ∈ {0, 1}N×K ,

where yi ∈ {0, 1}K×1 is the cluster indicator vector for

xi. K is the number of categories. There are M lay-

ers in total and W = {W(1), ...,W(M)} are the mod-

el parameters. In each layer, we absorb the bias term in-

to the weights and denote them as a whole. W(m) =

[w
(m)
1 , ...,w

(m)
dm

]T ∈ Rdm×dm−1 , where w
(m)
i ∈ Rdm−1 ,

dm−1 is the dimension of the (m − 1)th feature map.

Z(m)(X) = [z(m)(xi), ..., z
(m)(xN )]T ∈ RN×dm is the

feature map produced by the mth layer.

The goal is to minimize the following objective function

in the form of a softmax regression with weight decay:

L(W;X,Y) = − 1

N
[
N∑
i=1

K∑
j=1

1Yij (j) log p(Yij = 1|xi;W)]

+
β

2
||W||F , (1)

where Yij is the (i, j)th entry of Y. 1Yij
(j) is the indicator

function such that 1Yij (j) = 1 if Yij = 1, otherwise zero.

β is the coefficient of weight decay. We can see that the

derivatives to w(M)
j in the output layer is:

∂L(W;X,Y)

∂w
(M)
j

= − 1

N

N∑
i=1

z(M−1)(xi)[1Yij (j)

−p(Yij = 1|z(M−1)(xi);w
(M)
j )] + βw

(M)
j . (2)

Parameters in other layers can be calculated by the back

propagation algorithm (BP) [20].

According to the gradients, we can see that if the training

data has noises, the indicator function 1Yij (j) will produce

a wrong value, resulting in a wrong optimization direction

or even making this optimization diverge. The reason is

that traditional models completely believe the label of each

image, and all the images are treated equally. As a result,

the model will suffer from low accuracy if it is trained on

the noisy web images.

3.2. CNN Model with Feature Relevance Feedback

The proposed model is based on the basic assumption

that features of correct samples in a category tend to be sim-

ilar with each other, while there is a big variance in the rep-

resentation of the noise samples. As a result, the relation-

ship among features can be utilized as a feedback to make

different samples contribute differently to achieve better ac-

curacy.

Specifically, we transform the sample features in the out-

put layer into a new affinity representation that embeds the

mutual relationship of sample features. We model this rela-

tionship as a nearest neighbor system as in [1]. We define a

similarity metric S ∈ RN×N as follows:

Sij =

⎧⎪⎨
⎪⎩

exp{−||z
(M)(xi)− z(M)(xj)||2

γ2
} yi = yj

0 otherwise,
(3)

where γ is a scale factor. To better reflect the local struc-

ture, the similarity metric is normalized with a diagonal ma-

trix D, where Dii =
∑N

j=1 Sij . We define Ψ(X,W) =

[ψ(x1), . . . ,ψ(xN )] = D−1S as the new feature represen-

tation. Each column of the matrix Ψ(X,W) embeds the

relationship of an image xi to other images.

Given the input images X, we assume that the ideal

model parameters are W∗. A noise-robust learning algo-

rithm should optimize W to approach to W∗ as much as

possible. The objective can be achieved by minimizing

the differences En between the learned features Ψ(X,W)
and Ψ(X,W∗). En is the error in feature representation

caused by the noisy images. In other words, we can regard

Ψ(X,W) as the ideal feature map plus an additive error

En as:

Ψ(X;W) = Ψ(X;W∗) +En. (4)

According to Eqn. (4) and the low-rank representation theo-

ry [3], we consider Ψ(X;W∗) to be a low-rank matrix and

we have:

rank(Ψ(X;W)) > rank(Ψ(X;W∗)) (5)

When the vocabulary size is large enough, the categories

are fine-grained and images in each category are very simi-

lar to each other. Besides, the noises in one category are ac-

tually those from other categories with wrong labels. Con-

sequently, we can assume that all the features can present at

most K types of patterns and the rank of Ψ(X;W∗) equal-

s the category number K. As a result, Ψ(X;W∗) can be

calculated by the following optimization problem:

min
Ψ(X;W∗)

‖Ψ(X;W)−Ψ(X;W∗)‖F ,

s.t. rank(Ψ(X;W∗)) = K.
(6)

Since the labels are noisy, we should use the obtained ideal

feature map to reduce the noise effect in the learning pro-

cess. We use the ideal feature map as an input to generate

the ideal prediction over different category labels by soft-

max function. In this way, we make the prediction as ac-

curate as possible and thus reduce the risk that errors of

the network are reinforced in each iteration. However, we

find that this scheme greatly increases the time-cost in the

optimization, because it involves additional computational

burden in Eqn. (6). Instead of this step-by-step method, in

the following, we propose an alternative solution that es-

sentially calculates the ideal feature map and generates the

ideal prediction over category labels at the same time. The

proposed algorithm is based on the following proposition:
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Proposition 1. Let L = D − S, H∗ ∈ RN×K is com-
prised of the eigenvectors of the largest K eigenvalues of
Ψ(X,W), we have: 1) the solution of Eqn. (6), i.e., the
best rank-K approximation of Ψ(X,W), is uniquely deter-
mined by the eigenvector H∗ ; 2) H∗ is also the solution of
the following optimization problem:

min
H

tr[HTLH] s.t. HTH = I. (7)

As both Eqn. (6) and Eqn. (7) achieve the optimum at H∗,
Eqn. (6) is equivalent to Eqn. (7).

The proof of Proposition 1 is presented in the supple-

mentary material A1. The above proposition uncovers that

the optimal solution in Eqn. (6) can be obtained by solving

the trace minimization problem in Eqn. (7). Therefore, we

combine the softmax regression of a traditional CNN with

the trace optimization. The final objective function for the

noise-robust deep learning is designed as:

L̃(W;X,Y) = min
W

L(W;X,Y) + α tr[HTLH]. (8)

Since the label matrix Y is given, H can be calculated by

minimizing the gap between the subspace spanned by H
and Y [26, 27], i.e., minH ||HHT − YYT ||2F . To satis-

fy the orthogonality, Y is further scaled to Y(YTY)−
1
2 .

Although the solution to the above problem is not unique,

H = Y(YTY)−
1
2 is a feasible one. It avoids the heavy

computational costs for solving the eigen-decomposition

problem in Eqn. (7). Besides, we find that this approxi-

mation can make the network training efficient and robust.

3.3. Analysis of Relevance Feedback

We analyze the relevance feedback from the gradient

perspective to show the noise-resistance ability of the pro-

posed objective function. Based on the definition of similar-

ity metric S in Eqn. (3), the mutual relationship of features

is described by the discrepancy in the output layer features.

Furthermore, we define:

Δd(xi,xj) = ‖z(M−1)
d (xi)− z

(M−1)
d (xj)‖2, (9)

is the discrepancy between two images in the dth dimension

of the (M − 1)th layer, where d = 1, 2, ..., dM−1. There-

fore, if we use a linear activation function, the discrepancy

in the M th layer (output layer) can be represented by the

accumulated products of the weight in the M th layer and

the discrepancy in each dimension of the (M − 1)th layer.

For clarity, we use the notation uij . uij is a column vec-

tor with two nonzero elements, where ith and jth element

equals to 1 and −1, respectively. Therefore, for each ele-
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Figure 2: The curve shows the contribution of an image

sample to gradients, with its distance to other images. With

the increasing of dM−1, only the monotone decreasing part

can be reflected. Hence, we can observe that the larger the

distance, the less the contribution.

ment in W(M) ∈ RK×dM−1 , we have:

∂tr[HTLH]

∂W
(M)
kd

= tr[HHT ∂L

∂W
(M)
kd

] = tr[HHT
N−1∑
i=1

N∑
j=i+1

∂Sij

∂W
(M)
kd

uij(uij)T ]

= tr[HHT
N−1∑
i=1

N∑
j=i+1

−W (M)
kd

[Δd(xi,xj)]
2

γ2
Cijk uij (uij)T ]

=
N∑
i=1

N∑
j=1

ξijg(Δd(xj ,xi))
(10)

where Cijk = exp{−
∑dM−1

d=1 (W
(M)
kd )2[Δd(xi,xj)]

2

2γ2 },
ξij is the (i, j)th entry of HHT . g(Δd(xi,xj))
represents ∂L

∂W
(M)
kd

, and g(Δd(xi,xj)) ∝
[Δd(xi,xj)]

2 exp{−∑dM−1

d=1 [Δd(xi,xj)]
2}.

Discussions: For an image xi, its contribution

to the gradient in Eqn. (10) can be measured by∑N
j=1 ξijg(Δd(xi,xj)). Obviously, this term is non-zero

if and only if i �= j and ξij �= 0 (i.e., ŷi = ŷj). As ξij
plays a role of an indicator, the quantized value of the con-

tribution mainly depends on the the value of g(Δd(xi,xj)).
The curve of g(Δd(xi,xj)) with the changes of Δd(xi,xj)
is show in Fig. 2. We can observe that with the increasing

of dM−1, the extreme point is very close to the coordinate

origin and only the monotone decreasing part in the curve

can be reflected. Therefore, if xi is a noise sample, that

is, it is very far from other images in the same category.

Then the Δd(xi,xj) is large, and therefore its contribution

g(Δd(xi,xj)) in the gradient will be small.
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Algorithm 1 Weakly-Supervised CNN model

Input: Noisy Web Training Images: X = [x1, ...,xN ]
Initial Parameters W = [W(1), ...,W(M)]
Rectified Linear Activation Function: f(·)

Procedure:
Repeat:
Forward Propagation:

Implementing as the traditional CNN

Backward Propagation:

1. For m = M , calculate
∂(L̃)

∂W
(M)
kd

= ∂(L)
∂W

(M)
kd

+α
∑

i=1

∑
j=1 ξijg(Δd(xj ,xi))

δ
(M)
k = − ∂(L̃)

∂z
(M)
k

2. For m = M − 1 to m = 2, set
∂(L̃)

∂W(m) = δ(m+1)(f(Z(m)))T

δ(m) = [(W(m))T δ(m+1)] · f ′(Z(m))
Until The max iteration number

Output:W = [W(1), ...,W(M)]

Note that this suppression will be back-propagated to

the first several layers by the “error term” δ(M) defined in

BP [20], thereby the contribution of the noise samples will

be limited in each layer. The complete algorithm of our

weakly-supervised CNN model is in Algorithm 1.

4. Experiments

Our experiments consist of two parts. First, we show the

noise-robust performance of the proposed approach in im-

age categorization tasks. Second, we show the vocabulary-

free tagging performance with the vocabulary of personal

photos and WordNet.

4.1. Image Categorization

Datasets: We conducted experiments on two widely-

used datasets in image categorization. One is CIFAR-10,

which consists of 60, 000 32×32 color images of 10 classes.

50, 000 images are for training and 10, 000 for testing. To

generate the noisy training data with different percentages

in CIFAR-10, the training images of a certain percentage in

a certain category were randomly replaced by the training

images in other categories. The total number of images in

a category remained unchanged. We set the percentages of

the noise data from 10% to 90%.

The other dataset is PASCAL VOC2007, which consist-

s of 9963 images of 20 classes, with the split of 50% for

training/validation and 50% for testing. We trained a classi-

fication model of 20 categories using Web training images,

and compared with the state-of-the-art methods.

Baselines: We denote the proposed method as noise-

robust CNN (NRCNN). We compared the proposed method
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Figure 3: The performances with different α. We can see

that the performances can keep in a stable range, except for

one too large value (α = 10).

with four baselines in CIFAR-10 and six baselines in

VOC2007. The common four baselines are:

• CNN: the state-of-the-art CNN network with convolu-

tional layers and fully-connected layers. We will spec-

ify the network structure in each task.

• RPCA+CNN: before the CNN training, we recon-

struct each training sample by RPCA [3] and remove

those samples with large reconstruction error. The re-

moval ratio is set as the same as the noise percentage.

• CAE+CNN: we pre-train the convolutional layers of

CNN by the convolutional autoencoder (CAE) in a

layer-wise way and fine-tune the entire network, which

is reported in [15] to reduce the noise effect.

• NL+CNN: we reproduce the additional bottom-up

noise-adaption layer in [21], and combine this layer

with CNN network.

We also compared with another two methods in VOC2007.

• Best VOC: pre-training using ImageNet, and fine-

tuning in VOC2007, which has achieved the state-of-

the-art performance [18].

• Web HOG: training concept representations by the

part-based model and human-crafted features with We-

b training images [22], which is the most recent work

in this topic.

Results: First of all, we adjusted the weight decay val-

ue of the basic CNN model, i.e., β in Eqn. (2), on the t-

wo datasets. For different noise percentages (from 10%
to 90%), this value is 0.004 for 10%, 0.008 for 20%, and

0.04 for the rest. We found that the above parameters can

make the basic CNN model achieve the best result on both

datasets. In addition, we empirically set γ to 0.1 in Eqn. (3)

so that the similarity value can be in an appropriate scale.

Besides, there is only one adjustable parameter α in our

model. Fig. 3 shows the effect of α to the classification
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accuracy on the CIFAR-10 training data with 20% noises.

We found that only when α is too large (e.g., 10), the mod-

el lost the classification ability and the accuracy remained at

random values. For other values, the performance maintain-

s at a stable range and achieves the best at 0.5. Besides, we

found that the value of 0.5 can also ensure the best results

for other noise percentages. Therefore, α is set to 0.5 in the

following experiments.

Tab. 1 shows the classification accuracy on differen-

t noise percentages in CIFAR-103. We can see that our mod-

el achieves the best accuracy for all cases. Our approach

even achieved a slight improvement on the clean training

data, compared with the traditional CNN. We found that the

traditional CNN dropped by nearly 20% in CIFAR-10 with

30% noises. In contrast, our method only dropped about

10%, showing a strong robustness to noisy training data. In

addition, we found an interesting fact about the data prepro-

cessing method RPCA+CNN. When the noise percentage

is less than 50%, this method shows performance improve-

ment over traditional CNN. As the noises increase, the per-

formance of RPCA+CNN gets lower than that of traditional

CNN. The reason is that the risk of removing the correct

samples by mistake will significantly increase with the in-

crease of the noise percentage, which leads to the increase

of noises in the final training data. The performance of

CAE+CNN and NL+CNN are substantially similar. In the

case of 30% noises, they drop by 17.0% and 15.9%, respec-

tively. It indicates that although CAE+CNN can solve the

problem where the noises are region-level [15] (e.g., back-

ground noises), its performance will greatly drop when the

noises are sample-level, i.e., some images are totally nois-

es to their categories. For NL+CNN, our experiments also

demonstrated that it is insufficient to enhance the noise im-

munity simply by adding the last noise-adaption layer. In

contrast, our method can limit the noise effect in all layers

by the role of back propagation. Therefore we achieved the

best classification results. We drew Fig. 4 to clearly reflect

the declines of the classification accuracy on different noise

percentages.

Furthermore, we evaluated the image categorization per-

formance on PASCAL VOC2007 dataset4. We pre-trained

our network by ImageNet 1,000 categories as in [18], and

fine-tuned the network by Web training data. Training im-

ages were crawled from commercial image search engines

by using each category in VOC2007 as a query, where du-

plicate images were removed. We followed the splits of pos-

itive/negative samples provided by VOC2007 to construct

the Web training dataset for each category. Note that we

have two training sets. First, we kept the positive/negative

3We used the “cifar10 quick train test” network in Caffe

(caffe.berkeleyvision.org) as the baseline CNN model in this task.
4We used the “alexnet train val” network in Caffe as the baseline CNN

model in this task
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Figure 4: Compared to the performance on clean training

data, the declined performance in terms of image classifica-

tion accuracy on different noise percentages. The less the

declined number, the better the method.

samples with the same number of that in VOC2007 and de-

noted methods on this training set as CNN (Web) and NR-

CNN (Web). Second, we increased the positive samples to

4 times of that in VOC2007 for each category, and denoted

methods on this training set as CNN (Web×4) and NRCN-

N (Web×4). From our statistics, the noise percentages for

the setting of (Web) and (Web×4) are about 20% and 40%,

respectively. The average precision in VOC2007 test set is

shown in Tab. 2. We can draw the following conclusions:

• CNN (Web) can surpass over Web HOG with a signif-

icant gain, which demonstrates a stronger noise-robust

ability of deep learning methods than the method using

human-crafted features on noisy training data.

• NRCNN (Web×4) is better than the state-of-the-art

performance in [18]. Since the Web data is readily

available, the cost of our model is small. We demon-

strate that effectiveness of training a neural network by

noise-robust model with noisy Web training images.

However, the traditional CNN model cannot achiever

the comparable result with ours.

Besides, we found that the proposed model took 1.34 times

time-cost of the standard CNN model with the 128 batch

size. We also found that the performances dropped about

5.0% and 3.1% when using the features in the first and sec-

ond fully-connected layers for similarity computation re-

spectively, compared to the last layer. The reason is the

lack of the high-level semantics in other layers.

4.2. Tagging with the Vocabulary of Personal Photos

One of the most attractive features in the proposed

method is that we can quickly obtain a deep learning model

to describe any tags (categories) by leveraging the unlimited

tags and training data on the Web. For example, categories

in personal photos are typically biased toward the tags re-

lated to “landscape,” “family,” for which we do not have a

human-labeled training set.

After collecting a set of 200 frequent categories from

user-contributed tags from 10, 000 active users (who had

uploaded more than 500 photos in the recent six months
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Table 1: Accuracy of image classification on the clean training data and the training data with different noise percentages.

Method
CIFAR-10

clean 10% 20% 30% 40% 50% 60% 70% 80% 90%

CNN 81.24 77.79 71.97 65.09 55.65 45.60 36.65 25.02 19.46 17.55

RPCA[3]+CNN 81.24 77.94 72.44 65.94 57.82 45.77 36.55 23.68 17.85 15.49

CAE[16]+CNN 81.55 78.54 73.19 67.69 60.83 52.71 44.71 34.39 27.54 18.61

NL+CNN[21] 81.16 78.28 73.36 68.26 61.63 55.83 47.33 37.12 30.81 19.49

NRCNN(our method) 81.60 79.39 76.21 72.81 68.79 63.01 54.78 45.48 35.43 20.56

Table 2: Average precision per class on the VOC2007 test set. The words in brackets indicate: “Web,” this method uses

the positive/negative Web training images of the same number as the standard setting in VOC2007; “Web×4,” compared to

“Web,” the number of positive images used in this setting is increased to 4 times.

��������method

class
plane bike bird boat btl bus car cat chr cow tab dog horse moto pers plnt shp sfa train tv mAP

Best VOC [18] 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

Web HOG [22] 68.5 48.2 47.3 55.7 40.0 56.3 60.1 64.1 43.6 59.2 32.9 46.5 56.2 62.4 41.3 29.6 41.4 35.6 68.9 35.5 49.6

CNN(Web) 84.1 68.8 77.1 73.0 63.0 74.2 74.3 79.2 61.8 73.8 48.9 79.5 81.0 82.1 48.4 57.9 72.0 31.6 83.4 64.7 68.9

CNN(Web×4) 85.4 69.4 77.1 74.5 63.7 74.7 75.0 81.6 62.3 75.7 53.3 80.2 83.8 84.6 50.7 58.9 75.9 41.0 84.5 69.1 71.1

NRCNN(Web) 85.8 69.7 77.4 75.1 63.8 75.8 75.6 82.7 62.7 76.9 53.5 80.6 84.7 84.9 49.2 59.1 76.0 50.8 84.8 69.2 71.9

NRCNN(Web×4) 91.3 75.2 83.3 81.5 70.2 81.3 80.6 88.3 67.0 82.5 60.0 86.3 90.0 90.3 75.8 64.8 81.0 57.8 89.9 74.9 78.6

with registration time more than two years) in Flickr, we

found that 50 categories, e.g., “sunset,” “sightseeing,” and

“birthday” cannot be found even in the category list in Im-

ageNet. For the all 200 categories, we can only use the

ImageNet dataset to train a CNN model on the 150 exist-

ing categories, with 1, 000 clean ImageNet training images

for each category. We denote this method as CNN (Ima-
geNet). To train the complete 200 categories, we crawled

1, 000 images from a commercial image search engine for

each category, removed duplicate images and trained deep

learning models. Note that all methods were conducted with

their best parameters, respectively. Besides, an alternative

way to predict new categories is by zero-shot learning. We

therefore implemented DeViSE [7] as an additional base-

line, which is trained on the 150 existing categories as CNN

(ImageNet) and tested on the complete 200 categories by

semantic extension.

We used the same network as in PASCAL VOC2007,

and trained the network without pre-training scheme. A

randomly-selected 1, 000 photos from MIT-Adobe FiveK
Dataset [2] were used as the test set. Each method produces

top five categories with the highest prediction scores as a

tagging list. 25 human-labelers were employed to evaluate

each tag with three levels: 2–Highly Relevant; 1–Relevant;

0–Non Relevant. We adopted the Normalized Discounted

Cumulative Gain (NDCG) as the metric to evaluate the tag-

ging performance. The NDCG measures multi-level rele-

vance and assumes that the relevant tags are more useful

when appearing higher in a ranked list. This metric at the

1) family

2) dining room

3) party 

4) people

5) night

1) sightseeing

2) bridge

3) sky

4) stadium 

5) lake

1) ocean

2) sunset

3) cliff

4) mountain

5) beach

1) young girl

2) birthday

3) table

4) candle

5) donut

(d) 

(b) 

(c) 

(a) 

Figure 5: Tagging results produced by the proposed

method. Note that the underlined tags are missing in the

ImageNet categories, but are important for personal photos.

position of p in the ranked list is defined by:

NDCG@p = Zp

p∑
i=1

2r
i − 1

log(1 + i)
, (11)

where 2r
i

is the relevance level of the ith tag and Zp is a

normalization constant such that NDCG@p = 1 for the

perfect ranking.

The result is shown in Tab. 3. We can see that our pro-

posed method achieves a consistently better result than oth-

er noise-resistant methods. Besides, CNN (ImageNet) is

inferior to our method, because of its limited vocabulary.

The result also demonstrates that by leveraging Web train-

ing images on new categories, we can obtain a superior re-
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Table 3: Tagging performance in terms of NDCG for the 1,000 testing photos in MIT-Adobe FiveK dataset.

CNN (Web) RPCA+CNN (Web) CAE+CNN (Web) NL+CNN (Web) CNN (ImageNet) DeViSE (ImageNet)[7] NRCNN (Web)

NDCG@1 0.08 0.23 0.11 0.24 0.20 0.28 0.32
NDCG@3 0.18 0.32 0.25 0.33 0.29 0.36 0.41
NDCG@5 0.26 0.39 0.34 0.41 0.39 0.43 0.46

Table 4: The tagging performance in terms of Similarity@K trained by different models and different vocabulary sets.

ImageNet-1K is the vocabulary set of 1,000 categories in ImageNet competition. WordNet-63K is the largest vocabulary set

used in this paper.

Vocabulary Set Model Similarity@1 Similarity@2 Similarity@5 Similarity@10 Similarity@20

ImageNet-1K CNN 0.88 0.85 0.51 0.43 0.22

WordNet-63K CNN 0.57 0.47 0.38 0.31 0.26

WordNet-63K NRCNN (our method) 0.58 0.56 0.51 0.45 0.36

sult than the semantic-embedded method DeViSE. Fig. 5

further illustrates some exemplary tagging results. We can

observe that our approach can provide users with accurate

tags where some are even excluded in the category list in

ImageNet.

4.3. Tagging with the Vocabulary of WordNet

We further train a tagging model with a larger vocabu-

lary set from WordNet. WordNet covers about 82,000 pairs

of the item ID and tag list5. Since the tags in a tag list refer

to a synset, we keep the first tag as the representative of the

tag list. For each tag, we crawled about 50 images from a

commercial image search engine as the training data. We

removed invalid images or images whose width or height

is smaller than 200 pixels. Then after this processing, we

further removed tags which contained less than 30 images

from the vocabulary set. Finally, we collected 63,043 tags

and about 2.4 million training images in total. To the best of

our knowledge, this is the largest vocabulary set in the im-

age tagging area. We kept the same network as above, fine-

tuned the network by Web training data with the released

Alex’s network parameters [12] in Caffe as the pre-trained

parameters. Although the number of training data for each

category is limited, we will show good image tagging re-

sults with the help of the proposed noise-robust model and

the largest vocabulary set.

We randomly selected 20,000 images from the ImageNet

validation set as the testing images. To compare the tag-

ging performance of different approaches, we calculated the

cosine similarity between the word vector of the category

name of each testing image and the word vector of each tag

produced by different models. The word vectors can be cal-

culated by this tool6. We defined an average similarity as

Similarity@K by averaging the similarity scores among the

5image-net.org/archive/words.txt
6nlp.stanford.edu/projects/glove/

top-ranked K tags.

We show the results in Tab. 4. The results of the second

row are achieved by the released Alex’s network in Caffe.

The results of the third and forth row are achieved by fine-

tuning the network by Web training data on about 63,000

tags with the released Alex’s network as the pre-trained pa-

rameters. We observe that our model can achieve better re-

sults from Similarity@5 to Similarity@20, than the tradi-

tional CNN model, which is implemented by the released

Alex’s network on the 1,000 vocabulary set. Our model

can predict a wide range of tags, and achieve a significant

improvement with the gain of 14.0% in terms of Similari-

ty@20, against the CNN model on the 1,000 vocabulary set.

We show the exemplar tagging results in the supplementary

material A2. The lower results on Similarity@1 and Simi-

larity@2 are derived from the variety of tags and the limited

number of training images. We will solve this problem by

using more powerful GPUs that can involve more training

samples in each category within a reasonable time-cost (e.g,

one week as we need currently).

5. Conclusions
In this paper, we propose a noise-robust deep learning

model on noisy training data. The merit is that we can

quickly train a deep learning model for any categories with-

out human-labeled training data and apply the model to real-

applications. By leveraging the mutual relationships of fea-

tures in the output layer, the contribution of noise images

are weakened in the back propagation. Experiments demon-

strate the superior performance. In the future, we will apply

the weakly-supervised model to more image domains.
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